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Abstract: This research focuses on the synthesis of multi-walled carbon nanotubes (MWCNTs)
decorated with TiO2 nanoparticles (NPs) and incorporated in cellulose acetate-collagen film in
order to obtain a new biomaterial with potential biomedical applications and improved antimicrobial
activity. The successful decoration of the MWCNTs with TiO2 NPs was confirmed by several structural
and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy,
X-ray diffraction and transmission electron microscopy. The obtained nanocomposites were further
incorporated into cellulose acetate-collagen films, at different concentrations and absorption kinetics,
antimicrobial activity and in vitro biocompatibility of the obtained films was investigated. The
antimicrobial tests sustained that the presence of the nanocomposites into the polymeric matrix is an
important aspect in increasing and maintaining the antimicrobial activity of the polymeric wound
dressings over time. The biocompatibility and cytotoxicity of the obtained films was evaluated using
cellular viability/proliferation assay and fluorescent microscopy which revealed the ability of the
obtained materials as potential wound dressing biomaterial.

Keywords: wound dressing biomaterial; decorated carbon nanotubes; nanoparticles; antimicro-
bial properties

1. Introduction

In the past several years, medicine has faced real challenges regarding the bacterial
spread, mostly because bacteria have evolved in order to survive antimicrobial medications
by developing resistance mechanisms [1]. This issue continues to remain a major problem
for hospitals and contribute significantly to the rate of morbidity, mortality and cost of
care, that aggravates the problem mainly in developing countries where resources are
scarce and staffs are always in short supply [2,3]. Nosocomial infections are common in
burn patients due to the typical features of the disease: loss of the first line of defence
against microbial invasion; avascularised tissue that offers a promising environment for
microbial development; modifications in the specific and nonspecific constituents of the
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immune system; and extended hospitalisation and therapeutic procedures [4,5]. Prolonged
administration of antibiotics, often administrated in combination, results in selection of
multidrug resistant nosocomial strains which belong mainly to several bacterial species,
such as Gram-positive (i.e., Staphylococcus aureus, Streptococcus sp., Micrococcus sp.) and
Gram-negative (i.e., Escherichia coli, Pseudomonas aeruginosa) bacteria, and sometimes yeasts
(i.e., Candida albicans) [6–8].

Classical treatment of infections involves systemic antibiotic administration for long
periods of time, that lead to difficulties due to its low specificity, low efficiency and/or
increased selection of bacterial resistance [8]. Worldwide, poor wound healing affects many
people, due to the poorly regulated features of the healthy tissue repair response. In order to
avoid these complications, new antibacterial systems based on polymers and nanoparticles
were investigated. The ideal wound dressing should provide protection against bacterial
infection, promote angiogenesis, provide a moist environment and enhance epidermal
migration [9,10]. Natural polymers are generally accepted for wound-healing applications
because of their ideal properties, but most of them highlight limited or no antimicrobial
activity [11]. Polysaccharides are natural biopolymers obtained from plant sources, with
excellent biocompatibility [12]. An example belonging to this class is cellulose acetate
(CA) which has been used for the biomaterials expansion of various biomedical and tissue
engineering applications [13]. CA provides excellent biocompatibility, biodegradability,
but the most important characteristic is that it has the potential to improve the cellular
interaction between fibroblast cells and biomaterial [13–15]. These characteristics have
made CA the right candidate for wound dressing applications. In recent years, researchers
have mixed CA with the other polymers in order to obtain a biomaterial with enhanced
properties for wound dressing applications. Collagen is the most common fibril protein
in the human constitution, of about 30% of the total protein mass. This protein serves
both a structural role being the basic protein of connective tissues in skin and bone, and
a functional role being involved in complex mechanisms of tissue growth and repair [11].
This protein attracts attention because of its good biocompatibility, facile biodegradation
(its degradation products being absorbed without inflammation), permeability and estab-
lishing strong interactions between the cells (due to stimulation of specific cell-morphology
phenotypes) [11,15].

