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SUMMARY 

The authors found that Long COVID symptoms in a post-acute cohort were associated with serological 

evidence of recent EBV reactivation and pre-existing HIV infection when adjusted for participant factors, 

sample timing, comorbid conditions and prior hospitalization, whereas underlying CMV infection was 

associated with a decreased risk of Long COVID. 
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ABSTRACT 

The presence and reactivation of chronic viral infections such as Epstein-Barr virus (EBV), cytomegalovirus 

(CMV) and human immunodeficiency virus (HIV) have been proposed as potential contributors to Long COVID 

(LC), but studies in well-characterized post-acute cohorts of individuals with COVID-19 over a longer time 

course consistent with current case definitions of LC are limited. In a cohort of 280 adults with prior SARS-

CoV-2 infection, we observed that LC symptoms such as fatigue and neurocognitive dysfunction at a median of 

4 months following initial diagnosis were independently associated with serological evidence of recent EBV 

reactivation (early antigen-D [EA-D] IgG positivity) or high nuclear antigen IgG levels, but not with ongoing EBV 

viremia. Evidence of EBV reactivation (EA-D IgG) was most strongly associated with fatigue (OR 2.12). 

Underlying HIV infection was also independently associated with neurocognitive LC (OR 2.5). Interestingly, 

participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC 

(OR 0.52) and tended to have less severe (>5 symptoms reported) LC (OR 0.44). Overall, these findings 

suggest differential effects of chronic viral co-infections on the likelihood of developing LC and predicted 

distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted. 
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BACKGROUND 

Intense efforts are underway to understand the pathophysiologic mechanisms that drive Long COVID (LC), a 

type of post-acute sequelae of SARS-CoV-2 infection (PASC) characterized by persistent or recurrent 

symptoms that interfere with quality of life (1, 2). Prior work has identified immune activation (3, 4), 

microvascular dysfunction (5, 6), autoimmunity (7, 8), and SARS-CoV-2 viral persistence (9–12) as 

mechanisms potentially contributing to LC. However, not all studies have confirmed these processes (13, 14), 

and identification of the determinants of PASC is essential to efforts to prevent and treat this condition (15).    

 

Latent Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus harbored by the vast majority (90-95%) of 

adults in high-income settings, usually defined by the presence of detectable EBV viral capsid antigen (VCA) 

IgG levels (16). EBV can reactivate in immunocompromised individuals, as well as in the setting of physiologic 

stressors including acute infection (17). In some cases, EBV reactivated in tissues may not manifest with 

detectable circulating DNA in blood (18, 19). While reactivation of EBV is often considered to be a marker of 

physiologic stress rather than an independent pathophysiologic process, recent studies have demonstrated 

that EBV infection may drive multiple sclerosis (20), perhaps due to aberrant autoreactive immune responses 

to viral infection (21).  Prior studies have demonstrated EBV reactivation, as defined by detectable circulating 

EBV DNA or EBV VCA IgM positivity, during acute SARS-CoV-2 infection (22–26). However, these studies 

typically involved hospitalized patients and the high rates of reactivation (e.g., >80% of patients) were 

observed primarily in those receiving positive-pressure ventilation or other ICU-level care. Furthermore, VCA 

IgM levels wane rapidly and may not be useful outside the context of acute or subacute SARS-CoV-2 infection.   

 

EBV reactivation has also been proposed as a driver of Long COVID. One small but highly provocative study 

identified EBV early antigen-diffuse (EA-D) IgG positivity, a marker of recent viral activity or reactivation, 

among two-thirds of individuals experiencing LC (27). EBV EA-D IgG levels were higher in those with more 

PASC symptoms. EBV EA-D IgG levels rise early after recent viral activity like VCA IgM levels but remain 

positive for months prior to decaying to undetectable levels (VCA IgG levels remain elevated indefinitely) (28). 

As a result, EBV EA-D IgG levels may act as a surrogate for recent EBV reactivation in tissues several months 

after the reactivation event (Figure 1). EBV also elicits life-long nuclear antigen (NA) IgG responses, which 
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initially increase at the time of transition between the lytic and latent phases of acute EBV infection (28).  Given 

a several-month lag in NA IgG responses following viral activity, it is possible that increases in NA IgG levels 

sampled months following COVID-19 onset in convalescent LC cohorts may act as a potential marker of EBV 

reactivation or other inflammatory insult at the time of acute SARS-CoV-2 infection. More recent work has 

shown that EBV DNA detectability during acute SARS-CoV-2 infection predicted the presence of symptoms at 

30-60 days post-COVID (7).  Although limited by small sample size, sex imbalance, and over-representation of 

hospitalized individuals, as well as relatively short duration of follow-up, these studies suggest that further 

investigation of the relationship between EBV-related pathology and Long COVID is warranted. Also needed 

are studies controlling for potentially confounding factors in the interpretation of EBV reactivation and 

underlying chronic viral infections, such as timing of sample collection, hospitalization and severity of disease 

during initial infection, underlying health conditions, and other participant demographics, as well as studies 

accounting for the heterogeneity in syndromic patterns of LC that may reflect different disease phenotypes 

potentially caused by pathophysiologic mechanisms.  

 

Given the potential connection between EBV reactivation and the development of Long COVID, there is also 

now much interest in how other underlying chronic viral infections, such as cytomegalovirus (CMV) and human 

immunodeficiency virus (HIV), may influence both acute SARS-CoV-2 infection and post-acute sequelae. For 

example, CMV seropositivity may be associated with more severe acute initial infection (29, 30), but it is not 

known whether CMV plays a significant role in Long COVID. Recent data also demonstrated a potential link 

between the development of T cell receptor sequence repertoires suggesting CMV cytolytic activity associated 

with gastrointestinal symptoms up to 2 months following acute infection (7), but direct evidence of CMV 

infection and LC are lacking. Similarly, we and others have recently observed that people with HIV may have a 

greater risk of developing LC (31, 32), but larger studies that control for factors such as human herpesvirus 

infections (many of which are enriched in people with HIV), participant demographics, and other underlying 

health conditions in both hospitalized and non-hospitalized participants are urgently needed. 

