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Heart failure (HF) patients often suffer from multiple comorbidities, such as diabetes,

atrial fibrillation, depression, chronic obstructive pulmonary disease, and chronic kidney

disease. The coexistance of comorbidities usually leads to multi morbidity and poor

prognosis. Treatments for HF patients with multi morbidity are still an unmet clinical

need, and finding an effective therapy strategy is of great value. HF can lead to

comorbidity, and in return, comorbidity may promote the progression of HF, creating

a vicious cycle. This reciprocal correlation indicates there may be some common

causes and biological mechanisms. Metabolism remodeling and chronic inflammation

play a vital role in the pathophysiological processes of HF and comorbidities, indicating

metabolism and inflammation may be the links between HF and comorbidities. In this

review, we comprehensively discuss the major underlying mechanisms and therapeutic

implications for comorbidities of HF. We first summarize the potential role of metabolism

and inflammation in HF. Then, we give an overview of the linkage between common

comorbidities and HF, from the perspective of epidemiological evidence to the underlying

metabolism and inflammation mechanisms. Moreover, with the help of bioinformatics, we

summarize the shared risk factors, signal pathways, and therapeutic targets between

HF and comorbidities. Metabolic syndrome, aging, deleterious lifestyles (sedentary

behavior, poor dietary patterns, smoking, etc.), and other risk factors common to HF

and comorbidities are all associated with common mechanisms. Impaired mitochondrial

biogenesis, autophagy, insulin resistance, and oxidative stress, are among the major

mechanisms of both HF and comorbidities. Gene enrichment analysis showed the

PI3K/AKT pathway may probably play a central role in multi morbidity. Additionally,

drug targets common to HF and several common comorbidities were found by network

analysis. Such analysis has already been instrumental in drug repurposing to treat HF and

comorbidity. And the result suggests sodium-glucose transporter-2 (SGLT-2) inhibitors,

IL-1β inhibitors, and metformin may be promising drugs for repurposing to treat multi

morbidity. We propose that targeting the metabolic and inflammatory pathways that are

common to HF and comorbidities may provide a promising therapeutic strategy.
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INTRODUCTION

Heart failure (HF) is a global public health problem that affects
more than 26million people worldwide and causes a heavy health
burden (1, 2). The prevalence of HF was 1.3% in Chinese adults
(an estimated 13.7 million), in which 23% of patients had HF
with preserved ejection fraction (EF), (HFpEF), 23% had HF
with middle-range EF (HFmrEF), and about 54% had reduced
ejection fraction (HFrEF) (3). Due to the aggravation of aging,
the incidence of HF is rising, and HF is associated with increased
mortality, morbidity, and hospitalization (4).

HF often coexists with multiple comorbidities. The reported
prevalence of comorbidities varied with HF severity (5). As
shown in Figure 1, we summarized the prevalence of major
comorbidities according to the different organs and systems
involved, such as hypertension (65%), atrial fibrillation (45%),
chronic obstructive pulmonary disease (COPD)/asthma(40%),
iron deficiency (30%), diabetes (40%), chronic kidney diseases
(CKD) (25%), obesity (45%) (6, 7), ischaemic heart disease (50%),
hyperlipidaemia (55%) (8), depression (40%) (9–11), sleep apnea
(40%) (12), sarcopenia (40%) (13) and liver dysfunction (10%)
(14). The high prevalence of multi morbidity is associated with
poor prognosis and heavy heath burdens, and therapy for multi
morbidity in HF is still a challenge (15). However, the treatment
of comorbidities may have cardiovascular side effects. Therefore,
understanding the underlying mechanisms and finding potential
strategies for both HF and comorbidities is worthwhile.

Metabolism and inflammation play an essential role in the
pathophysiology of HF and its associated comorbidities, which
may be the link between them. In this review, we summarized
the role of metabolism and inflammation in HF and its most
common comorbidities, and review their possible links, including
shared risk factors, signal pathways, and therapeutic targets.

METABOLIC REMODELING FROM
NORMAL TO FAILING HEART IS BOTH
CAUSE AND EFFECT OF HEART FAILURE

The heart requires a high rate of ATP production and turnover
to fuel its continuous mechanical work, and it has become
common knowledge that the failing heart is an “engine out
of fuel” (16). We give an overview of the pathological cardiac
metabolic remodeling from physiological condition to heart
failure in Figure 2, including glucose, fatty acid (FA), amino acid,
and ions metabolisms. These metabolic changes all affect cardiac
energymetabolism either by directly participating in or indirectly
regulating mitochondrial metabolism.

Normal Cardiac Energy Metabolism Has
Compensatory Capacity
Under normal physiological conditions, the heart cycles about
6 kg of ATP every day (16). Regulation of cardiac energy
metabolism is through substrate alteration. The substrate mainly
consists of fatty acids (FAs), glucose, pyruvate, lactate, and ketone
bodies. Glucose and fatty acid metabolism are major contributors
to cardiac energy metabolism.

At rest, about 15–25% of the heart’s maximum energy loading
capacity is used (17). The cardiac energy metabolic pathway can
be altered in only a few seconds through substrate alterations
when shifting from rest to acute stress such as exercise or
ischemia, or after glycogen stores have been depleted when
fasting. In the normal heart, about 60–90% (depending on
energy demand) of the cardiac energy budget is produced
by FA β-oxidation, and the rest is produced by the pyruvate
and tricarboxylic acid (TCA) cycle (18). Under non-ischemic
conditions, more than 95% of the ATP in the normal heart comes
from oxidative phosphorylation of FAs, glucose, and lactate in
mitochondria, while in a fasting state, as the energy demand
increases, there is a substrate shift from FAs to glucose (FAs
produce about 70% of the ATP and glucose produces 20%) (17).