Nanomaterials are immersed in polymeric wound coverage matrices with the pur-
pose to offer antibacterial activity, enhanced the angiogenic potential and cell proliferation
and thus, assuring fast wound healing [16,17]. Recently, carbon nanotubes (CNTs) and
decorated carbon nanotubes have attracted great attention as additive in biopolymers
for the development of novel composite biomaterials, due to their antimicrobial activity,
relatively high biocompatibility, promote angiogenesis, unique chemical and physical prop-
erties [18–20]. Pristine CNTs may induce some toxic reactions, but it has been demonstrated
that the addition of polar functional groups to the CNTs surface considerably reduces their
toxicity. The CNTs are capable to damage the cell membrane in microorganisms by direct
contact, which results in bacterial cell death. The bacteriostatic properties of CNTs are
assigned due to their high surface/volume ratio and large inner volume [21]. Laganà P.
investigated the antimicrobial properties of MWCNTs, both pristine and functionalised, at
two concentrations (50 and 100 µg/mL−1), against bacterial strains isolated from hospital-
acquired infections (P. aeruginosa, K. Pneumoniae, E. coli and S. aureus). It was reported that
both types of MWCNTs and doses inhibited the bacterial strains and the functionalised
MWCNTs exhibited a greater inhibiting effect, compared to pristine MWCNTs [22]. More-
over, it was demonstrated that the incorporation of a small concentration of MWCNTs
(0.1%) in a polydimethylsiloxane (PDMS) matrix was able to reduce the E. coli adhesion with
20% [23]. When the concentration of MWCNTs was increased at 1% in the PDMS matrix a
60% reduction of E. coli adhesion was achieved [24]. In another study, it was demonstrated
that Staphylococcus sp. did not grow on MWCNT composite films, suggesting that these
films can inhibit microorganism attachment and biofilm formation on medical devices [25].
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Presently, these nanotubes are being functionalised by different kinds of molecules or
nanoparticles with the purpose of increasing drug delivery potential and improving their
activity [26]. In the last years, MWCNTs have been successfully applied in the medical
field, because CNTs exhibit better wound-healing properties comparing with other non-
metallic nanomaterials, due to its property to promote cell migration when incorporated
in hydrogels [27]. Ravanbakhsh H. and co-workers obtained an injectable hydrogel based
on MWCNTs and glycol chitosan in order to investigate its potential on human dermal
fibroblast cells (HDF). It was observed that small concentrations of CNT significantly
increase cell migration in hydrogels, and accelerate tissue regeneration and wound healing
in situations where there is insufficient migration in the unloaded matrix [20]. In another
study, solubilised collagen Type I was used and polymerised in the presence of dispersed
CNTs and HDF in order to obtain new biomaterials with HDF inserted directly in the matrix.
After 7 days, it was reported that the viability of HDF was constantly increased, and the
cell morphology was not perturbed by the existence of CNTs. Electrical conductivity
of the constructs varied from 3 to 7 mS cm−1, depending on CNTs loading level, thus
suggesting, that the electrical conductivity of cell-seeded collagen gels can be enhanced
with the incorporation of CNTs [28]. Kittana N. and co-workers tested and compared the
effect of chitosan complexed SWCNT and MWCNT hydrogels on 3T3 fibroblast cell line, in
order to investigate the potential of these composites as wound-healing applications. The
results sustained that the fibroblasts were viable in the presence of the complexes and were
able to effectively organise and contract the extracellular matrix. Moreover, the composites
were tested by in vivo on CC-72 line mice and it was observed that both types of complexes
improved the re-epithelialisation of the wounds healing [26]. In another study, Murugesan
B. and co-workers synthetised heteroatom (N, F, P/B)-incorporated MWCNTs by self-
assembling ionic liquids in order to study their efficacy in wound healing. Their antibiofilm
activity against K. pneumoniae, P. aeruginosa, E. coli and B. subtilis was investigated and the
results revealed greater effectiveness for the obtained compositions, compared to pristine
MWCNTs. Moreover, the synthesised materials were tested for its wound-healing ability
in Wistar rats. It was reported that cells cultured on these materials displayed exceptional
healing ability [29]. Das B. and co-workers studied the wound-healing potential of eco-
friendly hyperbranched polyurethane and in situ prepared MWCNTs decorated with Fe3O4
nanoparticles. It was reported that the obtained dressing patch presented excellent in vivo
wound-healing potency in albino mice with an enhanced wound-closure rate [30].

The aim of this study is to design and characterise hybrid nanomaterials based on
MWCNTs_TiO2 incorporated in cellulose acetate-collagen film in order to obtain a potential
wound dressings biomaterial with enhanced antimicrobial properties.