 

In this study, we sought to investigate the prevalence of underlying CMV and HIV infection and evidence of 

EBV reactivation in a well-characterized post-acute COVID-19 cohort of individuals with and without various 
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Long COVID symptoms (e.g. fatigue, neurocognitive, cardiopulmonary, gastrointestinal) approximately four 

months following initial SARS-CoV-2 infection. We evaluated the independent associations between pre-

existing CMV and EBV reactivation and a variety of different LC symptom groups controlled for clinical and 

demographic factors, including underlying HIV infection and details about acute infection. We hypothesized 

that the group experiencing LC symptoms would be enriched for evidence of EBV reactivation and underlying 

CMV seropositivity in comparison to individuals reporting complete recovery from COVID-19. 

 

RESULTS 

Relationship between participant factors and Long COVID symptoms 

Participant demographics, pre-existing health conditions, COVID-19-related hospitalization and EBV antibody 

test results were compared by LC symptom group in 280 participants at the time point beyond 60 days that 

was closest to 4 months (median 123 days) following nucleic acid-based diagnosis of acute SARS-CoV-2 

infection with available data as shown in Table 1.  Overall, the median age was 45 years, 56% were men at 

birth, 18% had been hospitalized during acute infection, 65% had a body mass index (BMI) of >30, and 19% 

were living with HIV (the cohort was deliberately enriched for such individuals). In univariate analyses, there 

were significantly higher proportions of participants with LC or severe LC (reporting more than 5 symptoms, 

LC>5) who had been hospitalized compared to those without LC (21% and 26% versus 9%, respectively; all P 

<0.05).  

 

Relationship between EBV serostatus and Long COVID symptoms 

 

A higher proportion of participants who experienced LC or LC>5, compared with those without LC, had EBV 

NA IgG levels greater than the limit of quantitation of 600 U/mL (45% and 47% versus 28%; all P<0.05). While 

not significant in univariate analyses, we observed that participants with CMV seropositivity were less likely to 

have LC or LC with > 5 symptoms versus those without LC (54% and 53% versus 58%, respectively). 

 

In order to determine the independent associations between demographic factors, pre-existing medical 

conditions and EBV NA and EA-D IgG results with LC and in those with specific LC symptoms, we performed 
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covariate-adjusted binary logistic regression modeling as shown in Figure 2 (adjusted for timing of sample 

collection >100 days, prior COVID-related hospitalization, age >50 years, sex, body mass index >30, pre-

existing diabetes mellitus, hypertension, renal disease, and autoimmune disease, known HIV infection, CMV 

IgG seropositivity, EBV NA IgG >600 U/mL, and EBV EA-D IgG positivity).  Supplemental Figure 1 

summarizes the number of symptoms experienced by each participant in the various LC symptom groups, 

which was roughly similar overall across symptom groups (median ranged from 8 to 9.5 with significantly 

higher number of symptoms in those with gastrointestinal symptoms compared with those with neurocognitive 

symptoms). 258 participants (92%) with data available across all variables were included in logistic regression. 

EBV antibody variables were selected for inclusion in the final regression models based on antibody measures 

that may represent recent EBV reactivation as recently reported (EBV EA-D IgG; (27)) or high levels of EBV 

NA IgG (i.e. >600 U/mL, the upper limit of assay detection) based on the association with LC in univariate 

analysis (Table 1). Notably, unlike detection of EA-D IgG from EBV reactivation, high levels of EBV NA IgG 

may either represent recent viral reactivation or be secondary to increased generalized inflammation from 

acute SARS-CoV-2 infection resulting in B cell activation and non-specific gammaglobulinemia. EBV NA IgG 

levels would be expected to peak months after reversion to the latent phase of EBV infection, around the time 

of sample collection in this study.  

 

EBV VCA IgG positivity, VCA IgG >limit of quantitation (750 U/mL), and VCA IgM results were not significant 

across any analyses and not included in the final models. Furthermore, very few participants had detectable 

VCA IgM levels (3.7%), which would be expected as sampling was conducted months after acute infection. 

 

In adjusted regression analyses, the odds of LC>5, as well as LC characterized by fatigue, gastrointestinal 

symptoms, and cardiopulmonary symptoms were higher in those who had been hospitalized during acute 

infection (Figure 2a-b). Female sex also correlated with gastrointestinal and neurocongitive symptoms (Figure 

2b). 

 

Interestingly, participants reporting pre-existing autoimmune disease (mainly thyroiditis) and those who had 

detectable EBV EA-D IgG responses had a higher odds of experiencing fatigue (Figure 2b) a median of four 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2022.06.21.22276660doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.21.22276660
http://creativecommons.org/licenses/by/4.0/


8 

months following COVID-19 diagnosis. Participants with high levels of EBV NA IgG levels (>600 U/mL) had 

higher odds of experiencing neurocognitive symptoms. Furthermore, the NA IgG >600 U/mL odds ratios were 

higher in those with any number of LC symptoms (Figure 2a); non-significant trends were observed for LC>5 

symptoms and fatigue (Figure 2a-b).  

 

EBV DNA measurements 

In order to determine if circulating EBV DNA is detectable during convalescence and whether any association 

between EBV DNA persistence and LC is present, we performed quantitative EBV PCR on plasma samples 

from a random subgroup of 50 participants who underwent EBV serological testing stratified by EA-D positivity 

(the subgroup demographics and participant phenotypes were similar to the larger cohort as shown in 

Supplemental Table 1). Only one of the fifty participants had detectable plasma EBV DNA, and the level was 

below the limit of quantitation (<390 copies/mL). This participant had no reported pre-existing medical 

conditions, had no detectable EA-D IgG or VCA IgM at the time of sampling, had EBV NA and VCA IgG 

greater than the limit of quantitation, and reported 2 LC symptoms (persistent cough and heart palpitations) at 

the time of sampling.  

