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Abstract

Introduction

Recently, the rise in the incidences of thyroid cancer worldwide renders it to be the sixth

most common cancer among women. Commonly, Fine Needle Aspiration biopsy predomi-

nantly facilitates the diagnosis of the nature of thyroid nodules. However, it is inconsiderable

in determining the tumor’s state, i.e., benign or malignant. This study aims to identify the key

RNA transcripts that can segregate the early and late-stage samples of Thyroid Carcinoma

(THCA) using RNA expression profiles.

Materials and methods

In this study, we used the THCA RNA-Seq dataset of The Cancer Genome Atlas, consisting

of 500 cancer and 58 normal (adjacent non-tumorous) samples obtained from the Genomics

Data Commons (GDC) data portal. This dataset was dissected to identify key RNA expres-

sion features using various feature selection techniques. Subsequently, samples were clas-

sified based on selected features employing different machine learning algorithms.

Results

Single gene ranking based on the Area Under the Receiver Operating Characteristics

(AUROC) curve identified the DCN transcript that can classify the early-stage samples from

late-stage samples with 0.66 AUROC. To further improve the performance, we identified a

panel of 36 RNA transcripts that achieved F1 score of 0.75 with 0.73 AUROC (95% CI:

0.62–0.84) on the validation dataset. Moreover, prediction models based on 18-features

from this panel correctly predicted 75% of the samples of the external validation dataset. In

addition, the multiclass model classified normal, early, and late-stage samples with AUROC

of 0.95 (95% CI: 0.84–1), 0.76 (95% CI: 0.66–0.85) and 0.72 (95% CI: 0.61–0.83) on the val-

idation dataset. Besides, a five protein-coding transcripts panel was also recognized, which
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segregated cancer and normal samples in the validation dataset with F1 score of 0.97 and

0.99 AUROC (95% CI: 0.91–1).

Conclusion

We identified 36 important RNA transcripts whose expression segregated early and late-

stage samples with reasonable accuracy. The models and dataset used in this study are

available from the webserver CancerTSP (http://webs.iiitd.edu.in/raghava/cancertsp/).

Introduction

The last few decades have witnessed a sharp upsurge in the prevalence of thyroid cancer world-

wide, and the incidence rate of thyroid malignancy is still increasing, making it the sixth most

common cancer in women as per recent cancer statistics of 2019 [1]. The exposure to radiation

and environmental carcinogens are the possible factors implicated for its rise [2]. Histopatho-

logically, there are four types of thyroid cancers, stated as Papillary, Follicular, Medullary, and

Anaplastic. Together, Papillary Thyroid Carcinoma (PTC) and Follicular Thyroid Carcinoma

(FTC) are known as Differentiated Thyroid Cancer (DTC) and constitute the majority of thy-

roid malignancy as well as the most common endocrine malignancy [3]. According to the

American Cancer Society, the survival rate of early-stage (stage I and stage II) PTC patients is

nearly 100%, but the same reduces to 55% in stage 4 [4]. These statistics indicate the need for

methods or biomarkers for early detection of thyroid cancer. In this regard, Fine Needle Aspi-

ration (FNA) biopsy of the thyroid nodule, along with subsequent cytological categorization is

a reference method. It has been observed that the diagnostic precision of FNA has been sub-

jected to the skill of the operator, intrinsic characteristics of nodules, and cytology interpreta-

tion [5]. One of the limitations includes its limited capability to identify follicular lesions [6].

Due to these limitations of FNA cytology, several immunohistochemical markers have been

projected, and their efficacy in thyroid cancer diagnosis is still being evaluated.HBME-1 with

CK19 combination [7] and LGALS3 [8] have shown promising results as diagnostic biomark-

ers. Furthermore, the overexpression of EGFR has been found to be associated with the severity

of the disease [9]. Inferences of these studies point out the biomarker potential of these genetic

entities. In spite of accumulating knowledge of genetic alterations accompanying the thyroid

cancer incidences in the last 20 years [10], the genomics-based thyroid cancer diagnosis is yet

to be realized.