2. Materials and Methods
2.1. MWCNT_TiO2 Synthesis

MWCNTs used in this study were obtained by chemical synthesis, purified and
functionalised in our previously study [31] and the decoration of the MWCNTs with
nanoparticles was performed more easily. Due to the fact that the nanotubes surface is
inert, a chemical treatment is required in order to make it more active to react with other
chemical compounds. The obtained MWCNTs were used as template and stabiliser for
nanoparticles formation in order to obtain the nanotubes decoration. The in situ decoration
of MWCNTs was carry out by dispersing 0.03 g nanotubes into 30 mL isopropanol (C3H8O,
p > 99%, CHIMREACTIV, Bucharest, Romania), under sonication for 1 h. Subsequently,
3 wt% titanium (IV) isopropoxide (C12H28O4TiA, p > 98%, ACROS Organics, Geel, Belgium)
in 20 mL isopropanol was added dropwise into the MWCNTs solution, under vigorous
stirring. The obtained mixture was stirred for 2 h, at room temperature and then the
solution was filtered, washed and dried at 100 ◦C, for 2 h. Finally, the product was sintered
at 500 ◦C, for 30 min.
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2.2. Biocomposite Materials Synthesis

4% cellulose acetate (Fluka, Buchs, Switzerland) and 4% collagen from bovine (Sigma-
Aldrich, Schnelldorf, Germany) were separately dissolved in 100 mL glacial acetic acid
and water (70 mL and 30 mL, respectively) and stirred for 3 h. After the solutions have
completely dissolved, the collagen solution was added into the cellulose acetate solution
and stirred for 30 min. Then, 50 mL from the stock solution was cast in Petri dishes, in
order to obtain cellulose acetate-collagen (CC) films. Moreover, 50 mL of the stock solution
was mixed for 30 min with 0.01 g, 0.025 g and 0.05 g of MWCNT_TiO2, in order to obtain
MWCNT_TiO2@CC films (according to Table 1). Samples were placed into Petri dishes,
crosslinked with 1% glutaraldehyde (Merck, Darmstadt, Germany) by spraying and kept at
room temperature for 48 h in order to evaporate the solvent.

Table 1. Optimisation of films.

Sample No. Sample Coding
Ratio of Cellulose
Acetate/Collagen

(g/g)
Observation

1 CC 1:1 -

2 CC@MWCNT_TiO2
0.01 1:1 0.01 g of MWCNT_TiO2 was

added over the solution

3 CC@MWCNT_TiO2
0.025 1:1 0.025 g of MWCNT_TiO2 was

added over the solution

4 CC@MWCNT_TiO2
0.05 1:1 0.05 g of MWCNT_TiO2 was

added over the solution

2.3. Structural and Morphological Analyses
2.3.1. Fourier Transformed Infrared Spectroscopy (ATR–FTIR)

ATR-FTIR was registered with a GX-type FTIR spectrometer (Perkin Elmer, Waltham,
MA, USA), in the 4000–400 cm−1 range, 4 cm−1 resolution, by accumulating and mediating
32 spectra.

2.3.2. Raman Spectroscopy Analysis

Raman spectroscopy was achieved with a Horiba equipment (Labram HR Evolution,
Pailaiseau, France) having a 514 nm excitation wavelength and a 50× objective with a 10 s
acquisition time.

2.3.3. X-ray Diffraction Analysis (XRD)

A Rigaku Ultima IV diffractometer (Rigaku, Tokyo, Japan) using Cu K α radiation
(λ = 1.54 Å), 40 kV accelerating voltage of the generator radiation and 30 mA emission
current was used in order to obtain the XRD diffractograms. The diffractograms were
recorded in parallel beam geometry over 2θ = 10◦ to 90◦ continuously at a scan rate of
4◦/min.

2.3.4. Transmission Electron Microscopy (TEM)

TEM analysis was performed by using a G2 F20 TWIN Cryo-TEM (Philips, Eindhoven,
The Netherlands) with 200 keV accelerating voltage. Initially, the obtained samples were
pre dispersed in distilled water and sonicated for one hour. For microscopy examination,
one drop of the aqueous dispersion was placed on the holey formvar grid.