 

Relationship between CMV serostatus and Long COVID symptoms 

Next, we analyzed the impact of CMV seropositivity on LC symptom clusters in the same covariate-adjusted 

regression models as above for EBV (Figure 2a-b). CMV IgG positivity is not used to determine recent viral 

reactivation and is therefore solely a marker of pre-existing CMV infection. In contrast to EBV serological 

results, after adjustment for potential confounders, CMV seropositive participants had lower odds of developing 

neurocognitive LC (OR 0.52, P=0.036; Figure 2b) and exhibited trends towards lower odds of developing LC 

(OR 0.63, P=0.169) or LC>5 (OR 0.44, P=0.057), although these latter associations did not reach statistical 

significance (Figure 2a).  There was no evidence for an association between CMV serostatus and fatigue or 

any of the other non-neurologic LC symptom clusters.  

The lower odds of those with underlying CMV infection experiencing LC appeared to be out of proportion to the 

modestly lower percentages of those with LC who were CMV IgG positive (approximately 5% lower in those 
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with LC or LC>5 than in participants without LC; Table 1). As a result, we repeated regression models with 

stepwise inclusion of covariates that may mask the negative association of CMV on LC symptoms. For 

example, the OR of developing neurocognitive PASC in those that were CMV seropositive was 0.87 (P=0.55) 

when only CMV was included in the model as the lone variable. With the addition of HIV, the OR decreased to 

0.71 (P=0.21) and with addition of EBV EA-D IgG+ and EBV NA>600 U/mL the OR decreased to 0.75 

(P=0.27). With HIV and EBV antibody results included, the OR further decreased to 0.63 (P=0.1).  Addition of 

other variables had much more modest effects on the OR of CMV predicting neurocognitive LC, and with all 

covariates included in the model the OR was 0.52 (P=0.036) as in Figure 2. 

Relationship between HIV and Long COVID symptoms 

Of participants with HIV, 8 had viral loads above the limit of quantification (40 copies/mL; quantifiable values 

were 41, 50, 78, 424, 750, 28118, 39267, 46745 copies/mL). The median CD4+ T cell count and percentage 

were 576 (404-785) and 32% (25-38%), respectively. The median CD4/CD8 ratio was 0.86 (0.51-1.2). Twelve 

individuals had CD4+ T cell counts below 350 cells/uL; of these, only 3 had CD4+ T cell counts below 200 

cells/uL. Throughout all adjusted analyses, participants with pre-existing HIV tended to have higher odds of 

developing LC symptoms or LC symptom clusters, with a statistically significant association between HIV and 

neurocognitive LC (OR 2.5, P=0.037) and approaching significance with gastrointestinal symptoms (OR 2.33, 

P=0.058). We repeated covariate-adjusted analyses restricted to HIV-negative individuals (N=213) as all but 

one participant with HIV (98.2%) was CMV IgG positive, compared with 54.8% of total participants included in 

the LC analyses. EBV EA-D IgG positivity remained significantly and positively associated with fatigue (OR 

2.26, P =0.012) and CMV seropositivity remained significantly and negatively associated with neurocognitive 

PASC (OR 0.51, P =0.037).   

Analyses of non-hospitalized participants 

Many prior pathophysiological studies of post-acute sequelae have included a majority of participants who 

were hospitalized for acute COVID-19, with many receiving intensive care or mechanical ventilation. There 

may also be a survival bias of those who develop PASC after severe initial disease presentations. As a result, 

we next performed regression analyses restricted to participants that did not require hospitalization (N=211).  

Overall, the relationships observed in the total population between EBV and CMV serologies and other 
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demographic factors and symptom clusters were similar.  For example, the significant and positive association 

between EBV EA-D IgG and fatigue strengthened (OR 2.37, P =<0.001). The negative associations between 

CMV and neurocognitive symptoms (OR 0.53) and positive association between EBV NA>600 U/mL (OR 1.58) 

were similar to the entire cohort but lost statistical significance in the context of a smaller analysis population 

size. 

Association between EBV and CMV antibody results and circulating markers of inflammation 

We previously identified significant correlations between various markers of inflammation and LC symptoms, 

such as IL-6 and TNFα (3, 33, 34). As a result, we examined the relationship between EBV and CMV antibody 

results in a subset of 143 participants (24 with HIV) who had circulating biomarker data as measured on the 

HD-X Simoa platform available including markers of neuronal injury, inflammation and immune activation (glial 

fibrillary acidic protein [GFAP, a marker of astrocyte activation], neurofilament light chain [NFL, a marker of 

neuronal injury], monocyte Chemoattractant Protein-1 [MCP-1],  IFNγ, IL-6, IL-10, TNFα, and IP-10).  We 

identified significantly higher levels of NFL and MCP-1 in participants with measurable EBV EA-D IgG and 

significantly higher levels of TNFα, IL-10 and MCP-1 in those with EBV VCA IgG >750 U/mL in two-sided, non-

parametric analyses corrected for multiple comparisons (Figure 3). Despite having a substantially lower risk of  

neurocognitive LC, CMV seropositive participants  had significantly higher plasma NFL, IL-6, IP-10, and TNFα 

levels than those without CMV (Figure 3).  