The increasing availability of genomics data has paved the way for a deeper understanding

of cancer biology in terms of clinical, diagnostic, and therapeutic capabilities. One such

resource is The Cancer Genome Atlas (TCGA), a public endeavor aimed at establishing a com-

prehensive catalog of genomic alterations occurring in cancers inferred from large-scale

genome sequencing of cancerous tissues accompanied by multidimensional analyses [11]. The

various types and levels of data like the mRNA expression, genomic mutations, copy number

variations, gene fusions, etc. are available for several cancer types.

Analysis of TCGA thyroid cancer samples has described the genomic landscape of thyroid

cancer. This study expanded the set of driver genes to incorporate genes like EIF1AX, PPM1D,

and CHEK2 and several gene fusions. On the basis of multidimensional data analysis, this

study proposed the reclassification of thyroid cancers into molecular subtypes that better

reflect the underlying molecular signaling pathways, which will further lead to better disease

management [12]. Besides, several studies have also tried to reanalyze this data to understand
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the association of genomic features with survival and progression [13–16]. For instance, Chai

et al. have shown that the higher expression of BRAF is associated with high tumor aggres-

siveness regardless of the BRAFmutation status. This indicates that both expression and muta-

tion status, are important in determining the prognostic risk [16]. Another study has classified

the benign and malignant thyroid tumors using RNA expression of FNA samples with a train-

ing dataset of 137 samples and 48 samples of the validation dataset and achieved the specificity

of 84% on the validation dataset [17]. In literature, it has been shown that the methylation sta-

tus of markers like RASSF1, DAPK1, and ESR1 has been significantly associated with thyroid

cancer subtypes and early detection of thyroid cancer [18]. Furthermore, high expression of

VDR has been observed to be associated with classic and tall cell subtype, stage IV, and low

recurrence-free survival of thyroid cancer [13]. Moreover, previously, it has been shown that

transforming growth factor, CDH1, COL1A1, CTNNA1, ITGA3, and FN1 were differentially

expressed between benign and malignant nodules of thyroid cancer [19].

Taken together, previous literature mainly focused on the understanding of the association

between pathogenesis and progression of the disease with the genomic features and its alter-

ations. Certainly, this helps the researchers and clinicians for a better understanding of the

pathogenesis of thyroid cancer. There is still a need for genomic features that are capable of

detection of disease at an early stage to improve the outcome of PTC patients. Undoubtedly, it

will facilitate the clinicians in choosing the appropriate therapeutic treatment and manage-

ment of the patients. Although, in the recent past, various genomic features like RNA expres-

sion and methylated CpG sites are explored for stage identification of different malignancies

[20–22]. To the best of the authors’ knowledge, there is still a lacuna in the understanding

between genomic features and stage identification of PTC. Thus, the current study is an

attempt for the stage prediction of PTC based on RNA-Seq data of the patients employing

machine learning techniques.

In the present study, we have scrutinized the important RNA transcripts that have a reason-

able distinguishing capability of segregating early-stage samples from late-stage samples of

PTC using various types of bioinformatics analyses. First, we ranked RNA transcripts based on

their discriminatory power to classify early and late-stage samples on the basis of the expres-

sion threshold. Their gene ontology and pathway analysis were done to ascertain the biological

role of key transcripts in transitioning from early to late stage. Next, multiple transcripts were

used to develop models that can categorize early and late-stage samples with high precision.

Further, the multiclass model was developed to distinguish the normal, early and late-stage

samples. Additionally, we have tried to deduce the signature with the minimum number of

transcripts capable of distinguishing cancer and normal samples with high accuracy. Eventu-

ally, we provide a public domain webserver (CancerTSP) for discrimination of the early and

late-stage along with cancerous from the non-cancerous state of the samples based on machine

learning models developed in the study.

Methods

Datasets

The RNA-Seq data (HTSeq-FPKM, 500 THCA samples, and 58 normal or adjacent non-

tumorous samples obtained from 500 PTC patients) was retrieved from the Genomic Data

Commons (GDC) data portal (https://portal.gdc.cancer.gov/). Notably, there were adjacent

non-tumorous or normal samples available for 58 patients out of 500 patients only. In addi-

tion, manifest, metadata, clinical data, biospecimen files were also downloaded from the GDC

data portal to obtain clinical information of the patients using Biospecimen Core Resource

(BCR) IDs of patients. For every sample, mRNA expression of 60,483 RNA transcripts was
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reported in terms of FPKM (Fragments Per Kilobase Million) values. To ascertain the impor-

tance of the different types of transcripts, we segregated transcripts into subtypes like protein-

coding, LincRNA, snoRNA, snRNA, and miRNA, etc. transcripts using annotation from GEN-

CODE v22 (S1 Table).