2.3.5. Scanning Electron Microscopy (SEM)

The films morphology was investigated using an FEI Quanta Inspect FEG Scanning
Electron Microscope (FEI, Hillsboro, OR, USA) with 30 kV accelerating voltage. The ob-
tained films were previously sputtered with gold for 30 s.
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2.4. Absorption Kinetics

Absorption kinetics of a film is an important parameter in tissue engineering, in order
to confirm the stability of porous wound-dressings. This method offers evidence on how
the film will act in contact with the body fluids and also, about their interaction that can
limit the process of cellular differentiation [8]. In this study, the simulated body fluid (SBF)
solution was obtained, according to the Kokubo’s methodology [32].

Each sample was cut into a cylinder of 3 cm diameter, weighed (initial mass, Wi)
and completely immersed in 20 mL SBF, at a temperature of 37◦ C for various periods of
time. At specified time, the samples were taken off, the excess fluid from their surface was
removed and weighed (mass at time t, Wt). Absorption ratio was calculated according to
Equation (1):

Absorption ratio % =
Wt − Wi

Wi
(1)

2.5. Hardness Measurements

A Shore hardness durometer, model PosiTector SHD-A, DeFelsko, Ogdensburg, NY,
USA was used in order to investigate the hardness of the obtained films. Ten measurements
were recorded for each film and average value was calculated.

2.6. Antimicrobial Analysis
2.6.1. Microbial Strains and Growth Conditions

S. aureus ATCC 25923, E. coli ATCC 25922 and C. albicans ATCC 10231, were obtained
from American Type Culture Collection (ATCC, Manassas, VA, USA), and used in order
to investigate the antimicrobial activity of the obtained biofilms. In order to obtain a
fresh culture used for the subsequent studies, glycerol stocks were streaked on LB agar
(for bacteria) or Sabouraud agar (for C. albicans). All experiments were implemented in
triplicate.

2.6.2. Qualitative Antimicrobial Assay—Growth Inhibition

An adapted diffusion test, with regard to the general rules exposed in the CLSI 2020
was used in order to qualitatively monitor the antibacterial activity of the obtained films.

Initially, a 0.5 McFarland bacterial suspension (1.5 × 108 CFU/mL) was obtained in
sterile saline (0.9% NaCl solution) and used as a standardised inoculum to swab inoculate
Petri dishes containing nutritive agar. The films were cut (6 mm diameter) and sterilised by
UV exposure for 30 min before use. The cut films were aseptically placed on the inoculated
Petri dishes and incubated (37 ◦C for 20 h). After incubation, the diameter of growth
inhibition developed around each film was measured and noted (in mm).

2.6.3. Monospecific Biofilm Development

The antibiofilm performance was carried out by transferring the obtained films (6 mm
in diameter, sterile) in sterile 24-well plates with 1 mL nutritive broth and inoculation of
10 µL of bacterial suspension of 0.5 McFarland standard density. Then, the as prepared
plates were incubated (37 ◦C for 24 h). After that, the films were gently washed with 1 mL
of sterile saline solution and then, the samples were transferred in 1.5 mL centrifuge tubes,
in 1000 µL sterile saline solution, followed by vortexing the obtained films, for 30 s in order
to ensure the detachment of biofilm cells in suspension. In order to evaluate the viable
colony formation (CFU/mL), serial 10-fold dilutions were obtained and then inoculated on
nutrient agar.

2.6.4. Evaluation of the Planktonic Development of Microorganisms

Planktonic development in the company of the obtained films was studied in nutritive
broth. Films of 6 mm in diameter were positioned in sterile 24-well plates and 1 mL of
nutritive broth and 10 µL of the previously obtained 0.5 McFarland bacterial suspensions
in PBS were added. Specimens were incubated at 37 ◦C for 24 h. The obtained bacte-
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rial culture (150 µL) was relocated to 96-well plates and the absorbance at 600 nm was
spectrophotometrically investigated, in order to determine the development of planktonic
(free-floating) cultures.

2.7. Statistical Analysis

Biological results were studied by the one-way ANOVA repeated measures test. The
statistical analyses were achieved using GraphPad Prism Software, v. 9.2. The obtained
results were compared by Tukey’s test (p < 0.05).