 

Impact of CMV on associations between circulating markers of inflammation and LC symptoms 

Markers of inflammation, such as IL-6 and TNFα have been previously associated with LC/PASC and were 

elevated in participants with underlying CMV infection as above. However, CMV was negatively associated 

with LC outcomes in our regression modeling, and to help clarify the relationships between biomarkers and 

CMV as predictors of LC, we performed binary logistic regression including each biomarker alone or covariate 

adjusted with CMV IgG positivity with LC symptom clusters as shown in Supplemental Table 2 (N=141 with all 

data available). Interestingly, adjusting for CMV status actually strengthened the associations between 

inflammation and Long COVID.    
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DISCUSSION 

In a cohort of several hundred individuals with confirmed prior SARS-CoV-2 infection, we found that certain 

factors associated with chronic viral infections, such as EBV reactivation and pre-existing HIV, were 

independently associated with various Long COVID symptom clusters. In contrast, participants who had 

serologic evidence of prior CMV infection were less likely to report neurocognitive symptoms and tended to 

have less LC overall. Furthermore, HIV, EBV EA-D IgG positivity and high titers of EBV NA IgG appeared to 

mask the negative effects of CMV on LC. Of note, we identified LC even those without evidence of EBV 

reactivation or CMV disease, suggesting that these factors are not essential to the development of persistent 

symptoms or sequelae.  

 

Our study confirms and extends prior studies that identified an association between EBV EA-D positivity and 

LC symptoms, raising the intriguing hypothesis that EBV reactivation may be mechanistically related to specific 

LC syndromic phenotypes. By carefully defining LC syndromic phenotypes and adjusting for various participant 

factors, sample timing, underlying health conditions and prior hospitalization, we identified a strong association 

between evidence of recent EBV reactivation and fatigue, one of the most prevalent LC symptoms. We were 

able to demonstrate that serologic EBV reactivation may be specifically associated with fatigue and neurologic 

symptoms, but less so with other LC syndromic phenotypes (i.e., cardiopulmonary, gastrointestinal). In 

analyses excluding participants that were hospitalized, we were able to confirm that these associations are not 

entirely due to differences in acute COVID-19 severity. Whether or not EBV reactivation is the root cause of 

these symptoms, it should be noted that primary EBV infection (e.g., mononucleosis) may lead to prolonged 

fatigue, and EBV seroconversion has recently been shown to be common prior to the development of MS, an 

autoimmune condition that may be precipitated by aberrant, autoreactive immune responses to this virus (20). 

Since autoimmunity has been proposed as pathophysiologic mechanisms underlying LC (7, 15) and pre-

existing autoimmunity was associated with LC in our analysis, further study of its potential relationship with 

EBV disease activity in this patient population is warranted.  

 

The biological mechanisms leading to high levels of EBV NA IgG (greater than the assay limit of detection of 

600 U/mL) observed in association with LC symptoms and neurocognitive symptoms is not entirely clear. 
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Whereas EA-D IgG responses are generally understood to be a result of recent EBV reactivation in those with 

pre-existing latent EBV infection (27), nearly 90% of our cohort had detectable NA IgG, consistent with the 

long-lasting nature of this antibody and high proportion of participants with pre-existing EBV infection. It is 

possible that those with higher levels experienced a recent increase following EBV reactivation, but given the 

lack of sampling during or before acute SARS-CoV-2 infection, we do not know for certain. Nonetheless, NA 

IgG responses usually peak during establishment (or perhaps re-establishment) of EBV latency (16, 17, 28), 

the timing of which is consistent with the post-acute sample collection timing here. It is also possible that high 

EBV NA IgG levels resulted from non-specific hypergammaglobulinemia that can develop during acute viral 

infections. Further studies in convalescent cohorts with samples collected during acute infection are urgently 

needed. 

 

We made the surprising and novel observation that CMV seropositivity was negatively associated with the 

development of Long COVID phenotypes. The mechanism underlying this observation is not immediately clear, 

and we can only speculate on possible explanations. It is plausible that CMV seropositive individuals might 

mount more robust adaptive immune responses to SARS-CoV-2. For example, CMV seropositivity in younger 

adults is actually associated with heightened adaptive immune responses to influenza vaccination (35), despite 

earlier studies in the aging literature linking CMV to immunosenescence phenotypes (36). Alternatively, CMV-

induced immunoregulatory pathways, including secretion of its own viral IL-10, might dampen local 

inflammation in areas of CMV reactivation, decreasing the risk of auto-antibody formation (to the extent that 

autoantibodies may contribute to the risk of neurologic LC symptoms) (37, 38). It is also unclear whether these 

associations reflect a direct causal effect of CMV on LC risk or host factors that affect the risk of CMV infection 

and LC independently.  It is interesting that CMV serostatus was more strongly associated with neurologic LC 

symptoms than other syndromic phenotypes. While CMV-infected myeloid cells can be found in the central 

nervous system and CMV-induced inflammation might plausibly affect blood-brain barrier permeability (39), it is 

not immediately clear why CMV status would be so specifically linked to neurologic as opposed to non-

neurologic LC symptoms. Lastly, why two chronic herpesvirus infections - EBV and CMV - have qualitatively 

different associations with LC remains entirely unclear, though perhaps the anatomic localization of 
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herpesvirus reactivation is an important factor. For example, EBV preferentially reactivates within B cell 

follicles, where antibody responses develop, while CMV preferentially reactivates elsewhere (40). 

 

It is particularly interesting that CMV seropositivity is associated with decreased odds of developing LC risk but 

worse disease severity in acute COVID-19, as reported in some recent studies (29, 30). Although CMV 

seropositivity was not completely protective against Long COVID in our study, the differential effects of CMV 

serostatus on acute versus Long COVID suggests that assessment of CMV serostatus may be important in 

future mechanistic evaluations of COVID-19.  Indeed, since CMV seropositivity is associated with increased 

systemic inflammation, but a decreased risk of Long COVID, adjusting for CMV serostatus actually 

strengthened our previously reported associations between systemic inflammation and Long COVID symptoms 

(3, 33).  This finding suggests that sources of inflammation unrelated to CMV are most likely driving PASC risk 

in COVID-19 survivors and highlights the importance of the source of inflammation - as opposed to simply 

systemic inflammation itself -  in mediating the risk of PASC. 

