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To date, immune checkpoint inhibitors have been successively approved and widely used
in clinical cancer treatments, however, the overall response rates are very low and almost
all cancer patients eventually progressed to drug resistance, this is mainly due to the
intricate tumor microenvironment and immune escape mechanisms of cancer cells. One
of the main key mechanisms leading to the evasion of immune attack is the presence of
the immunosuppressive microenvironment within tumors. Recently, several studies
illustrated that triggering receptor expressed on myeloid cells-2 (TREM2), a
transmembrane receptor of the immunoglobulin superfamily, was a crucial pathology-
induced immune signaling hub, and it played a vital negative role in antitumor immunity,
such as inhibiting the proliferation of T cells. Here, we reviewed the recent advances in the
study of TREM2, especially focused on its regulation of tumor-related immune signaling
pathways and its role as a novel target in cancer immunotherapy.

Keywords: TREM2, immune checkpoint inhibitor, immunosuppressive myeloid cell, cancer immunotherapy,
immune microenvironment
INTRODUCTION

According to the latest cancer statistics, about 1.9 million new cancer cases and more than 600,000
cancer deaths are projected to occur in the United States in 2021 (1), suggesting that malignant
tumor is still a major public health problem worldwide. Over the past decade, tumor patients,
especially those with advanced cancers witnessed the mushroom growth of cancer
immunotherapies including oncolytic viruses, chimeric antigen receptor T cells, tumor vaccine
and immune checkpoint inhibitors (ICIs) (2, 3), among them, ICIs were well on their way to
becoming the most promising cancer treatment strategy. To a certain extent, the formerly
embarrassing and intractable pattern of cancer therapy has been changed through the use of
ICIs, hence Ipilimumab (Yervoy), the first anti-cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) monoclonal antibody (mAb) and Pembrolizumab (Keytruda), the first mAb against
programmed death-1 (PD-1) garnered their first global approvals for cancer treatment by United
States Food and Drug Administration (FDA) in 2011 and 2014, respectively (4, 5). Soon afterwards,
anti-programmed death-ligand1 (PD-L1) mAbs including Atezolizumab (Tecentriq) (6), Avelumab
(Bavencio) (7) and Durvalumab (Imfinzi) (8) were successively approved to be used in clinical
cancer treatments. These ICIs have remarkably improved the outcomes of some malignancy types,
org September 2021 | Volume 12 | Article 7167101

https://www.frontiersin.org/articles/10.3389/fimmu.2021.716710/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.716710/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.716710/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jsxyfyzlz@126.com
mailto:dingxin81@163.com
https://doi.org/10.3389/fimmu.2021.716710
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.716710
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.716710&domain=pdf&date_stamp=2021-09-03


Qiu et al. TREM2: Keeping Pace With ICIs
for example, the use of ICIs increased the five-year survival rate
of patients with advanced non-small cell lung cancer from 5% to
16%-25% (9). In addition to the above three common ICIs,
several novel immune checkpoint targets such as lymphocyte
activation gene 3 (LAG3) (10), T cell immunoglobulin and
mucin domain 3 (TIM3) (9), T cell immunoglobulin and ITIM
domain (TIGIT) (11), V-Domain Immunoglobulin-Containing
Suppressor of T Cell Activation (VISTA) (12) and B7-H3 (also
known as CD276) (13) were gradually discovered and recognized
in recent years, some of them are undergoing clinical trials.
However, the overall response rates of ICIs are very low and
almost all cancer patients eventually progressed to drug
resistance even though the combination therapies (for instance,
combining two ICIs (14, 15), adding ICI to chemotherapy (16) or
radiotherapy (17) or antiangiogenic therapy (18) were applied to
improve the tricky prognosis, this was mainly due to the intricate
tumor microenvironment (TME) and complicated immune
escape mechanisms of cancer cells.