2.8. Cellular Viability Assays
2.8.1. MTT Assay

MTT [3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide] test (Vybrant®MTT
Cell Proliferation Assay Kit, Thermo Fischer Scientific, Waltham, MA, USA) was used in
order to investigate the biocompatibility of the obtained films. Human dermal fibroblast
HDFn cells (ATCC, PCS-201-010, Manassas, VA, USA) were developed in DMEM medium
(Sigma-Aldrich, Saint Luis, MO, USA) and supplemented with 10% foetal bovine serum, 1%
antibiotics (penicillin and streptomycin) (Sigma-Aldrich, Saint Luis, MO, USA), changed
twice a week. The HDFn cells were grown in 96-well plates, with a seeding density of
3000 cells/well in the presence of films, for 72 h. Then, 15 mL (12 mM) of MTT was added
to the cells and incubated at 37 ◦C for 4 h. A solution of 1 mg sodium dodecyl sulphate in
10 mL HCl (0.01 M) was added and pipetted vigorously to solubilise the formed formazan
crystals. A TECAN Infinite M200 spectrophotometer (Männedorf, Switzerland) was used
to evaluate the optical density of the solubilised formazan, at 570 nm, after 1 h.

2.8.2. Fluorescence Microscopy

In order to evaluate the biocompatibility of the obtained films a RED CMTPX fluo-
rophore (Thermo Fischer Scientific, Waltham, MA, USA) was used. The CMTPX was added
to the HDFn cell culture, in the presence of the obtained films. After 5 days, the viability
and morphology of the HDFn were evaluated. The CMTPX fluorophore, at a concentration
of 5 µM and incubated for 30 min, was added in the culture medium with the purpose to
permit the dye penetration into the cells. Lastly, the HDFn cells were washed with PBS.
An Olympus CKX 41 digital camera driven by CellSense Entry software (Olympus, Tokyo,
Japan) was used to visualise the cells.

3. Results and Discussions
3.1. Characterisation of MWCNT_TiO2

The first stage of the research implies the characterisation of the MWCNT_TiO2 with
the purpose of demonstrating the successful decoration of the nanotubes.

3.1.1. FTIR Spectroscopy

FTIR spectra of MWCNTs_TiO2 confirms the presence of two important peaks, corre-
sponding to C=C at 1632 cm–1 (carbon nanotubes’ skeleton) and Ti–O bonds at 419 cm–1,
Figure 1. Moreover, the carbonyl group was confirmed by the peak at 1128 cm–1 corre-
sponding to the C-O stretching. A broad absorption can be observed at approximately
3400 cm−1, probably due to water presence.

3.1.2. Raman Analysis

The Raman spectrum of MWCNT_TiO2 presented in Figure 2, confirms the specific
band of anatase TiO2, such as 148.22 cm–1, 398.92 cm–1, 518.15 cm–1 and 639.31 cm–1.
Moreover, the specific bands of MWCNTs are present, at 1597.63 cm–1 (G band), which
refers to the crystalline nature of the MWCNTs and the band at 1346.29 cm–1 (D band),
which indicates the distortions on the MWCNTs surface. The presence of D and G bands
confirms the interfacial interaction between MWCNTs and TiO2 nanoparticles [33]. The
ID/IG band ratio was calculated to be 0.842. Compared with the ID/IG band ratio of pure
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MWCNTs (0.839) [18], it can be suggested that the increasing of the ID/IG band ratio occurs
because of the structural defects in the carbon wall, confirming thus, the modification of
the outer layers of the MWCNTs by nanoparticles deposition.
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3.1.3. XRD Analysis

The XRD pattern of the MWCNTs_TiO2 (Figure 3) confirms the presence of the diffrac-
tion peaks corresponding to MWCNTs structure (at 25.26◦ and 42.88◦). The characteristic
diffraction peaks of TiO2 nanostructure observed at 37.99, 47.97, 54.54, 70.26, 75.04 and
82.71 are perfectly assigned to the crystal planes (110), (200), (211), (021) and (220) which
confirm the anatase phase [34,35]. The peak at 25.26◦ corresponds to the crystal plane (002)
reflection of MWCNTs and overlaps the crystal plane (101) reflection of anatase TiO2, peak
that appears at 25.53◦, confirming, thus, that the anatase phase was the major crystal in
MWCNT/TiO2 nanocomposites.

Scherrer’s Equation (2) was used in order to calculate the crystallite size (L) of the
MWCNTs_TiO2. Table 2 shows the crystallite size of the nanomaterials.

L = Kλ/β cos θ (2)

where, K is Scherrer constant (0.91), λ is the X-ray wavelength (1.5406 Å), β is the full-width
at half maximum and θ is the Bragg angle (rad).
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Table 2. Summary of the XRD characterisation of synthetised MWCNTs and MWCNTs_TiO2.