There is an auto-balance mechanism of glucose and fatty
acid oxidation (FAO) pathways in the energy substrate that
called the “Randle cycle,” in which the activation of FAO
would inhibit glucose uptake, whereas the increased utilization
of glucose inhibits FAO, and inhibiting FAO increase glucose
oxidation compensatorily (19). This regulation is mainly through
an increase in plasma insulin level and the activation of the
AMP-activated protein kinase (AMPK) pathway. Insulin would
increase glucose uptake and activate the phosphatidylinositol 3-
kinase (PI3K)/AKT pathway, and finally increases myocardial
contractility. Glucose uptake is an insulin-dependent process
because glucose transporters (GLUT1/GLUT4) are sensitive to
insulin. The activation of AMPK promotes both FA and glucose
oxidation which increases cardiac energy. Moreover, AMPK
inhibits ATP-consuming processes like protein synthesis (20).

Altered Energy Metabolic Substrate
Utilization Is the Major Metabolic
Remodeling in Heart Failure
The metabolic remodeling in the failing heart is similar to the
alterations from the non-ischemic to the ischemic condition, as
mentioned above, and may well be a protective compensatory
mechanism to use more of its capacity. However, long term
sustained high energy loading would cause some toxic substances
to accumulate, which in turn may contribute to the progress
of HF and comorbidities. In most cases, FAO decreases and
glycolysis increases rapidly in HF, except for advanced and
diabetic HF where FAO increases (18, 21, 22), this is because
mitochondrial dysfunction in HF causes decreased expression
and activity of enzymes associated with mitochondrial FAO
(23). Several key enzymes of FAO are regulated by transcript
factor peroxisome proliferator-activated receptors (PPARs). The
decrease of FAO could be mainly explained by the activation
of PPARγ and reduced activity of PPARα (18). Insulin plays
an important role in substrate shift progression. Therefore, in
cases of insulin resistance, such as diabetic HF or advanced HF,
FAO is increased by activating PPARα signaling (22). Myocardial
uptake of FA usually increases in HF. The imbalance of increased
FA uptake and impaired utilization of FAs in HF results in FA
accumulation. Accumulated FAs cause lipotoxicity and worsen
HF by promoting mitochondrial dysfunction and apoptosis, and
contributes to the development of insulin resistance (18).
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FIGURE 1 | The estimated prevalence of heart failure comorbidities in different organs and systems.

FIGURE 2 | An overview of normal physiological metabolic processes and the pathological metabolic remodeling characteristic of HF. Blue arrows show normal

cardiac metabolic processes. The altered metabolic processes of HF are displayed in red; Arrows indicate changed metabolic intermediates and products. TCA,

tricarboxylic acid; BCCA, branched-chain amino acids; BCKA, branched-chain alpha-keto acids; ROS, reactive oxygen species; NCX, Na+/Ca2+ exchanger.
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Targeting the FAO pathway is an emerging treatment for
HF (24), but the significance of the shift from FAO to glucose
metabolism remains controversial and there have two opposite
therapeutic strategies: inhibit or facilitate FA utilization. The two
therapeutic strategies are not contradictory because they both
reduce the cardiac accumulation of FAs, one is by reducing the
uptake of FAs and the other is by increasing the catabolism of
FAs. Drugs targeted inhibition of FAO may be classified into
3 categories: (1) β-oxidation inhibition, such as malonyl-CoA
decarboxylase inhibitors, (2)mitochondrial FA uptake inhibition,
such as the carnitine palmitoyl transferase 1 inhibitor (CPTI),
(3) plasma membrane FA uptake reduction by inhibiting related
proteins, such as in the case of CD36 (the major FA transporter)
or fatty acid-binding protein (FABP). CD36 inhibitor is still
under preclinical investigations. However, considering that
glucose provides less capacity for energy production than FAs
(one FA molecule produces 120–130 ATP, while one glucose
molecule produces 30–32 ATP) (22), there is an opposite opinion,
which asserts that the heart reverting back to using FA may have
therapeutic value for HF, such as by targeting GLUT4 to inhibit
glycolysis or activate the AMPK pathway by phosphorylation
to increase FAO. Studies have confirmed that reverting to the
use of FA has a cardio protective effect (22, 25). Restoration of
FAO could improve heart function, possibly via reduced cardiac
lipotoxicity (26).

Mitochondria are a physiological source of reactive oxygen
species (ROS). They are generated in the electron transport chain
(ETC) during respiration, and eliminated by NADPH dependent
enzyme systems, forming a “redox-optimized ROS balance” (19).
The deficit in energy would cause the uncoupling of oxidative
phosphorylation, and cause an increase in reactive oxygen species
(ROS) and oxidative stress (27). ROS, in return, inactivates
several enzymes of the TCA cycle (19).

In addition, liver energy metabolism also participates in the
process of HF. Ketone bodies synthesized in liver mitochondria,
especially β-hydroxybutyrate, the so-called super fuel, are more
efficient than FAs or glucose. The failing heart adaptively
consumes more ketone bodies (28) and this is believed to be
beneficial (23, 29).

Amino Metabolism Dysfunction Indirectly
Affects Cardiac Energy Metabolism
More glutamine is consumed in HF because it is the most
abundant secreted amino acid (28), but branched-chain amino
acids (BCAAs) played a more important role in HF. In healthy
individuals, BCAAs are essential nutrition for mitochondrial
biogenesis, and dietary supplementation of BCAAs has cardio
protective effects (30–32). However, BCAA catabolic metabolism
is impaired in HF, leading to the accumulation of BCAAs and
branched-chain alpha-keto acids (BCKAs) (33). The accumulated
BCAAs and their catabolic intermediates have a cardiotoxic
effect. BCAA accumulation could result in insulin resistance by
activating the mTOR pathway (34, 35), and accumulated BCKAs
would increase reactive oxygen species (ROS) (36). Furthermore,
BCAA is reported to be a potential therapeutic target for HF
(37). BCAAs are not a major source of cardiac energy (below 5%)

(28). but may have important indirect regulatory roles in energy
metabolism as they affect mitochondrial biogenesis and BCAA
toxicity affects energy metabolism.