 

It is also notable that HIV was independently associated with the development of neurologic LC, and to a 

lesser degree gastrointestinal symptoms, than other LC syndromic phenotypes (e.g., fatigue, which was more 

closely linked to EBV reactivation). Thus, each chronic viral infection assessed in our study not only affected 

the risk of LC, but also exhibited specific and distinct syndromic associations.  Whichever mechanisms explain 

these findings, these observations highlight the importance of measuring specific LC syndromic phenotypes as 

their underlying pathogenic mechanisms may well be distinct. They also highlight the likely heterogeneous 

nature of LC and may help determine inclusion in various future interventional trials. In fact, it will likely be 

difficult to prove any causal or modifying role of LC (e.g., EBV reactivation, CMV serostatus, long-term SARS-

CoV-2 viral persistence, autoreactive immunity, etc.) without measuring the effects of targeted interventions in 

well-designed studies. Furthemore, given that there is paucity of circulating EBV during convalescence, the 

potential impact of EBV reactivation on the development of LC is likely to be greatest during acute COVID-19, 

and factors such as this will need to be considered in the design of such interventional studies. 
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Strengths of this study include the large sample of well-characterized post-acute COVID-19 patients, most of 

whom were not hospitalized during acute infection, at a time point consistent with consensus case definitions 

of Long COVID. Nevertheless, the study has several limitations. Although diverse, our cohort is a convenience 

sample not representative of all individuals with COVID-19 or Long COVID. In particular, while we specifically 

oversampled people with treated HIV infection to assess its association with Long COVID, we have a limited 

subsample of people with HIV to detect modest effect sizes. We also did not have access to biospecimens 

from acute or very early convalescent infection (<30 days). Direct evaluation of EBV dynamics during these 

early phases is warranted, although we believe our results strongly suggest that investigation of EBV viremia 

during post-acute stages is of limited utility. Finally, EBV and CMV reactivation are often tissue-based 

processes and such samples may be needed in order to identify persistent, smoldering infection. As a result, 

tissue studies will be critical to understanding the full pathophysiological mechanisms underlying LC.  

 

In summary, this study expands our understanding of the relationships between chronic viral infections and the 

risk of distinct LC syndromic phenotypes. While it remains unclear whether these associations reflect causal 

effects of viral co-infections or host factors associated with viral co-infections on LC, these observations 

suggest distinct pathogenesis of the various LC syndromic phenotypes. We also extend prior reports that 

serological evidence of recent EBV reactivation is associated with LC, by demonstrating that these 

associations primarily involve fatigue and neurologic LC symptoms. We also made the novel observation that 

CMV seropositivity has an unexpected, negative association with LC, which in turn, is masked to some degree 

by HIV infection and EBV reactivation. Nevertheless, the presence of LC symptoms could not be completely 

explained by the viral co-infections assessed in our study, suggesting that other factors must be important 

mediators of LC. In particular, it remains to be seen whether SARS-CoV-2 persistence in tissues may also play 

a role in LC as suggested by recent uncontrolled case series of SARS-CoV-2-directed antiviral therapies (41–

43). Ultimately, further investigation of SARS-CoV-2 and other viruses during both acute infection and 

convalescence will be needed to clarify the mechanisms driving Long COVID and suggest interventions that 

may reverse or ameliorate these processes.  

 

MATERIALS & METHODS 
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Study participants 

All participants in the Long-term Impact of Infection with Novel Coronavirus cohort (LIINC; NCT04362150) with 

biospecimens available outside the acute window of SARS-CoV-2 infection were studied; the cohort 

procedures have been described in detail previously (44). Briefly, any adult with a history of SARS-CoV-2 

infection identified on nucleic acid amplification testing, regardless of the presence of acute or post-acute 

symptoms, was eligible to enroll >14 days following symptom onset and followed approximately every 4 

months thereafter. Participants were recruited through a combination of mailings to all individuals testing 

positive at two academic medical centers as well as clinician- and self-referrals, as described elsewhere (44). 

We also deliberately enriched the cohort for people with HIV by notifying all eligible individuals testing positive 

for COVID-19 at two university-affiliated HIV clinics to allow us to assess the association between HIV and LC 

symptoms. 

 

Data regarding the acute period of COVID-19 (including number, type, and severity of symptoms, 

hospitalization and COVID-19 treatment), as well as demographics, and medical comorbidities, were collected 

by self-report at the first visit and verified through review of medical records whenever possible. At each visit, 

participants were queried regarding the presence of 32 symptoms derived from the U.S. Centers for Disease 

Control COVID-19 symptom list (45) and the Patient Health Questionnaire (PHQ) somatic symptom scale (46). 

Importantly, participants were specifically asked to describe symptoms only if they were new or worse 

compared to the period prior to COVID-19 (pre-existing symptoms were not considered to represent LC). 

Participants were also asked to assign themselves a score using a visual-analogue scale from 0-100 to 

indicate their overall health prior to COVID-19, at the worst point in their illness, and in the week prior to the 

visit. 

 

Biospecimen collection 

At each visit, whole blood was collected in EDTA tubes followed by density gradient separation and isolation of 

peripheral blood mononuclear cells and plasma as previously described (47). Serum was obtained 

concomitantly from serum-separation tubes for antibody testing. Both plasma and serum samples were stored 

at -80F.  
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EBV assays 

EBV antibody testing was performed on participant serum by ARUP laboratories. The EBV antibody panel 

included quantitative measures of anti-Viral Capsid Antigen (VCA) IgG and IgM, anti-Nuclear Antigen (NA) IgG, 

and early antigen-diffuse IgG.  Results were considered positive in this analysis if units (U) per mL were within 

or higher than the indeterminate range of the assay (VCA IgG > 18 U/mL; VCA IgM > 36 U/mL; NA IgG > 18 

U/mL; early D Ag > 9 U/mL). The VCA IgG, NA IgG and EA-D IgG assays had upper limits of quantitation 

(>750 U/mL, >600 U/mL and >150 U/mL, respectively). Quantitative EBV PCR testing was performed on a 

random subset of 50 study participants stratified by EA-D IgG positivity by ARUP laboratories (quantitative 

range 2.6-7.6 log copies/mL).  This assay also identifies detectable EBV DNA above and below the limit of 

quantitation. 