An increasing number of studies demonstrate that cancer
immune evasion is one of the main obstacles in developing
satisfactory anticancer therapeutic strategies, and the two key
mechanisms leading to the evasion of immune attack are the
abnormal expression and activation of immune checkpoints and
the excessive formation of suppressive immune microenvironment
within tumors (19–21). Hence, inhibition of immune checkpoints
alone may not be sufficient to achieve desirable antitumor
therapeutic effects, but removing the immunosuppressive
microenvironment from tumors probable has a great chance to
improve the prognosis of cancer patients and can be used in
conjunction with ICIs. In recent years, researchers illustrated that
triggering receptor expressed on myeloid cells-2 (TREM2), a
transmembrane receptor of the immunoglobulin superfamily, was
a crucial pathology-induced immune signaling hub, and more and
more evidence suggested that TREM2 played a vital role in tumor-
associated macrophages (TAMs) and myeloid-derived suppressor
cells (MDSCs). In this study, we first review the structure of TREM2
and the pathway of TREM2 signaling, then we focus on the role and
potential of the tumor suppressor TREM2 in the regulation of
tumor immune system and cancer immunotherapy.
TREM2 AND TREM2 SIGNALING
PATHWAY

Structure of TREM2
TREMs, which were identified as the new activating receptors of
immunoglobulin superfamily expressed on human myeloid cells
in 2000, include inhibitory and activating isoforms encoded by a
gene cluster linked to the major histocompatibility complex (22,
23). Currently, studies had explored several members of TREM
family proteins including TREM1 (also known as CD354),
TREM2, TREM3, TREM4, plasmacytoid dendritic cell (pDC)-
TREM, TREM-like transcript (TLT-1) and TLT-2, among them,
TREM2 was an immunosuppressive receptor (24), and it has
successfully attracted the attention of oncologists in recent years.
Frontiers in Immunology | www.frontiersin.org 2
TREM2 gene, which is located on human chromosome 6p21
with a total length of 4676 base pairs (25), consists of five exons
and encodes the glycoprotein TREM2 contains 230 amino acids
(a.a.) (Figure 1) (22). As a member of single transmembrane
hyper-immunoglobulin family, TREM2 was initially cloned as a
novel cDNA encoding a TREM1 homologue in 2000 (22).
Studies have shown that TREM2 is expressed in some myeloid
cells including DCs, monocytes, osteoclasts, Kuppfer cells,
alveolar macrophages and microglia (26–32), and its structure
is consisted of the following four regions (Figure 1) (33, 34) (1): a
signal peptide sequence (1~18 a.a.) (2); an extracellular domain
(19~173 a.a.): contains an extracellular V-type immunoglobulin
domain sequence followed by a short stalk sequence (3); a single
transmembrane helix (174~195 a.a.): contains a charged lysine
residue (3); a short cytoplasmic tail (196~230 a.a.): lacks
signaling motifs.

In addition, TREM2 can be cleaved by sheddases of the
meta l loprotease fami ly such as a dis integr in and
metalloproteases 10 (ADAM10) and ADAM17, and then
released as soluble TREM2 (sTREM2) (Figure 1) (35, 36).
Schlepckow et al. found that both ADAM10 and ADAM17
cleaved TREM2 at histidine 157~serine 158 (37, 38). After
being cleaved by ADAMs, the resultant transmembrane
segment undergoes further proteolytic cleavage by g-secretase
(35). However, whether TREM2 could be cleaved by other
proteases is unknown now. Of greater significance, several
studies had detected sTREM2 in the biological fluids (for
example, cerebrospinal fluid) of patients suffering from Nasu-
Hakola disease, multiple sclerosis and other inflammatory
neurological diseases, and the level of sTREM2 was
significantly related to disease severity (39, 40), indicating that
sTREM2 would not only have a biological function but also a
biomarker value.