Ion Metabolism Induces Heart Failure by
Regulating Energy Metabolism
Sodium (Na+) and calcium (Ca2+) ions are closely linked
to HF. Elevated intracellular Na+ can lead to cardiac energy
metabolic shift from FAO to glycolysis (38). The renin-
angiotensin-aldosterone (RAAS) system has evolved to retain
Na+ homeostasis and RAAS-blockers have been widely used in
HF therapy. In HF, tubular cells are often hypertrophic and Na+

reabsorption increases. Sodium-glucose transporter-2 (SGLT-2)
is a recently discovered diuretic agent that could improve the
outcome of HF (39). Increases in the Na+/H+ exchanger may
explain the phenomenon of the elevated Na+ level in HF (40).
Ca2+ is required for cardiac diastolic function (41). In fact,
Ca2+ signaling plays an essential role in regulating mitochondrial
ATP production (42). Ca2+ is a second messenger in various
cells and is regulated by ion channels, ion exchangers, pumps
(ATPases), and Ca2+-binding proteins (43). The dysfunction
of a sarcoplasmic reticulum Ca2+-release channel, ryanodine
receptor, can cause calcium leakage and mitochondrial damage,
which contribute to the progression of HF (44). Na+ is associated
with Ca2+ uptake and Ca2+ related myofilament contraction
through Na+/Ca2+ exchange (45).

The Clinical Significance of Metabolic
Remodeling: A Double-Edged Sword
Metabolic remodeling is a major pathophysiologic character
of HF, but whether it is the cause or result of the HF, and
whether it is maladaptive or adaptive is still controversial (46).
Why have drugs both targeting inhibition and promotion of
metabolic remodeling been used for the treatment of heart
failure, and are both able to alleviate HF symptoms? FA or
glucose, which is the superior energy substrate? We think
that metabolic remodeling has a double effect: On one hand,
metabolic remodeling is thought to be an adaptive compensatory
mechanism. First, the shift toward glucose metabolism improves
myocardial contractile efficiency by increasing the stoichiometric
ratio of ATP production to oxygen consumption and reducing
oxygen waste (47). Although glucose has a lower energy capacity,
the shift is not due to a lack of substrate availability because the
coronary circulation is able to provide an excess of substrates
(47), and glycolysis produces ATPmuch faster than other ways, as
epitomized by theWarburg effect (48). Second, similar metabolic
remodeling can also be seen in the physiological remodeling
of the heart. Many pathways, such as the activation of the
AMPK and PI3K pathways, which have protective roles, are
active in both physiological and pathological cardiac remodeling
(20). On the other hand, metabolic remodeling is harmful
when toxic substances such as accumulated excess intracellular
FAs and ROS are increased, which may worsen HF and cause
comorbidities. Recent evidence suggests that the accumulation
of toxic intermediates, rather than alterations of substrate
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utilization or ATP deficit per-second, is responsible for cardiac
dysfunction (18).

CHRONIC INFLAMMATION

The Role of Inflammation in Heart Failure
HF is usually accompanied by highly elevated circulating
pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, TNF-
α, NF-κb, etc. However, the role of inflammation in HF
has long been controversial. Because most traditional anti-
inflammatory drugs failed in clinical HF therapies, inflammation
was considered to not be a cause, but a complication of HF.
The importance of inflammation in HF was not widely accepted
until the success of canakinumab, an IL-1β inhibitor, which
significantly improved the prognosis of HF. The effect of it and
other anti-cytokine drugs indicates the role of inflammation
in HF (49). Moreover, Soluble suppression of tumorigenesis-
2(sST2) and galectin-3 are inflammatory biomarkers associated
with fibrosis in HF, which have reportedly even better prognoses
than NT-pro-BNP, an HF biomarker not directly associated with
inflammation (50, 51). Having established the causal role of
inflammation in HF, in the following, we give an overview of
inflammation in cardiac remodeling and various comorbidities.

The Immune Response Causes Systemic
Inflammation
Both the innate and adaptive immune systems have a
pro-inflammation role in HF. The immune response triggered
inflammationmechanism is called immune inflammation. Innate
immune cells, such as neutrophils, natural killer cells, and mast
cells (52), have been revealed to participate in the progress of
HF through immune inflammation. For instance, monocytes
derived from HF patients have higher secreted cytokines (IL-
1β, IL-6) and chemokines (CCL3, CCL4), and can stimulate
T cell activation (53). Monocyte-derived macrophages have
a pro-inflammation role in cardiovascular diseases (49). In
addition, several pattern recognition receptors (PRRs), such as
NOD-like receptors (NLRs) and Toll-like receptors (TLRs), are
mainly expressed on tissue-resident immune cells, can turn
on multiple signals to trigger innate immune inflammation.
Finally, the activation of the innate immune system can cause
the activation of the adaptive immune system by activation and
infiltration of B cells and T cells (54).

Inflammatory Cascade Promotes Cardiac
Structural Remodeling
The major cardiac structural remodeling of HF including
cardiac hypertrophy, fibrosis, and extracellular matrix
(ECM) remodeling. Systemic inflammation can drive cardiac
hypertrophy and fibrosis, and the inflammation is mainly
triggered by PRRs (such as NLRP3 and TLR4) mediated innate
immune response. The key inflammatory factors in this process
are IL-1β, IL-6, and NF-κB. They can stimulate the release of
many other inflammatory cytokines and transcription factors,
which may promote cardiac hypertrophy and fibrosis (55, 56).
The Nod1 receptor signaling pathway can contribute to cardiac
hypertrophy (57). The mechanisms of the inflammatory cascade

are yet not fully clear. However, it is known that IL-1β is
activated by NLRP3 receptive inflammasomes. IL-1β and IL-6
stimulate immune cells (T cells, macrophages, and monocytes)
to increase the release of IL-17, TNFα, and IFN-γ (58). These
cytokines are signals which may activate immune cell trans
differentiation into pro-inflammatory and pro-fibrotic subsets.
For instance, Th1/Th2 polarization in T cells toward Th2 has a
pro-fibrotic effect. While the CCR2+ monocytes, which express
CC-chemokine ligand 2(CCL2) have pro-hypertrophy and
pro-fibrotic effects (54). IL-33 is a member of the IL-1 family
and ST2 is the receptor of IL-33. IL-33 has an anti-hypertrophic
effect, whereas sST2 can competitively inhibit the IL-33/ST2
pathway and promote cardiac hypertrophy and fibrosis (59).
Additionally, micro vascular inflammation can stimulate
monocyte-derived macrophages to secrete transforming
growth factorβ (TGF-β) which induces pro-fibrosis effects by
stimulates the differentiation of fibroblasts into myofibroblasts.
Myofibroblasts deposit collagen, and its increase may cause
fibrosis (60). Moreover, inflammation may cause pyroptosis and
apoptosis, which may also promote cardiac fibrosis (61).