 

CMV assays 

CMV serostatus was assessed in duplicate on cryopreserved serum by qualitative ELISA (CMV IgG ELISA 

[GWB-BQK12C], Genway Biotech, San Diego, CA), with antibody index values <0.9 considered negative, >1.1 

considered positive, and between 0.9 and 1.1 considered indeterminate per manufacturer specifications.  

Levels greater than 0.9 were considered detectable in this study. For participants without available serum at 

study entry, subsequent visits up to 20 months following COVID-19 diagnosis were used for serostatus 

ascertainment as while the prevalence of CMV is high in the general population, the incidence among 

seronegative adults is typically <1% per year (48).  

 

Biomarker and SARS-CoV-2 IgG analyses 

A subset of participants (n=143) had circulating biomarker data available from previous testing (3, 49).  Briefly, 

the fully automated HD-X Simoa platform was used to measure biomarkers in blood plasma including 

monocyte chemoattractant protein-1 (MCP-1), Cytokine 3-PlexA (interleukin 6 [IL-6], interleukin 10 [IL-10], 

tumor necrosis factor alpha [TNF-α]), IFN-γ–induced protein 10 (IP-10), IFN-γ, neurofilament light chain (NfL), 

glial fibrillary acidic protein (GFAP), and SARS-CoV-2 receptor-binding domain (RBD) immunoglobulin G (IgG) 
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according to the manufacturer’s instructions. Assay performance was consistent with the manufacturer’s 

specifications. 

 

Statistical methods 

Descriptive statistics were used to characterize the cohort including median and 25% and 75% quartiles for 

continuous variables. In univariate analyses of binary variables, we performed two-sided chi square testing or 

Fisher’s exact testing (if any expected cell value was less than 5) for cross-tabular data and two-sided Mann-

Whitney U or Kruskal-Wallis tests (for multiple comparisons with Dunn correction) to compare variables across 

Long COVID groups, symptom groups, and EBV antibody results. Covariate-adjusted binary logistic regression 

models were performed to determine independent associations between variables and 

PASC/symptom/antibody results. Continuous biomarker data used in binary regression models were log10 

transformed to achieve normality and divided by the IQR for each individual biomarker in order normalize the 

effect size across variables. All P values are 2 sided. Prism version 9.1.2 (GraphPad Software, San Diego, 

California) and SPSS version 28.0.1.1 (IBM) software was used for analyses. 

 

Human subjects 

All participants provided written informed consent. The study was approved by the Institutional Review Board 

at the University of California, San Francisco. 
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FIGURE LEGENDS 

Figure 1.  Schema of EBV-specific antibody responses during acute infection and hypothetical responses 

during SARS-CoV-2-related reactivation. EBV viral capsid antigen (VCA) IgM and IgG rise fairly early after 

acute infection, with VCA IgG levels persisting long-term. EBV nuclear antigen (NA) IgM levels rise more 

slowly following acute infection, at a time when virus changes from the lytic to latent phase of infection. Early 

antigen-D (EA-D) IgG responses rise early following acute infection but decay, often to low or undetectable 

levels over many months. The dashed lines represent potential changes to antibody levels following EBV 
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reactivation secondary to an insult such as acute SARS-CoV-2 infection. EBV EA-D IgG responses and 

perhaps increases in baseline levels of EBV NA IgG may be observed 3-4 months following reactivation. 

 

Figure 2.  Results from covariate adjusted logistic regression analysis of predictors of Long COVID and long 

COVID symptoms. Demographic, underlying health conditions, HIV and CMV positivity, and EBV serological 

results as predictors of participants with any persistent symptom (PASC) or greater than 5 symptoms across 

organ systems compared with those without PASC are shown in (a).  Associations between covariates and 

fatigue, neurocognitive symptoms (sx), cardiopulmonary symptoms, and gastrointestinal symptoms are shown 

in (b). N = 258 for all models with exception of LC >5 symptoms (N= 153; participants with one to four LC 

symptoms excluded from the analyses). Cases with missing values were excluded from the regression models. 

Dots and bars represent odds ratios and 95% confidence intervals. P values from regression analyses are 

shown adjusted for all covariates listed in the figure. BMI = body mass index; EBV = Epstein Barr Virus; VCA = 

viral capsid antigen; NA = nuclear antigen; EA-D = early antigen-D.; LC = long COVID. 

 

Figure 3. Circulating markers of Inflammation grouped by EBV and CMV antibody result. No significant 

differences in inflammation marker levels were observed within each antibody group (e.g. EA-D IgG + versus 

EA-D IgG -) by two-sided Kruskal-Wallis testing with Dunn’s correction for multiple comparison (* P <0.05, ** P 

<0.01). Bars and lines represent mean and standard deviation (all data points are shown). Units are in pg/mL. 

 

Supplemental Figure 1. Number of Long COVD (LC) symptoms at the time of sample collection (median 4 

months following SARS-CoV-2 PCR diagnosis) by LC symptom phenotype.  Bars and lines represent mean 

and standard deviation. ** P <0.01 as determine by Kruskal-Wallis test with Dunn correction for multiple 

comparisons. Each point represents a study participant. 
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Table 1. Participant demographics, pre-existing health conditions, prior hospitalization, and EBV serology 
results by Long COVID definitions including participant with sample time points greater than 60 days after 
initial infection. 
 All Participants No Long 

COVID 
Long COVID LC >5 Symptoms 

N (% of all participants) 280a 72 (25.7) 208 (74.2) 97 (34.6) 
Timing in days of data 
collection following acute 
COVID symptom onset 
[median (QR)]b 

123 (114, 134) 124 (116, 132) 123 (112, 135) 123 (109, 145) 