TREM2 Signaling Pathway
To dates, studies have shown that TREM2 has several biological
functions, including but not limited to cell maturation, cell
proliferation, cell survival, phagocytosis and the regulation of
inflammation (41–43). This diverse set of functions are mainly
regulated by the interaction of TREM2 and a variety of potential
TREM2 ligands, which encompass a wide array of anionic
molecules including Gram-positive and Gram-negative bacteria
(for example, Neisseria gonorrhoeae Escherichia coli and
Staphylococcus aureus), DNA, lipoproteins and phospholipids
(44–46). Some ligands such as low-density lipoprotein (LDL)
and apolipoproteins E (Apo E) are physiologically present in the
body, while some ligands including pathological b-amyloid
oligomers (Ab) are released as a consequence of tissue damage
and cell death (43).

Once TREM2 ligands bind to TREM2, TREM2 will interact
with the adaptor proteins DNAX activation protein 12 (DAP12,
also known as TYRO protein tyrosine kinase-binding protein)
and DAP10 via oppositely charged residues, and then the
TREM2-DAP12/DAP10 heterodimers are formed (43, 47), for
example, the association of TREM2 to DAP12 is induced
through a conserved positively-charged lysine in TREM2
September 2021 | Volume 12 | Article 716710
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(a.a.186) interacts with a negatively-charged aspartic acid residue
in DAP12, thus resulting in the tyrosine phosphorylation of
DAP12 within its immunoreceptor tyrosine-based activation
motifs (ITAMs) by Src tyrosine kinases (48, 49) (Figure 2).
The main kinase recruited by the ITAM region of DAP12 is
spleen tyrosine kinase (SYK), which activates downstream
signaling molecules such as phosphatidylinositol 3-kinase
(PI3K), serine/threonine protein kinase Akt, mammalian target
of rapamycin (mTOR), p38 mitogen-activated protein kinase
(MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-
terminal kinase (JNK), ultimately leading to cell activation, cell
survival and the increase level of intracellular calcium (50–54)
(Figure 2). Moreover, TREM2-DAP10 also promotes signal
transmission by recruiting PI3K and activating Akt and ERK
(43, 47). Furthermore, Zheng et al. discovered that TREM2 could
stabilize b-catenin by inhibiting its degradation via the Akt/
GSK3b signaling pathway (55).

Beyond the above signaling pathway, TREM2 also negatively
regulates toll-like receptor (TLR) signaling pathways which play
crucial roles in the innate immune system by recognizing pathogen-
associated molecular patterns (56). Long et al. found that TREM2
could attenuate Ab1−42−mediated neuroinfammation through
downregulating TLR signaling pathway (57). The results of Zhou
et al.’s study suggested that lipopolysaccharide (LPS)-induced
hyperactive TLR4 might inhibit the negative effect of TREM2 on
Frontiers in Immunology | www.frontiersin.org 3
regulating inflammation, and the imbalance of microglial TLR4/
TREM2 might be a potential link between Alzheimer’s disease and
systemic inflammation (58). Moreover, the TREM2/TLR4/nuclear
factor-kappa B (NF-kB) signaling pathway was illustrated had the
function of inhibiting LPS-induced neuroinflammation by
regulating microglial M1/M2 polarization (59).
TREM2: AN EMERGING THERAPEUTIC
TARGET OF CANCER IMMUNOTHERAPY

TREM2 Acts As a Tumor Suppressor in
Cancer Environment
Researches over the past two decades have illustrated that the
immune system could not only inhibit the growth of malignant
tumors by destroying cancer cells but also promote the
progression of malignancies either by selecting for cancer cells
those are better suitable to survive in a host with a strong
immune system or by establishing favorable condition within
TME that facilitate the proliferation, growth, invasion and
metastasis of tumors, this means the immune system has a
“double-edged sword” effect on the development of cancers (60).