The immune-inflammation mechanism may mediate cardiac
ECM remodeling by increases ventricular stiffness (62, 63).
Ventricular stiffness is a common pathological feature of
HFpEF which promotes diastolic dysfunction (64). In systematic
inflammation, IL-1β and other cytokines cause increased
extracellular deposition of collagen and reduced elasticity of titin,
resulting in ventricular stiffness (60).

RECIPROCAL PROMOTION OF
COMORBIDITIES AND HF ARE
ASSOCIATED WITH METABOLISM AND
INFLAMMATION

Comorbidities and HF interact as both cause and effect,
in which metabolism and inflammation are the possible
common mechanisms underlying this cyclical relationship. In
the following, some common comorbidities, including atrial
fibrillation, diabetes, COPD, and obesity, are discussed from the
standpoint of epidemiological evidence showing the reciprocal
causation associated with underlying common metabolic and
inflammatory mechanisms.

Atrial Fibrillation
Atrial fibrillation (AF) frequently coexists with HFpEF and they
share similar risk factors (65, 66). In a recent study, more than
one-third of the AF patients had HF, and more than half of the
HF patients had AF (67). Even subclinical AF was associated
with about a 4-fold increase in HF risk (68). On the other
hand, HF promotes AF via cardiac fibrosis, inflammation, and
oxidative stress (69, 70). Cardiac resynchronization therapy with
a defibrillator can reverse HF remodeling (71).

Metabolism and inflammation are the most consequential
underlying mechanisms common to the two diseases. Cardiac
energy alterations in HF cause subsequent oxidative stress and
inflammatory cascades, and contribute to AF. Mitochondrial
Ca2+ handling dysfunction is a shared mechanism in AF and HF,
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in which intracellular calcium leakage happens through oxidative
stress-induced hyperphosphorylation of ryanodine receptor (43,
72). The PI3K/AKT may be a shared signaling pathway that
regulates cardiac Ca2+ and Na+ ion channels (73).

Diabetes Mellitus
The prevalence of type 2 diabetes mellitus (T2DM) in HF was
about 20–50%, and T2DMmay increasemortality due toHF (74).
T2DM and HF coexist in about 30–40% of patients with T2DM
(74–76). T1DM (77) is also associated with an increased risk of
developing HF.

HF caused by coronary artery disease and hypertension
secondary to T2DM is more common in HFrEF (74). Diabetic
cardiomyopathy, which refers to HF occurring in the absence
of related cardiovascular diseases, is generally believed to
be mediated by abnormal mitochondrial calcium handling
(78). HFpEF is also associated with insulin resistance-induced
ventricular remodeling and mitochondrial dysfunction (79, 80).
Chronic inflammation caused by excess insulin has also been
found to be responsible for diabetic HFpEF (81). Moreover, the
byproduct of glycolysis has recently been reported to link diabetes
and HF by post-translational modifications (82, 83).

The molecular mechanisms underlying diabetic HF are
associated with changes in myocardial substrate metabolism,
inflammation, endoplasmic reticulum stress, aberrant insulin
signaling, and autophagy (84). For one thing, hyperglycemia and
insulin resistance cause excessive ROS production. Furthermore,
oxidative stress causes chronic inflammation and mitochondrial
metabolic disorders. Several molecular pathways are involved
in these processes. ROS activates poly (ADP-ribose) polymerase
(PARP) and inhibits the AMPK pathway and decreases
mitochondrial biogenesis. These changes would cause disturbed
circadian clock synchronization of glucose and FA metabolism.
The insulin receptor may activate the PI3K/AKT pathway, which
is a major mechanism responsible for insulin resistance induced
cardiac dysfunction. Moreover, the activation of Na+/H+-
exchange (NHE1/3) can promote HF (85). Finally, the NLRP3
inflammasome is activated in T2DM and triggers NLRP3/ IL-1β,
IL-6, and IL-18 inflammatory pathways to contribute to cardiac
fibrosis (86).

Chronic Obstructive Pulmonary Disease
About 20% of unknown HF patients have COPD or asthma (87).
Asthma increases HF risk by 80% (88). COPD is associated with
increased risk (89) and worse prognosis of HF (90–92). The
prevalence of systolic or diastolic HF in COPD patients ranges
from 20% to 70% (93). Inhaled corticosteroid/long-acting β2-
agonists (LABAs) in treating COPD were beneficial to cardiac
function (94).

COPD may induce HF through chronic systemic
inflammation and pulmonary vascular remodeling (95). In
turn, HF aggravates excess ventilation in COPD, and causes
dyspnea, and exercise intolerance (96).

Obesity
The prevalence of obesity in HF was about 40% (97, 98). Obesity
increases the risk of HF (99). However, there is a U-shaped

relationship between BMI and survival of HF - the so-called
“obesity paradox.” That is, high BMI is associated with better
survival in patients withHF. However, themortality risk fromHF
increased for patients with extremely high BMIs of 45 or greater
(98). Furthermore, high waist-to-hip ratios have been associated
with increased mortality, suggesting the harmfulness of obesity
in HF (100). Abdominal obesity is associated with significantly
higher mortality in HFpEF, which may be a better predictor
than BMI (101). Abdominal obesity is strongly associated with
the circulating level of aldosterone, the main role of which
is to regulate salt-water retention. Mineralocorticoid receptor
antagonists have recently been discovered as targets for obesity-
associated HF (102).