Age [median (QR)] 45 (36, 56) 44 (32, 54) 46 (36, 56) 45 (35, 56) 
Male Sex [n (column %)]b 156 (55.7) 42 (58.3) 114 (54.8) 46 (47.4) 
BMI >30 [n (%)] 177 (64.6) 40 (58.8) 137 (66.5) 67 (70.5) 
Pre-existing Health Condition 
[n (%)] 

    

   Autoimmune Disease 18 (6.4) 3 (4.2) 15 (7.2) 7 (7.2) 
   Diabetes 25 (9.1) 7 (9.7) 18 (8.9) 12 (12.8) 
   Heart Disease 8 (2.9) 3 (4.2) 5 (2.4) 3 (3.2) 
   Hypertension 53 (19.1) 11 (15.5) 42 (20.4) 21 (22.1) 
   Lung Disease 48 (17.3) 11 (15.5) 37 (18.0) 20 (21.1) 
Hospitalized [n (%)] 49 (17.9) 6 (8.8) 43 (20.9)* 25 (26.0)** 
HIV [n (%)] 54 (19.3) 12 (16.7) 42 (20.2) 21 (21.6) 
EBV Serologyd [n (%)]     
   EBV VCA IgG+ 259 (94.9) 64 (92.8) 195 (95.6) 90 (94.7) 
   EBV VCA IgG >750 105 (38.5) 28 (40.6) 77 (37.7) 36 (37.9) 
   EBV VCA IgM+ 10 (3.7) 2 (2.9) 8 (3.9) 2 (2.1) 
   EBV NA IgG+ 243 (89.0) 61 (88.4) 182 (89.2) 84 (88.4) 
   EBV NA IgG >600 U/mL 110 (40.0) 19 (27.5) 91 (44.6)* 45 (47.4)* 
   EBV EA-D IgG+ 98 (35.9) 23 (33.3) 75 (36.8) 39 (41.1) 
CMV IgG+ 153 (54.8) 42 (58.3) 111 (53.6) 51 (52.6) 
BMI = body mass index; EBV = Epstein Barr Virus; VCA = viral capsid antigen; NA = anti-nuclear antigen; EA-D = anti-
early antigen D 
a Variables with missing data (missing N): BMI (6), diabetes (6), heart disease (4), hypertension (3), lung disease (3), 
hospitalized (5), EBV antibody results (7), CMV results (1) 
b QR = 25%, 75% quartiles 
c n = number of participants with underlying condition or positive laboratory results, % = percent within column 
d Plasma EBV DNA was tested in a subgroup of 50 participants; one participant with one PASC symptom had 
detectable DNA below the limit of quantitation (<390 copies/mL) 
* P <0.05, ** P <0.01 by two-tailed Chi Square Testing or Fisher Exact Test if any expected value <5 for cross-tabular 
data comparing PASC >5 symptoms or All LC to no LC 
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Figure 1.  Schema of EBV-specific antibody responses during acute infection and hypothetical responses during S

CoV-2-related reactivation. EBV viral capsid antigen (VCA) IgM and IgG rise fairly early after acute infection, with 

levels persisting long-term. EBV nuclear antigen (NA) IgM levels rise more slowly following acute infection, at a ti

when virus changes from the lytic to latent phase of infection. Early antigen-D (EA-D) IgG responses rise early fol

acute infection but decay, often to low or undetectable levels over many months. The dashed lines represent po

changes to antibody levels following EBV reactivation secondary to an insult such as acute SARS-CoV-2 infection. 

D IgG responses and perhaps increases in baseline levels of EBV NA IgG may be observed 3-4 months following 

reactivation. 
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Figure 2.  Results from covariate adjusted logistic regression analysis of predictors of Long COVID and long COVID 

symptoms. Demographic, underlying health conditions, HIV and CMV positivity, and EBV serological results as predictors 

of participants with any persistent symptom (PASC) or greater than 5 symptoms across organ systems compared with 

those without PASC are shown in (a).  Associations between covariates and fatigue, neurocognitive symptoms (sx), 

cardiopulmonary symptoms, and gastrointestinal symptoms are shown in (b). N = 258 for all models with exception of LC 

>5 symptoms (N= 153; participants with one to four LC symptoms excluded from the analyses). Cases with missing 

values were excluded from the regression models. Dots and bars represent odds ratios and 95% confidence intervals. P 

values from regression analyses are shown adjusted for all covariates listed in the figure. BMI = body mass index; EBV = 

Epstein Barr Virus; VCA = viral capsid antigen; NA = nuclear antigen; EA-D = early antigen-D.; LC = long COVID. 
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Figure 3. Circulating markers of Inflammation grouped by EBV and CMV antibody result. No significant differences in 

inflammation marker levels were observed within each antibody group (e.g. EA-D IgG + versus EA-D IgG -) by two-sided 

Kruskal-Wallis testing with Dunn’s correction for multiple comparison (* P <0.05, ** P <0.01). Bars and lines represent 

mean and standard deviation (all data points are shown). Units are in pg/mL. 
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Supplemental Figure 1. Number of Long COVD (LC) symptoms at the time of sample collection (median 4 months 

following SARS-CoV-2 PCR diagnosis) by LC symptom phenotype.  Bars and lines represent mean and standard deviation. 

** P <0.01 as determine by Kruskal-Wallis test with Dunn correction for multiple comparisons. Each point represents a 

study participant. 
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Supplemental Table 1. Subgroup analysis of plasma EBV DNA testing and other factors in 
subgroups of randomly selected participants stratified by Early Antigen-Diffuse (EA-D) IgG positivity. 