In order to be fit for cancer cell survival, tumors would coopt
myeloid cells, which constitute an important cellular fraction of
FIGURE 1 | Schematic representation of TREM2 structure. The structure of TREM2 protein mainly includes the signal peptide, extracellular domain which contains
an immunoglobulin domain and a short stalk sequence, transmembrane helix and cytoplasmic tail. The a-secretase such as ADAM10 and ADAM17 can cleave
TREM2 protein at histidine 157~serine 158 and release sTREM2, then the resultant transmembrane segment undergoes further proteolytic cleavage by g-secretase.
September 2021 | Volume 12 | Article 716710
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TME, to suppress the immune system through various
mechanisms and then negatively regulate anti-tumor immune
function (61, 62). It’s worth noting that recent studies have
demonstrated that tumor-infiltrating myeloid cells are
heterogeneous and may actually contain both immunostimulatory
subpopulation and immunosuppressive subpopulation (63, 64), and
MDSCs which can be subdivided as macrophages, granulocytes
(especially neutrophils but occasionally and less numerous
basophils and mast cells), monocytes and DCs are a
immunosuppressive myeloid cell population characterized by the
function of promoting tumor growth in tumor immune network
(63, 65), this subpopulation also has been reported in relation to the
resistance to immunotherapy such as ICIs (66). As some studies
revealed, MDSCs possess high levels of arginase I (Arg1) which can
induce T-cell anergy by depleting L-arginine, and thus impair T-cell
Frontiers in Immunology | www.frontiersin.org 4
proliferation and cytokine production and inhibit the expression of
T-cell receptor CD3z chain and antigen-specific T-cell responses
(67–69). In addition, the activation of MDSCs lead to the
upregulated expression of inducible nitric oxide synthase and the
increased production of nitric oxide and reactive oxygen species,
and then result in the suppression of antitumor immunoactivity
(61). Importantly, MDSCs also obtained the ability of promoting
the development and induction of regulatory T (Treg) cells (70, 71).
On the other hand, according to several high-dimensional profiling
studies, immunostimulatory myeloid cells mainly include type I
DCs and M1-like interferon (IFN)-g-induced macrophages (63, 72,
73), and exert pro-inflammatory and antineoplastic functions
through secreting some inflammatory factors (74). Therefore, it is
strongly necessary to distinguish immunostimulatory myeloid cells
and immunosuppressive myeloid cells, thus helping to deplete
FIGURE 2 | The diagrammatic view of TREM2 signaling pathway. Once TREM2 binding to one of its ligands such as bacterial products, DNA, LDL, Apo E and Ab,
the TREM2 signaling pathway was propagated through the interaction of TREM2 and DAP12/DAP10 via oppositely charged residues, thus resulting in the tyrosine
phosphorylation of DAP12/DAP10 within its ITAMs by Src tyrosine kinases, then SYK was recruited and phosphorylated by the ITAM regions to activate some
downstream signaling molecules such as PI3K, Akt, mTOR, p38 MAPKs, ERK, JNK and b-catenin.
September 2021 | Volume 12 | Article 716710
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immunosuppressive myeloid cells from tumors and induce those
cells with immunostimulatory properties to improve the therapeutic
effect of anti-cancer immunotherapy strategies.

Previously, studies had demonstrated that TREM2 acted as a
negative regulator of TLR responses in DCs and macrophages
(75, 76). TREM2-deficient bone marrow-derived DCs (BMDCs)
produced increased type I IFN (IFN-a4 and IFN-b) and
inflammatory cytokines including IL-12, IL-6 and tumor
necrosis factor (TNF) in response to TLR ligation,
furthermore, compared with wild-type BMDCs, TREM2-
deficient BMDCs were more efficient at inducing antigen-
specific T cell proliferation upon CpG DNA stimulation (76),
and Yao et al. got the similar result, they found that TREM2+