Metabolism and inflammation are involved in the progress of
HF in patients with obesity (103, 104). Increased leptin, which
is reported as the product of the obesity gene, contributes to
cardiac remodeling through Leptin-Aldosterone-Neprilysin Axis
(105, 106). Insulin resistance secondary to obesity can cause
altered cardiac energy metabolism and HF (107, 108). Obesity
can cause immune-inflammation by activatingmacrophages, and
activate IL-1β and NF-κB pathway (104).

Obesity can suppress BNP levels in HF (109) and causing
lower plasma NT-pro-BNP levels (5). Therefore, BNP may not
reflect the HF severity accurately in obese patients (110, 111).
BNP enacts cardiac protection via multiple actions, such as
suppressing RAAS activation and regulating sodiummetabolism.
An insufficient BNP level may promote HF progression (112).

Cancers
Cancers and HF are often coexisting in patients with cancers,
they share several common pathophysiological mechanisms
and causes, such as angiogenesis, clonal haematopoiesis, and
sarcopenia (113–115). Aging may cause somatic mutations
of genes (typically DNMT3A and TET2) in hematopoietic
stem cells, which promote peripheral blood leukocytes
release proinflammatory factors such as IL-1β and IL-6. This
phenomenon is called clonal hematopoiesis of indeterminate
potential (CHIP), which is a risk factor of cardiovascular diseases
and cancer (116). Sarcopenia is a common complication in
advanced stage cancer, which may promote HF through muscle
wasting and thinning of the ventricular wall, (115).

Cardio toxicity is a major risk factor for HF. It reportedly
accounts for 45% of all drug withdrawals (117). Mitochondrial
dysfunction is the major pathophysiologic mechanism of drug-
induced cardio toxicity (117, 118). In most times a drug with
cardio toxicity would not be used in clinical. However, anti-
tumor drugs with cardio toxicity are common when weighing
the pros and cons because of the therapeutic effect (119).
For instance, aromatase inhibitors have become the preferred
treatment for estrogen receptor-positive breast cancer, which
targets the cytochrome P450 enzyme, but it is associated with a
significantly increased risk of HF (120). Anthracyclines such as
doxorubicin (121) and epirubicin (122) are commonly used for
breast cancers, lymphoma (123), and a variety of other cancers,
but their usage is limited by cardio toxicity. Trastuzumab,
another breast cancer drug, is also associated with increased
HF risk (124). The proposed biological mechanisms underlying
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anthracycline cardio toxicity are mitochondrial dysfunction,
mitochondrial iron overload, oxidative stress, inflammation, and
impaired autophagy (125).

LINK BETWEEN HEART FAILURE AND
COMORBIDITIES

Common risk factors such as aging, hyperglycemia, and lifestyle
are the cause of HF and comorbidities. The underlying
mechanisms of these factors are associated with common
metabolic or inflammatory pathways. In this review, the major
pathways were identified through gene enrichment analysis.
Further, the common therapy drug targets have also be
summarized by analyzing the disease-gene network. This review
will be helpful for selecting the therapeutic strategy.

Major Shared Risk Factors of HF and
Comorbidities Are Associated With
Metabolism and Inflammation
Epidemiologic evidence has found many risk factors for
cardiovascular diseases, including chronic conditions or
diseases (aging, hyperlipidemia, hypertension, hypoxaemia,
and metabolic syndrome), and lifestyles (dietary and sleeping
patterns, smoking, and drinking (126–128). Unhealthy lifestyles
may contribute to HF by dysregulated innate immunity and
chronic inflammation (129). These factors are also risk factors
for many comorbidities (130) and share similar mechanisms,
which are associated with metabolism and inflammation.

Aging is one of the major risk factors for developing multi
morbidity and HFpEF, and both multi morbidity and HFpEF
are unmet needs in the therapy of HF (131–133). The main
underlying mechanisms of cardiovascular aging are associated
withmitochondrial metabolism (134, 135), chronic inflammation
(136), autophagy (137), and oxidative stress (138).

Physical inactivity (sedentary behavior), is a risk factor of
multi morbidity (139), it causes chronic subclinical myocardial
injury detectable with high-sensitivity cardiac troponin and
increases HF risk (140). Meta-analysis showed exercise is
beneficial for people with multi morbidity (141). It can regulate
mitochondrial remodeling (142), and also causes physiologic
remodeling which increases cardiorespiratory fitness (143). It is
improved cardiorespiratory fitness that is the physiopathological
link between obesity, exercise, and HF (93, 94), primarily by
increases the cardiac compensatory capacity (17). Furthermore,
exercise has direct anti-inflammatory effects by inhibition of
TNF-α and IL-1β, and may attenuate insulin resistance (144).

Metabolic syndrome, mainly charactered by hyperlipidemia
and hypertension, shared similar mechanisms to that of diabetes
and obesity, such as insulin resistance and macrophage induced
inflammation, which have already been discussed (104). Taken
together, metabolism and chronic inflammation are the major
mechanisms underlying themajor shared risk factors betweenHF
and comorbidities.

Common Molecular Pathways Analysis
Although many metabolism and inflammation mechanisms have
been reviewed previously, which pathways are most important
remains unclear. To conduct an unbiased analysis of the
key shared biological pathways in HF and comorbidities, we
performed enrichment analysis on target genes of HF and some
comorbidities of high prevalence in the database. The Target
Validation platform (https://www.targetvalidation.org/) contains
disease target genes from Genome-Wide Association Studies
(GWAS), drug targets from the EMBL-EBI ChEMBL database,
EMBL-EBI RNA expression data, and text mining of literature.
First, we retrieved all the targets of HF and several comorbidities
(diabetes mellitus, obesity, COPD, chronic kidney disease, and
OSA) in the Target Validation platform (accessed on March 22,
2021) and intersected the disease targets as shown in the Venn
diagram (Figure 3A). Five comorbidities (diabetes mellitus,
obesity, COPD, CKD, and obstructive sleep apnea) were selected
for analysis because these represent the most highly prevalent
comorbidities (The major enriched pathways did not change but
the Venn diagram and the latter network plot would be more
complex and less understandable when adding other common
comorbidities such as atrial fibrillation and depression into the
analysis). There were 299 common targets associated with all the
four diseases, and 1,051 common targets were shared by HF and
at least four of the comorbidities. Gene Ontology and KEGG
enrichment analysis was performed on 1,051 semi-common
targets with the R (version 3.6.0) package cluster Profiler
(version 3.14.3). The activation of metabolic and inflammatory
pathways may require the expression level change or activation
of a group of enzymes, cytokines, or proteins regulated by
common transcription factors. To identify key transcription
factors, transcription factors enrichment analysis was performed
using Meta scape website tools (http://metascape.org) (145) with
TRRUST (Transcriptional Regulatory Relationships Unraveled
by Sentence-based Text mining) database (146) and the figure
was plotted with ggplot2 (version 3.3.3).