 EA-D IgG Negative EA-D IgG Positive 
N 25 25 
Plasma EBV DNA Positive [n 
(%)] 

1 (4)a 0 (0) 

Timing in days of data collection 
following acute COVID symptom 
onset [median (QR)]b 

126 (120, 144) 121 (101, 128) 

Age [Median (QR)] 42 (32, 55) 49 (37, 61) 
Male Sex  18 (72) 12 (48) 
BMI >30  15 (60) 17 (68) 
Pre-existing Health Conditions   
   HIV 3 (12) 5 (20) 
   Autoimmune Disease 0 (0) 3 (12) 
   Diabetes 1 (4) 2 (8) 
   Heart Disease 0 (0) 1 (4) 
   Hypertension 1 (4) 6 (24) 
   Lung Disease 5 (20) 7 (28) 
Hospitalized  3 (12) 4 (16) 
LC All 18 (72) 18 (72) 
LC >5 Symptoms 9 (36) 9 (36) 
Fatigue 10 (40) 13 (52) 
Cardiopulmonary Symptoms 9 (36) 10 (40) 
Gastrointestinal Symptoms 10 (40) 9 (36) 
Neurocognitive Symptoms 13 (52) 15 (60) 
BMI = body mass index; EBV = Epstein Barr Virus; Ag = antigen; LC = post-acute sequalae of SARS-CoV-2 infection 
a one participant with one PASC symptom had detectable DNA below the limit of quantitation (<390 copies/mL) 

b QR = 25%, 75% quartiles) 
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Supplemental Table 2. Binary logistic regression results of circulating markers of inflammation by Long COVID symptom clusters with and without adjusting for 

CMV IgG results. 

Variables in 

Regression  

Long COVID 

OR (CI)a 

Long COVID >5 Sx 

OR (CI) 

Fatigue 

OR (CI) 

Neurocognitive Sx 

OR (CI) 

Cardiopulmonary Sx 

OR (CI) 

Gastrointestinal Sx 

OR (CI) 

NF-L  1.39 (0.79-2.45) 1.09 (0.54-2.22) 1.19 (0.71-2.01) 1.33 (0.8-2.2) 1.11 (0.66-1.86) 0.74 (0.42-1.31) 

NF-L + CMV IgG 1.4 (0.78-2.52) 1.08 (0.53-2.24) 1.13 (0.66-1.94) 1.36 (0.81-2.29) 1.09 (0.64-1.87) 0.62 (0.37-1.21) 

GFAP  0.94 (0.58-1.53)b 0.87 (0.49-1.52) 0.987 (0.61-1.56) 1.27 (0.81-1.98) 0.88 (0.55-1.41) 1.0 (0.61-1.64) 

GFAP + CMV IgG 1.02 (0.49-2.12)c 0.87 (0.49-1.52) 1.0 (0.62-1.59) 1.24 (0.79-1.95) 0.86 (0.53-1.38) 1.02 (0.62-1.68) 

IL-6 2.09 (1.17-3.74)* 3.19 (1.49-6.83)* 1.51 (0.94-2.43) 1.9 (1.16-3.1)* 1.31 (0.82-2.08) 2.11 (1.25-3.56)* 

IL-6 + CMV IgG 2.23 (1.21-4.1)* 3.33 (1.51-7.32)* 1.44 (0.89-2.34) 2.05 (1.22-3.45)* 1.35 (0.83-2.18) 2.03 (1.19-3.46)* 

TNFα 1.69 (1.04-2.76)* 2.33 (1.19-4.58)* 1.4 (0.9-2.18) 1.86 (1.19-2.91)* 1.31 (0.85-2.03) 1.67 (1.04-2.68)* 

TNFα + CMV IgG 1.77 (1.06-2.95)* 2.4 (1.19-4.84)* 1.33 (0.84-2.1) 2.04 (1.17-3.27)* 1.37 (0.86-2.16) 1.59 (0.98-2.59) 

IFNγ 1.01 (0.66-1.55) 0.88 (0.51-1.54) 0.63 (0.4-0.98)* 0.66 (0.43-0.99)* 1.18 (0.79-1.77) 0.85 (0.55-1.31) 

IFNγ + CMV IgG 1.02 (0.66-1.55) 0.88 (0.51-1.55) 0.61 (0.39-0.96)* 0.66 (0.43-0.995)* 1.18 (0.79-1.77) 0.83 (0.53-1.29) 

IL-10 1.33 (0.84-2.1) 1.36 (0.74-2.49) 0.77 (0.51-1.17) 1.06 (0.77-1.48) 1.39 (0.96-2.01) 0.98 (0.68-1.41) 

IL-10 + CMV IgG 1.33 (0.84-2.12) 1.35 (0.73-2.49) 0.73-0.47-1.14) 1.07 (0.77-1.49) 1.4 (0.96-2.03) 0.95 (0.65-1.4) 

IP-10 1.4 (0.87-2.25) 1.18 (0.67-2.05) 0.88 (0.57-1.35) 1.12 (0.74-1.68) 1.12 (0.74-1.72) 0.84 (0.53-1.32) 

IP-10 + CMV IgG 1.42 (0.86-2.34) 1.17 (0.65-2.11) 0.81 (0.51-1.28) 1.13 (0.74-1.73) 1.11 (0.71-1.73) 0.75 (0.46-1.23) 

MCP-1 1.04 (0.66-1.64) 1.19 (0.65-2.16) 0.99 (0.64-1.54) 1.09 (0.72-1.65) 1.15 (0.75-1.79) 1.46 (0.9-2.36) 

MCP-1 + CMV IgG 1.05 (0.66-1.67) 1.18 (0.65-2.16) 0.96 (0.62-1.5) 1.12 (0.74-1.69) 1.19 (0.76-1.85) 1.42 (0.88-2.3) 
a Odds Ratio (OR) from [Log10(biomarker)/ICR] = OR per IQR 
b OR and 95% confidence intervals (CI) from binary logistic regression of biomarker variable alone (constant included in the model) 
c OR and 95% CI from binary logistic regression of biomarker covariate adjusted for CMV IgG serostatus (constant included in the model) 

IQR = interquartile range; Sx = symptoms; * P<0.05 in binary logistic regression models 
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