DCs performed a more potent inhibitory effect on the
proliferation of T cells than TREM2- DCs (77) (Figure 3). In
addition to these, Zhai et al. found that TREM2 had a
modulatory effect on the phenotypic conversion of microglia,
down-regulation of TREM2 could promote the phenotypic
conversion of microglia to M1 phenotype, which induced the
secretion of TNF-a, IL-1b and IL-6 and decreased IL-10 and
transforming growth factor (TGF)-b (78) (Figure 3). Moreover,
Wang and his colleagues illustrated that down-regulation of
TREM2 significantly decreased the expression of chemokine
ligand-10 (CXCL10), chemokine receptor-3 (CXCR3), matrix
metalloproteinase-2 (MMP-2) and MMP-9 which played crucial
Frontiers in Immunology | www.frontiersin.org 5
roles in TME (79) (Figure 3). These results implied that TREM2
might play a similar role in antitumor immunity. In 2016, Yao
et al. elucidated that, compared with normal control, TREM2
was dramatically overexpressed on peripheral blood monocytes
and TAMs of patients with lung cancer and tumor-bearing mice,
and there was a positive correlation between the level of TREM2
on pulmonary macrophages and the pathological staging or
lymph nodes metastasis of lung cancer, the reduction of tumor
burden by surgery or chemotherapy induced the remarkable
decrease of TREM2 on the peripheral blood monocytes of lung
cancer patients (77). In 2020, the research team of Colonna M
used single-cell RNA sequencing (scRNA-seq) to dig deep into
the tumor-suppressor myeloid cells, they innovatively discovered
that TREM2 deficiency and anti-TREM2 mAb treatment could
trigger remarkable changes in the macrophage populations
infiltrating the tumor, the infiltration of immunosuppresssive
macrophages labeled by MRC1 and CX3CR1 was reduced, while
the novel subsets expressing immunostimulatory molecules were
expanded, moreover, TREM2–/– tumor infiltrates contained
more CD8+ T cells and CD4+ T cells which expressed PD-1
than wild-type infiltrates, suggesting that TREM2 deficiency
might significantly promote the activation of T cells and
potentially improve the responsiveness of cancers to anti-PD-1
mAbs (73) (Figure 3). Then, the authors revealed that TREM2
deficiency could modify the TME in a manner that facilitated
FIGURE 3 | The crucial roles of TREM2 in remodeling TME and inhibiting tumors. In TME, the tumor suppressor TREM2 is highly expressed in some myeloid cells
including DCs, immunosuppressive macrophages, monocytes, etc. The inhibition of TREM2 could induce DCs produce increased type I IFN (including IFN-a4 and
IFN-b), IL-12, IL-6 and TNF. In terms of regulating macrophages, TREM2 deficiency and anti-TREM2 mAb could promote the phenotypic conversion of macrophages
to M1 phenotype which have anti-tumor function, meanwhile, the secretion of IL-12, IL-6, IL-15 and TNF are significantly induced and the levels of IL-10, TGF-b,
CXCL10, CXCR3, MMP-2 and MMP-9 are decreased. More importantly, TREM2 deficiency and anti-TREM2 mAb also noteworthily promote the proliferation and
activation of CD8+ T cells and CD4+ T cells which expressed PD-1 and potentially improve the responsiveness of cancers to anti-PD-1 treatments. The above crucial
roles of TREM2 meaningfully remodel the TME and ultimately promote tumor regression and improve the therapeutic effect of immunotherapy.
September 2021 | Volume 12 | Article 716710
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partial control the growth of tumor by CD8+ T cells (73). At the
same time, Amit I’s research team and Weiner A’s research team
co-published the parallel excellent and surprising finding, they
utilized INs-seq, a new technology for recording scRNA-seq and
intracellular protein activity, uncovered a novel Arg1+ TREM2+

myeloid cells, genetic ablation of TREM2 could significantly
inhibit the accumulation of myeloid cells within tumors and
lead to immune reactivation (80).

In a word, more and more evidence indicate that TREM2 acts
as a tumor suppressor in modulating TME, and the purposeful
and accurate regulation of TREM2 signaling pathway has the
potential to reshape the TME and exert a stronger anti-
tumor effect.