Some known factors which play a crucial role in HF, such
as the NADPH oxidase (147), and sulfur compound binding
(148), and growth factor activity (149) were enriched in the Geno
ontology enrich analysis (Figure 3B).

The enriched pathways aremainly associated withmetabolism
and inflammation. Some significantly enriched pathways not
shown in the figure are also analyzed. According to their role in
HF, most of the significantly enriched pathways can be classified
into one ormore of the following categories: (1) Energymetabolic
associated pathways. The PI3K/Akt pathway regulates both
metabolic and structural remodeling. The PI3K/AKT pathway
is associated with AF (150), COPD (151), HF (152), and multi
morbidity (131). The PI3K/AKT pathway regulates cardiac
metabolism both in pathological remodeling in HF (143), and
it also regulates heart growth (149). (2) Structure remodeling
associated pathways. The MAPK pathway is the key pathway
activated in response to ischemia and has a critical role in
cardiac hypertrophy. Moreover, the MAPK pathway may be
involved in the interplay of mitochondrial energy metabolism
and systemic inflammation (57). The Hypoxia-Inducible Factor
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FIGURE 3 | Analysis of common genes and pathways in comorbidities and HF. (A): Venn diagram of common genes between comorbidities and HF; (B): Dot plot of

top 20 enriched Gene Ontology biological processes enriched for common genes between HF and comorbidities; (C): Dot plot of top 20 enriched KEGG (Kyoto

Encyclopedia of Genes and Genomes) pathways for common genes between HF and comorbidities; (D):Dot plot of top 20 enriched transcription factors from

TRRUST(Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining) database.

1 (HIF-1) pathway can regulate glucose metabolism and is
adaptively activated in response to hypoxia conditions and can
promote cardiac hypertrophy. HIF-1 can activate the glycation
end products (AGE) advanced glycation end products (RAGE)
signaling. The AGE-RAGE signaling pathway is associated with
some comorbidities of HF such as OSA and diabetes (153, 154).

Insulin-like growth factor (IGF) signaling is activated in HF
and promotes cardiac hypertrophy (155, 156); (3) Cardiac
systolic and diastolic functions associated pathways. Such as
the CaMKII pathway (157), The G protein-coupled receptor
(GPCR) signaling pathway is a known drug target of HF, these
drugs include β-adrenergic receptor and angiotensin II receptor
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antagonists (158). (4) Inflammatory pathways, majorly include
the Cytokine-cytokine receptor interaction, TNF signaling,
IL-17 signaling, and Toll-like receptor pathways (Figure 3C).
Additionally, the clonal hematopoiesis pathway is a risk factor
of HF enriched in the analysis and may be related to immune
inflammation (53, 159). (5) Other structural remodeling in
addition to hypertrophy, such as fibrosis and amyloidosis.
The activation of inflammatory pathways can activate the
TGF-β pathway and promote fibrosis. Alzheimer’s disease is
also enriched. Alzheimer’s disease is major characterized by
amyloidosis, and senile amyloidosis may be an overlooked
causal mechanism of HFpEF (60, 66). The PI3K/AKT/GSK3β
pathway is proposed as the link between diabetes and Alzheimer’s
disease (160).

The PI3K/AKT pathway is most significant in the pathway
enrich analysis and is a key pathway in cardiac remodeling.
Cardiac remodeling is a key biological process that contributes
to the progression of HF. Some drugs, such as calcium
antagonists and renin inhibitors, may alleviate hypertension
and improve contraction function of HF, they did not improve
remodeling, and therefore did not improve the prognosis
of HF (161). Some downstream signaling pathways, such as
PI3K/AKT/eNOS have a cardio protective role, and the activation
of this pathway may be the mechanism of some cardiovascular
drugs such as statins (162). PI3K/AKT pathway activation is
a shared mechanism in physiological and pathological cardiac
hypertrophy, and physiological hypertrophy may enhance
cardiac systolic and diastolic function (143). However, in
pathological conditions, such as HF, long-term sustained
activation of PI3K/AKT pathway in HF promotes excessive
cardiac growth, mitochondrial dysfunction, ROS production,
and impaired Ca2+ handling (163). Activation of PI3K/AKT
pathway is a common mechanism in many chronic diseases,
such as cardiovascular disease, metabolic diseases, COPD, and
cancers (131). It has been reported improved HF syndrome
with no substantial side effects when using PI3K/AKT inhibitors
as a treatment of PIK3CA-related overgrowth syndrome (164).
Therefore, PI3K/AKT inhibitors may be a promising treatment
for HF and comorbidities. However, because the activation of
PI3K/AKT pathway is essential for many cellular processes such
as cell growth, proliferation, and migration, targeting PI3K/AKT
pathway may have side effects, finding a more specific target of
HF and comorbidities related to PI3K/AKT pathway may be a
better treatment choice.

Common Mechanistic Pathways in Heart
Failure and Comorbidities
Together with a review of the literature into account, the
main shared mechanisms of HF-induced comorbidities can be
summarized (Figure 4) and elucidated. The mechanism of how
comorbidities promote HF may be clarified similarly by the
shared mechanisms.