Sample 2θ (◦) 2θ (rad) β (◦) L (Å) L (nm)

MWCNTs [18] 25.53 0.4456 4.08 20.18 2.018

MWCNTs_TiO2 25.267 0.2204 0.964 85.39 8.539

The significantly increased crystallite size in the case of MWCNTs_TiO2, compared to
pure MWCNTs could be explained by the higher size of the TiO2 nanoparticles that covered
the surface of the nanotubes (Table 2). MWCNTs_TiO2 shows the lowest distribution, that
means largest crystallite size and lowest lattice strains [36]. The peak of decorated carbon
nanotubes is four times narrower than MWCNTs indicating improved crystallinity that can
impart higher mechanical properties in the nanocomposites.

3.1.4. TEM Analysis

The nanotubes synthetised in our previous work [31] have a wide size distribution,
with a diameter of 10–50 nm and approximately 600 nm in length, confirming thus, that the
obtained MWCNTs were shorts. The synthetised nanotubes presented only a few defects
on their surface, which suggests that nanotubes are composed of quality graphite layers.
In Figure 4, the obtained MWCNTs_TiO2 are presented. The TiO2 NPs are successfully
deposited on the surface of the nanotubes. The deposited nanoparticles have spherical
shapes, with a diameter of about 15 nm. It can be observed that the nanoparticles are more
intensely aggregated in some areas on the nanotubes surface.

3.2. Characterisation and Investigation of MWCNT_TiO2@CC Films

The second stage of the research implies the characterisation of the CC film and
MWCNT_TiO2 incorporated in CC films (MWCNT_TiO2@CC) in order to investigate the
potential of the films as wound dressing biomaterial. The obtained films presented a
thickness of 0.148 mm (by calculating the arithmetic mean of 10 values).

3.2.1. FTIR Spectroscopy

The infrared spectrum of the obtained films is presented in Figure 5. The FTIR spectra
of CC film demonstrate the existence of carbonyl group from the collagen, and the triple
helix structure of collagen at 1638 cm–1—amide I, 1546 cm–1—amide II and at 1220 cm–1—
amide III, from the N–H stretching of the hydrogen-bonded amide groups [13]. The
presence of celluloses acetate is confirmed by its characteristic bands, such as the carbonyl
vibration in the acetate substituent at 1730 cm–1, and the hydrogen oxygen vibration in
hydroxyls or water presence at 3294 cm–1. The peak at 1359 corresponds to CH3 groups
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of the acetyl moiety and the peak at 1022 cm−1 matches to ether (C–O–C) bonds of the
glycosidic bond [37].
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By adding MWCNTs_TiO2, new characteristic peaks are observed, especially when
the nanocomposite concentration increased. The FTIR spectra shows sharper peaks at
1371 cm−1 that are related to the C–H bonds characteristic of carbon nanotubes’ skele-
ton and 1730 cm−1 related to C=O from MWCNTs oxidation (indicating that carboxylic
groups are formed due to the oxidation of some carbon atoms on the surface of the
MWCNTs) [18,38]. The presence of TiO2 nanoparticles was confirmed by the band at
low wavenumber around 605 and 558 cm−1.
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3.2.2. SEM Analysis

SEM micrographs of the obtained films are presented in Figure 6. Figure 6a,b illustrates
the porous structure of the control sample (collagen and cellulose acetate without the
antimicrobial agent). The porous film has mainly pore sizes of approximately 30 to 50µm
in diameter and smaller pores of approximately 5–10µm. An open and interconnected
relatively homogeneous porous structure can be observed for all the obtained films. When
the antimicrobial agent was incorporated, a slight reduction of the pores dimensions was
observed, mostly when the quantity of the agent increased. In all the cases, relatively
homogeneous distribution of the agent can be observed. For the samples with increased
concentration of nanocomposites, larger MWCNTs_TiO2 aggregates are presented (between
1.5–3 µm for CC@MWCNT_TiO2 0.01 film; to 5–30 µm for CC@MWCNT_TiO2 0.05 film).
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3.2.3. Absorption Kinetics