Emerging and Novel Roles of TREM2 in
Cancer Treatment
Up to now, the role of TREM2 in the treatments of malignant
tumors is poorly understood, because relevant studies are
relatively few, and most of the results are published in recent
years. Initially, Wang et al. found that, compared with
noncancerous brain tissues, the expression level of TREM2 was
significantly increase in glioma tissues, and the overexpression of
TREM2 in human gliomas was closely associated with
pathological grade and overall survival of patients,
furthermore, silencing TREM2 could inhibit the proliferation,
migration and invasion of glioma cells (79). Before long, Zhang
et al. demonstrated that TREM2 was abnormally upregulated in
renal cell cancer tissues, knockdown of TREM2 significantly
inhibited the progression of renal cell cancer via inactivating
PI3K/Akt signaling pathway and increasing the expression of
PTEN (81). In 2018, Zhang et al. confirmed that the mRNA and
protein expression levels of TREM2 in gastric cancer tissues were
significantly higher than those in normal gastric tissues, and the
expression level of TREM2 was inversely correlated with the
prognosis of patients with gastric cancer (82). In addition, by
using a druggable genome small interfering RNA screening
library, Duggan et al. found that targeting TREM2 triggered
the cell death and reduced tumor burden of esophageal
adenocarcinoma (83). These results indicated that TREM2
might be an excellent and effective therapeutic target for
cancer treatment.

However, the study of Kim et al. suggested that TREM2might
also acted as a tumor suppressor in some human malignancies,
because they detected that TREM2 significantly inhibited the
proliferation of colon cancer cells by retarding cell cycle
progression and suppressed the tumorigenicity of colon cancer
cells through reducing the mRNA expression of pro-tumor
cytokines (IL-4) and increasing the mRNA expression of anti-
tumor cytokines (IL-12 and IL-15) (84). Importantly, compared
with normal colon tissues and human colon carcinoma tissues
with stage I, the colon carcinoma tissues with stage II, III and IV
expressed lower level of TREM2 protein and this decrease was in
a tumor stage-dependent manner (84). More interestingly, even
though the expression level of TREM2 was upregulated in
human hepatocellular carcinoma tissues, after administrating
carcinogen diethylnitrosamine, TREM2-/- mice developed more
Frontiers in Immunology | www.frontiersin.org 6
liver tumors and displayed more deteriorative liver damage,
inflammation, oxidative stress and hepatocyte proliferation,
and then Esparza-Baquer et al. found that TREM2 played a
protective role in the biological process of hepatocarcinogenesis
via different pleiotropic effects (85). Recently, Wang et al.
revealed a novel role of TREM2 in mediating chemoresistance,
they found that TREM2 was a potential target of microRNA-149
in gastric cancer, the overexpression of microRNA-149 could
decrease the expression of TREM2 and further improve the 5-
fluorouracil resistance through b-catenin signaling pathway (86).
The above studies show that TREM2 plays different and even
opposite roles in the pathogenesis, development and progression
of different kind of malignant tumors, and its specific biological
functions still need to be further confirmed by a large number
of studies.

Application of TREM2 in Cancer
Immunotherapy
Now, a lot of outstanding cancer immunotherapy drugs,
especially ICIs, have been successfully transformed from the
laboratory to the clinical application, the update and summary
on ICIs approved by the FDA is shown in Table 1 (4, 87, 88).
Although ICIs have great promise, only a small population of
cancer patients achieve a lasting response to the monotherapy
(88). With the use of some predictive biomarkers such as PD-L1
to identify those patients who are more likely to acquire a
favorable therapeutic effect from exposure to ICIs, the overall
effect of cancer immunotherapy has been improved to a certain
extent, but there is still a lot of room for improvement.