The metabolic mechanisms of HF promote comorbidities
are associated with mitochondria injury, oxidative stress,
insulin resistance, and hypoxia. HF and risk factors induce
altered cardiac energy metabolism. Cardiac energy metabolic

FIGURE 4 | Main possible shared mechanisms underlying HF and

comorbidities. HF, comorbidities, and risk factors may have some shared

chronic conditions such as insulin resistance, hypoxia, and chronic

inflammation, these conditions aggravate HF and cause comorbidities. The

mechanism of comorbidities contribute to HF can be clarified similarly. Cardiac

energy metabolic remodeling may take place in these conditions mediated by

activating the AMPK signaling. Metabolic remodeling can activate PI3K/AKT

pathway, which promotes myocardial over-growth and cardiac hypertrophy

and can cause mitochondrial injury. The mTOR signaling may be activated by

AMPK and PI3K/AKT pathways can cause disturbed autophagy which

aggravates the mitochondrial injury. Ischemia and hypoxia conditions can

activate MAPK and HIF-1 pathways, which contribute to cardiac structure

remodeling. Innate immune cells, mainly monocytes, macrophages, and

neutrophils, can trigger the immune response and systemic inflammation by

secreting IL-1β and IL-6. Moreover, the pro-inflammatory cytokines stimulate T

cells to polarize to Th17 cells and release IL-17. Systemic inflammation can

cause diastolic dysfunction and cardiac hypertrophy.

remodeling causes oxidative stress through NAD (P) H oxidase-
derived ROS (165). Oxidative stress can trigger mitochondrial
injury and inflammation. As such, antioxidants have been a
therapeutic strategy for cardiovascular diseases (166). Oxidative
stress, mitochondrial dysfunction, and chronic inflammation
were the major mechanisms of multi morbidity in the elderly
(131). There is a consensus that mitochondrial impairment is
key to cardiac dysfunction in HF (167). Mitochondria injury
can cause cardiac remodeling, such as hypertrophy and fibrosis
(168). In addition, mitochondrial biogenesis dysfunction play
important roles in multi morbidity such as diabetes (169), obesity
(170), lung diseases (171, 172), depression (173), sarcopenia
(142), iron deficiency (148, 174), fatty liver disease (175),
obstructive sleep apnea (176), and diabetic kidney disease
(177). Mitochondria injury is commonly induced by oxidative
stress or inflammation mediated by the PI3K/AKT/eNOS,
PI3K/AKT/mTOR, AMPK/mTOR pathway (178), or the MAPK
signaling pathway (179). Mitochondria autophagy, also called
mitophagy, is a cellular process in which impaired mitochondria
are destroyed to protect eukaryotic cells from mitochondrial
injury. Autophagy has a protective role for HF and comorbidities,
and may be injured by the activation of mTOR pathway
(180). Insulin resistance plays an important role in the
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pathological processes of HF, and is also strongly associated
with diabetes (181), as well as obesity in which is associated
with the phosphorylation of PPARγ (182). Insulin resistance was
associated with the worse outcomes in patients with HF and
diabetes (183). Hypoxia is a common chronic condition in many
comorbidities such as COPD and anemia, and the related HIF-1
pathwaymay have an important role in the progression of obesity
and hypertension (104).

Chronic systemic inflammation associated with HF is mainly
triggered by innate immune cells (monocyte, macrophage, and
neutrophils). The major pro-inflammatory cytokines including
IL-1β, IL-6, IL-8, IL-17, IL-18, and TNA-α (49, 184, 185). Apart
from their role in HF, IL-1β and IL-6 are key pro-inflammatory
factors in many diseases, like COPD (186), diabetes (187), kidney
disease (188), sarcopenia, obesity, and HF (189), and the cytokine
storm in COVID-19 (190). A recent study on HFpEF supported
that systemic inflammation may be the association between
comorbidity and HF (191). The IL-1β and IL-18 signaling
pathways may be novel drug targets for HFpEF, which are
important in the mitochondria-inflammation circuit (192).

The alteration of pathways is often regulated by transcription
factors as switches. Many common transcription factors have
been found including SP-1, RELA, NF-κB, STAT3, HIF-1α,
PPARγ, c-FOS, and c-JUN (Figure 3D) and together with a
review of the literature, the transcription factors network in
HF and comorbidities are briefly summarized as follows: (1)
Regulation of inflammation. NF-κB is the key transcription
factor in inflammation. Both RELA and NFKB1 are genes
of NF-κB subunit. NF-κB regulates inflammation initiated
Ca2+/Calmodulin-dependent cardiac remodeling (193). STAT3
is a predicted target regulated by NF-κB in Figure 3D. The
activation of NF-κB and STAT3 is required for the expression
of multiple inflammatory cytokines including IL-1β (194),
TNA-α (195) and IL-6. The c-FOS and c-JUN are family
of AP-1, which regulate the MAPK pathway, and can be
inhibited by SIRT3 (196). EGR1 and c-FOS are also associated
with the release of IL-1β (197). SP-1 can regulate immune
responses, but it is a non-specific transcription factor involved
in many other cellular processes and indicates transcriptional
activation; (2) Regulation of metabolism. The activation of
PPARγ is essential for the FAO process (18). The sirtuin family
members SIRT1, SIRT2, and SIRT3 are important transcription
factors in cardiac energy metabolism and have similar roles.
SIRT3 regulates ATP production (198). SIRT2 and PPARα

regulate glycose metabolism by the AMPK pathway (199),
SIRT1 and NRF2 regulate energy metabolism and mitochondrial
biogenesis (200).

Common Therapeutic Drug Targets
Common pathways indicate common targets, which are the
basis for drug repurposing. Network analysis is often used
in the repurposing of drugs (201). The known drug targets
of HF, diabetes mellitus, COPD, CKD, sleep apnea, and
obesity were retrieved from the Target Validation Platform
(targetvalidation.org). We constructed a disease-target network
in Cytoscape 3.8.0 (202). Some representative drugs were
randomly chosen and listed in Figure 5 to provide an example.