In Figure 7 are presented the absorption kinetics for the obtained films. It can be
seen that the absorption kinetics of the films decrease with increase in the amount of
MWCNTs_TiO2. This is attributed to the network structure formed between the nanomate-
rials and polymers, which prevent the absorption of a large quantity of water molecules.
It can be observed that in the case of CC film, the maximum absorption of about 66%
was reached after 60 min, while when the nanomaterials were incorporated lower ab-
sorption maxima can be observed. In the case of CC film, a slight decrease in absorption
which stabilises after 300 min can be observed and also, this tendency is observed for
the film with the lowest content of MWCNTs_TiO2 (0.01 g). When the nanocomposite
content increased, lower maximum absorptions are observed, and absorption kinetics has a
decreasing tendency over time.
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3.2.4. Hardness

Maintaining a good mechanical character of the material is a very important feature of
dressing. It has been reported in several studies that the incorporation of NPs into polymer
composites significantly changes their mechanical properties [39]. Thus, the hardness of
the obtained films was measured. As can be observed in Figure 8, the behaviour suggests
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that the bonding and microstructure of the films change significantly with increasing the
MWCNTs_TiO2 content. It can be observed that even when a low content of MWCNTs_TiO2
was incorporated into the CC solution, effective hardness was obtained, compared to CC
film. The large surface area of the nanomaterials leads to a stronger interfacial interaction
between them and polymer molecules, and stress is better transferred through the materials
which are subjected to mechanical effort, resulting in better properties of the CC films.
Therefore, incorporating MWCNTs_TiO2 as reinforcing elements into the film could result
in additional strength to the composite biomaterials.
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3.2.5. Antimicrobial Analysis
Qualitative Antimicrobial Assay—Growth Inhibition

The obtained results demonstrated that the films presented a different antibacterial
activity, depending both on the tested strain and the MWCNTs_TiO2 content (Figure 9).
As can be observed, the highest values of growth inhibition zones were obtained for the
film with the highest MWCNTs_ TiO2 content. The largest area of inhibition was obtained
for E. coli, this can be related with the sensitivity of bacteria to nanocomposites that differs
according to the interface provided by the bacterial membrane. It is well-known that
Gram-positive bacteria are less sensitive to nanomaterials, compared to Gram-negative
bacteria, because of their thicker peptidoglycan layer [40].
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Monospecific Biofilm Development

The obtained results sustain that the biofilm expansion was significantly reduced at
24 h in all the cases of tested strains, when the films with the highest concentrations of
nanocomposites were used (CC@MWCNTs_TiO2 0.025 and CC@MWCNTs_TiO2 0.05), so
we can suggest that biofilm inhibition is dependent on the nanocomposites concentration
(Figure 10). This tendency is maintained after 48 h, which suggests that the films are
capable to offer protection over time. These results demonstrate that the presence of the
hybrid nanomaterials is an important point. Many studies demonstrated the antimicrobial
character of TiO2 NPs [41,42] and MWCNTs [18,43]. These data suggest that the films can
combat specific pathogens, especially in wound-healing application, due to their higher
effectiveness against Gram-positive and Gram-negative bacteria and yeast.
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Evaluation of the Planktonic Development of Microorganisms

Planktonic development inhibition results showed growth inhibition in cases of S. au-
reus and E. coli when the nanocomposites are present, even at the lowest concentration.
Figure 11 shows that the highest bacterial growth inhibition occurs for the film containing
the highest amount of MWCNTs_TiO2. After 48 h, this tendency is maintained indicating
that the antibacterial nanocomposites from the polymeric matrix could be released affecting
the evolution of bacterial cells (Figure 11 bottom).