In terms of TREM2, the above content has implied that it
plays a vital role in immune responses to tumors and is emerging
as a novel immunotherapy target. Molgora et al. found that
constitutive lack of TREM2 or anti-TREM2 mAb significantly
curbed the growth of tumors and led to complete tumor
regress ion when associated with suboptimal PD-1
immunotherapy (73), the encouraging results indicate that
therapeutic strategies targeting TREM2 could keep pace with
ICIs in cancer immunotherapy. In addition, Xiong et al. re-
analyzed a publicly available scRNA-seq dataset of melanoma
samples of patients subjected to ICIs and identified a
subpopulation of macrophages overexpressing TREM2 that
were overrepresented in the non-responding tumors, and this
subpopulation of macrophages might contribute to the resistance
of ICIs (89). In order to systematically explore the potential
immunological functions and the potential prognostic value of
TREM2 across 33 cancer types, Cheng et al. conducted a pan-
cancer analysis based on datasets from The Cancer Genome
Atlas, the Cancer Cell Line Encyclopedia, Genotype Tissue-
Expression, cBioPortal and Human Protein Atlas, they used
the ESTIMATE algorithm to calculate the immune scores
across the 33 types of cancers, their results showed that the
expression level of TREM2 was significantly positively correlated
with immune scores in diffuse large B-cell lymphoma, acute
myeloid leukemia and thymoma, and the levels of immune cell
infiltration were significantly correlated with TREM2 expression
in most types of malignancies (90), this indicated that TREM2
September 2021 | Volume 12 | Article 716710
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could function as a prognostic marker in various cancers because
of its especial role in tumorigenesis and tumor immunity. Lately,
Lee et al. demonstrated for the first time that precursor natural
killer (pNK) cells expressed TREM2, compared with wild type
mice, the population of pNK cells and the expression levels of
NK cell-activating receptors and NK cell-associated genes were
all increased in TREM2-overexpressing transgenic mice, on the
contrary, the inhibition of TREM2 signaling pathway by
TREM2-immunoglobulin or PI3K inhibitor impacted the
expression of NK cell receptor repertoire and downregulated
the expression levels of NK cell-associated genes, thus
significantly impaired the differentiation of NK cells, the results
of this study collectively suggested again that TREM2 might act
as a novel candidate for cancer immunotherapy (91).
Frontiers in Immunology | www.frontiersin.org 7
Because of the outstanding function in regulating the
immune system, there is currently a clinical trial investigating
the effect of a drug named PY314 which targets TREM2 in the
treatment of solid malignancies (Clinical Trials No.: NCT04691375),
it is a phase 1a/1b open-label study aims to evaluate the safety,
tolerability, pharmacokinetics and pharmacodynamics of PY314
as a single agent and in combination with Pembrolizumab in
subjects with advanced solid tumors, the drug PY314 was
designed to selectively consume immunosuppressive cells and
promote the rebalance of TME that facilitates anti-tumor
immunity, we expect that satisfactory results would be obtained
from this clinical study, and thus further promotes the clinical
transformation and application of therapeutic strategies
targeting TREM2.
TABLE 1 | Update and summary of ICIs approved by FDA for cancer treatments.

Immune checkpoints ICIs Cancer types or tissue-agnostic conditions (first approved time, year)

PD-1 Pembrolizumab (Keytruda) (1) Melanoma (2014);
(2) Non-small cell lung cancer (2015);
(3) Head and neck squamous cell carcinoma (2016);
(4) Urothelial carcinoma (2017);
(5) Classical Hodgkin’s lymphoma (2017);
(6) Gastric cancer (2017);
(7) Solid tumor with microsatellite instability (MSI-H) or mismatch repair-deficient (dMMR) status (2017);
(8) Cervical cancer (2018);
(9) Hepatocellular carcinoma (2018);
(10) Merkel cell carcinoma (2018);
(11) Primary mediastinal large B cell lymphoma (2018);
(12) Renal cell cancer (2019);
(13) Small cell lung cancer (2019);
(14) Esophageal squamous cell carcinoma (2019);
(15) Endometrial carcinoma (2019);
(16) Bacillus Calmette-Guérin bladder cancer (2020);
(17) Colorectal cancer (2020);
(18) Cutaneous squamous cell carcinoma (2020);
(19) Triple-negative breast cancer (2020);
(20) Tumor mutational burden high cancer as determined by an FDA approved test (2020).