The drugs range from old drugs like metformin to relatively
new ones in HF treatment, like SGLT2 inhibitors. However,
network analysis has some limitations and should be interpreted
combined with literature review. For one thing, it is based
on the database, and some drugs in the database had been
investigated in HF clinical trials but have no effect. Some
drugs such as calcium channel blockers could not treat HF.
For another, a drug associated with multiple targets might be
non-specific and does not necessarily have better effects. For
instance, doxorubicin inhibits both Top2a and Top2b, inhibiting
Top2a have an anti-cancer effect while inhibiting Top2b have
a cardiac side effect (125). Anti-inflammatory therapy with
Canakinumab (203) in clinical trials which target IL-1β can
reduce the mortality of HF patients. IL-1β is an important
inflammatory cytokine associated with many comorbidities.
Canakinumab can improve the prognosis of cardiovascular
outcomes in patients with CKD (204). However, Canakinumab
could not reduce the incidence of new-onset diabetes (205),
which suggests the role of inflammation in diabetes might
be less important. Anakinra, a recombinant IL-1 receptor
antagonist, is another drug targets IL-1β, it is under phase
III clinical trial in HF and has a therapeutic effect (206). In
summary, IL-1β inhibitors/antagonists are promising drugs for
HF and comorbidities.

Diabetes drugs are a good example of drug repurposing
applied in HF. Some therapy of diabetes may increase the
risk of HF such as insulin (183), whereas some drugs such
as metformin, sulphonylureas, and gliptins either alone or in
combination, could significantly reduce the risk of HF (207).
The SGLT2 inhibitors are originally designed for diabetes, which
targets the SLC5A2 gene, and have shown benefit for HF,
regardless of whether comorbid with diabetes or not (208,
209). In a clinical trial, there were unexpected excellent risk
reductions in hospitalization for HF and all-cause mortality
with the use of the SGLT2 inhibitor, empagliflozin (210). The
benefit of empagliflozin could not be explained by the effects
of classical inhibitors, such as natriuresis or neurohormonal
mechanisms. It has been speculated that the shift in cardiac
energy substrate may play a major role in the cardiorenal
benefits of empagliflozin; that is, a shift from using glucose
and fat to ketone bodies (211). Linagliptin, a DPP-4 inhibitor
designed to treat diabetes, can also be used to treat HF (212,
213). Metformin affects many targets that are associated with
oxidative phosphorylation in mitochondria (214), such as MT-
ND5 and NDUFB7, and has been reported to have therapeutic
effects on HF and comorbidities. Metformin is an indirect
AMPK pathway activator, and also increases glucose transport
and catabolism by increasing the residence time of GLUT4.
AMPK agonists are promising HF therapy drugs, which consist
of direct activators, such as A-769662 (a preclinical drug), or
indirect activators, such as 5′-aminoimidazole-4-carboxyamide-
ribonucleoside (22, 215).

Although many anti-tumor drugs have cardio toxicity,
network analysis of shared pathways and targets enables us to find
drugs beneficial for both diseases. For example, PI3K/Akt/mTOR
pathway is a shared pathway in cancers and HF, drugs targeting
the mTOR pathway, such as rapamycin, are novel potential

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 May 2021 | Volume 8 | Article 650278

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Li et al. Mechanisms of Heart Failure Comorbidities

FIGURE 5 | Abridged common drug target network of heart failure and comorbidities.

drugs for HF which can reduce cardiac remodeling and
HF (119).

There are some genes of the phosphodiesterase family,
such as PDE5A, PDE3A, and PDE3B. PDE5 inhibitors
(such as Sildenafil) regulates the nitric oxide synthases
and hydrogen sulfide (H2S) generation, and may attenuate
ROS induced mitochondrial dysfunction through the
AMPK pathway (216). However, side effects largely
limit its clinical application, probably because PDE5 is
involved in a variety of biological processes not specific
to HF.

Beyond known drug targets, some targets may have similar
functions as they belong to the same protein family. Similar
to SLC5A2, SLC25A51 is a member of the solute carrier
family, and has been recently found to be a mitochondrial
NAD+ transporter (217) and may perhaps serve as a new
drug target.

Links Between Heart Failure Phenotypes
and Comorbidity
Multi morbidity and HFpEF are both unmet needs in HF
therapy. Comorbidities exist in both HFpEF and HFrEF, but
the prevalence of most comorbidities is higher in the HFpEF
than reduced ejection fraction (HFrEF) (6, 218), indicating

a strong association between HFpEF and comorbidities (6).
The prevalence of preserved ejection fraction HF (HFpEF) is
rising, and mortality remains high because of the absence of
effective therapies (60, 219), which gives rise to the urgent
need for drug discovery targeting HFpEF. Although HFpEF
has a better ejection fraction than HFrEF, the mortalities are
similar, and the higher frequency of morbidities in HFpEF than
HFrEF may explain the phenomena (220). The risk factors and
incidence of comorbidities are different, therefore the pathways,
therapeutic targets, and drugs between the subclasses of HF
were different. COPD and OSA are associated with increased
HFpEF disease risk and adversely impact cardiovascular disease
outcomes, in which chronic inflammation and oxidative stress
are responsible for the association. Therefore, drugs like statin
and/or antioxidants may be beneficial (221, 222). Compared
with HFrEF, there are more hypertension and fewer coronary
diseases in HFpEF (218, 223). Atrial fibrillation is associated
with significantly increased mortality (224), and AF is more
frequently in HFpEF than HFrEF (218). Because multi morbidity
is more frequent in HFpEF, targeting the common pathways
between comorbidities may be a potential novel therapy
for HFpEF.

Expression levels of biomarkers is also different between
systolic and diastolic HF. The BNP level is lower in HFpEF
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(225) and NT-proBNP/BNP-guided therapy was reportedly only
beneficial in HFrEF because comorbidities may influence BNP
level and provide misleading information (226).

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we concluded the pathology and molecular
mechanisms of comorbidities of HF.Metabolism remodeling and
chronic inflammation are responsible for the major underlying
pathophysiologic links between HF and comorbidities.
Mitochondrial metabolism is expected to play a central
role, but no drugs specifically conceived to modulate
mitochondrial functions are currently available (227). The
therapy for comorbidities of HF is increasingly becoming
challenging. The common metabolic and inflammatory
mechanisms may provide promising possible therapeutic
targets for both HF and comorbidities, which may be
useful for both old drug repurposing and the discovery of
new drugs.
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