3.2.6. Cellular Viability/Proliferation Assay (MTT Assay) and Fluorescence Microscopy

MTT assay presented in Figure 12 shows that the obtained films present absorbance
values close to the control sample at 24 h to 72 h, proving their non-toxicological effect.
The metabolic activity of HDFn in the presence of films demonstrates to be higher than in
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the control cells, suggesting that cells are viable, improving thus the proliferation capacity.
At 72 h, an increased proliferation capacity was observed for the films containing low
and moderate quantity of nanocomposites (0.01 and 0.025 g MWCNTs_TiO2), compared
to the control. These results sustain that the nanocomposites dose is one of the main
factors in the relationships between the responding cell type and nanomaterials. An ideal
biomaterial-based nanoparticles has to present the ability to minimise cytotoxicity to a
range of potentially exposed cells. Regarding this, there are several reports that sustain
that TiO2 nanoparticles and MWCNTs are non-toxic, and their exposure does not lead to
membrane damage or cell death [44–46].
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Fluorescence microscopy images show that HDFn cells are viable, and the films have
no cytotoxic effect, approving the biochemical assay. By fluorescence microscopy images
it can be observed that the cellular metabolism of the cells is active, due to the fact that
cells absorb the fluorophore CMTPX dye in the cytoplasm, demonstrating their viability
after five days of incubation with HDFn cells. In Figure 13b no dead cells or cell fragments
are detected when the cells are in contact with the film; the HDFn presents a normal
morphology, with a normal fibroblast phenotype that preserves their initial morphology,
with homogenous sizes and density distributions in the culture well plates. All the samples
present extensions that demonstrate that the phenotype is active. In Figure 13d,e, HDFn
is more abundant and has more elongated extensions suggesting that these materials
stimulated the cells. This occurs because of the activity of the cytoskeleton and principally
represents actin filaments and microtubules. As the HDFn cells are involved in several
cellular processes, such as cell migration and wound healing, it can be concluded that the
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seeded cells demonstrated a good bioactivity for the studied films, especially when the
concentration of MWCNTs_TiO2 increased.
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through SEM analysis, highlighting the micrometric pores, with homogenous distribu-
tion of TiO2 NPs into the polymeric matrix. The films absorbed a lower quantity of SBF 
when the MWCNTs_TiO2 quantity increased as demonstrated by absorption kinetics. 
This is attributed to the network structure formed between the nanomaterials and poly-
mers, which prevents the absorption of large quantity of water molecules. The antimi-
crobial tests sustained that the presence of the nanocomposite in the polymeric matrix 
plays a key role in increasing and maintaining the antimicrobial activity of the polymeric 
wound dressings, over time. Moreover, the highest antimicrobial activity was obtained 
for the films with the highest concentrations of nanocomposites (CC@MWCNTs_TiO2 
0.025 and CC@MWCNTs_TiO2 0.05). Overall, these films strongly inhibited the growth of 
both Gram-positive and Gram-negative strains, improving the cell proliferation capacity. 
Our results support the idea that the obtained films containing MWCNTs_TiO2 are bio-

Figure 13. Fluorescence images showing the viability of HDFn cells coloured with CMTPX fluo-
rophore: (a) control sample; (b) CC; (c) CC@MWCNT_TiO2 0.01; (d) CC@MWCNT_TiO2 0.025 and
(e) CC@MWCNT_TiO2 0.05 film.

4. Conclusions

In this study, we reported obtaining nanocomposites based on decorated MWCNTs
with TiO2 NPs incorporated in cellulose acetate-collagen film in order to test their po-
tential as antimicrobial wound dressing biomaterial. The decoration was confirmed by
structural and morphological analyses, such as Fourier transformed infrared spectroscopy,
Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The attached
nanoparticles on the nanotubes surface presented spherical shapes with diameter of about
15 nm. By TEM analysis it was observed that the nanoparticles are aggregated to the
MWCNTs surface.

After obtaining the nanocomposites, they were incorporated in cellulose acetate-
collagen film. The porous nature of the obtained biomaterials was established through
SEM analysis, highlighting the micrometric pores, with homogenous distribution of TiO2
NPs into the polymeric matrix. The films absorbed a lower quantity of SBF when the
MWCNTs_TiO2 quantity increased as demonstrated by absorption kinetics. This is at-
tributed to the network structure formed between the nanomaterials and polymers, which
prevents the absorption of large quantity of water molecules. The antimicrobial tests
sustained that the presence of the nanocomposite in the polymeric matrix plays a key
role in increasing and maintaining the antimicrobial activity of the polymeric wound
dressings, over time. Moreover, the highest antimicrobial activity was obtained for the
films with the highest concentrations of nanocomposites (CC@MWCNTs_TiO2 0.025 and
CC@MWCNTs_TiO2 0.05). Overall, these films strongly inhibited the growth of both Gram-
positive and Gram-negative strains, improving the cell proliferation capacity. Our results
support the idea that the obtained films containing MWCNTs_TiO2 are biocompatible and
possess antimicrobial activity, becoming thus successful candidates for the development
of competent and efficient wound dressings. Further, in vivo studies will be designed to
show the full range of bioactivity in our next paper.
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