PD-1 Nivolumab (Opdivo) (1) Melanoma (2014);
(2) Non-small cell lung cancer (2015);
(3) Renal cell cancer (2015);
(4) Head and neck squamous cell carcinoma (2016);
(5) Classical Hodgkin’s lymphoma (2016);
(6) Urothelial carcinoma (2017);
(7) Solid tumor with MSI-H or dMMR status (2017);
(8) Hepatocellular carcinoma (2017);
(9) Small cell lung cancer (2018);
(10) Esophageal squamous cell carcinoma (2020);
(11) Pleural mesothelioma (2020).

Cemiplimab (Libtayo) Cutaneous squamous cell carcinoma (2018).
PD-L1 Atezolizumab (Tecentriq) (1) Non-small cell lung cancer (2016);

(2) Urothelial carcinoma (2016);
(3) Small cell lung cancer (2019);
(4) Triple-negative breast cancer (2019);
(5) Melanoma (2020);
(6) Hepatocellular carcinoma (2020).

PD-L1 Durvalumab (Imfinzi) (1) Urothelial carcinoma (2017);
(2) Non-small cell lung cancer (2018);
(3) Small cell lung cancer (2020).

Avelumab (Bavencio). (1) Urothelial carcinoma (2017);
(2) Merkel cell carcinoma (2017);
(3) Renal cell cancer (2019).

CTLA-4 Ipilimumab (Yervoy) Melanoma (2011).
Tremelimumab Malignant mesothelioma (2015).
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Even though few clinical studies about targeting TREM2 in cancer
treatment are conducting now, the potential for clinical translation of
TREM2-targeted therapies remains high in the future, and numerous
possible interventions are existed to tackle the TREM2 and its
signaling pathway (43). The most prominent and direct
intervention is to deplete TREM2 genes or target the active domain
of TREM2 through using a specific mAb or small molecule which
would block the downstream pathways (73). Another potential
approach is to target TREM2 ligands, especially condition-specific
and/or tissue-specific ligands, but relevant studies is rare now (43).
Furthermore, TREM2 is shed by the ADAMs, so the inhibition of the
cleaved process is possible to become another feasible intervention
(92), but it is noteworthy that the incidence rate of unwanted and
inevitable side effects may be high, because ADAM10 and ADAM17
have a wide range of substrates such as junction molecules, adhesion
molecules and chemokines and cytokines (93). In order to selectively
compete for a-secretase-mediated shedding, Schlepckow et al.
identified a mAb named 4D9, which had a stalk region epitope
close to the cleavage site, not only stabilized TREM2 on the surface of
cells and reducing its proteolytic shedding by ADAMs, but also
concomitantly activated the phosphorylation of SYK (94). Finally, the
inhibition of the specific intracellular signaling cascade downstream
molecules of TREM2 is another different strategy, however, as we all
know, DAP12, DAP10, SYK, PI3K, Akt, mTOR and MAPK are also
involved in lots of other signal transduction pathways, hence targeting
the above molecules may be an ineffective therapeutic method in the
context of TREM2-specific treatment.

In conclusion, a growing body of evidence suggests that
TREM2 acts as a key signaling hub in tumorigenesis, tumor
Frontiers in Immunology | www.frontiersin.org 8
progression and oncotherapy, and TREM2 may play different or
even opposite roles in different malignancies. Therefore, there is
still a long and difficult road ahead to explore the exact roles of
TREM2 in each malignancy type with different pathologic
category and histological origin. More importantly, because
TREM2 has been demonstrated by some basic research as an
excellent and effective therapeutic target for cancer
immunotherapy, more clinical studies or clinical trials are
urgently needed to confirm its roles in the treatment of cancer,
and promoted the clinical transformation of TREM2 as soon as
possible so as to benefit more cancer patients.
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