Datasets for prediction models

Training and validation datasets. Of the total 500 THCA samples, 281 were of stage 1, 52

of stage 2, 112 of stage 3, and 55 samples were of stage 4. As in stage 1 and stage 2, the tumor is

still confined to the thyroid and has not spread to the central compartment of lymph nodes;

therefore, we combined stage 1 and stage 2 samples as early-stage samples [23]. In stage 3 and

stage 4, cancer spreads to lymph nodes including other organs; therefore, we combined stage 3

and stage 4 samples into late-stage samples. Thus, our stage classification dataset contains 333

early and 167 late-stage samples. This approach has been previously implemented in various

similar types of studies [20–22]. We divided this dataset into training and validation dataset

with 80:20 ratio, which was already applied in different studies to develop stage prediction

tools for renal cancer and liver cancer, i.e., CancerCSP and CancerLSP, and in silico tools to

predict viral siRNA efficacy and anti-fungal peptides, i.e., VIRsiRNApred and Antifp [21, 22,

24, 25]. The 80% of stage 1 and 2 samples were labeled as the early training set, while, rest of

20% samples from stage 1 and 2 were used as a validation dataset for early-stage samples. Simi-

larly, training and validation datasets for late-stage samples were created. We used, training

dataset for selecting the features and selecting the best parameters for various machine learn-

ing algorithms using grid search. Finally, the models were developed on the training dataset

using best-obtained parameters and were validated on the validation dataset. The clinical fea-

tures of the patients are shown in S1 Fig.

In addition to stage classification, prediction models were also developed for discrimination

of cancer and normal tissue samples. Towards this, a dataset comprised of 500 cancer samples

and 58 normal or adjacent non-tumorous samples was used. Additionally, multiclass classifica-

tion prediction models were developed for the categorization of normal, early, and late-stage

samples. The dataset used for multiclass classification comprised of 58 normal, 333 early-stage,

and 167 late-stage samples. These datasets were further subdivided into training and validation

datasets in a ratio of 80:20, similar to stage classification models.

External validation dataset. To assess the classification performance of the top perform-

ing set of features or RNA transcripts, eventually, the performance was evaluated on the exter-

nal validation dataset with accession GSE48953, obtained from Gene Expression Omnibus

(GEO) database [26]. GSE48953 data is based on high throughput sequencing (RNA-Seq) [27]

and consists of expression profiling of 20 PTC patients including 17 early-stage patients (stage

1) and 3 late-stage patients (stage 3). To validate the models on the external validation dataset,

first, the TCGA dataset was log2 transformed. Subsequently, the GSE48953 expression data

was quantile normalized by using the TCGA training dataset as reference (target set) employ-

ing the FSQN R package [28].

Data processing

The contribution of the batch effect in the TCGA-THCA expression data was checked using

TCGA Batch Effects Viewer [29]. Further, the FPKM values had a wide range of variation; the

values were log2 transformed after the addition of 1.0 as a constant number to each of the val-

ues. Adding the constant one ensured that all of the transformed values would be positive.

This approach is common in the literature related to the analysis of RNA expression [20, 30].

Thereafter, features with low variance (less than 0.25) were removed by employing caret
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package in R, followed by the Z-score normalization of data. The Eqs (1) and (2) were used for

log transformation and normalization of data, respectively.

x ¼ log2ðFPKM þ 1Þ ð1Þ

Z � score ¼
x � m
s

ð2Þ

In Eq (2), Z-score is the normalized scaled and centered score, x is the log-transformed tran-

script expression, μ is the mean of transcript’s expression in the training dataset, and σ is the

standard deviation of a transcript in the training dataset. The log2 transformed validation data

was Z-score normalized by taking the mean and standard deviation of training features.

Features filtering using threshold-based models

In the current study, we have considered the expression values of RNA transcripts as features

for the analysis. In order to identify the classification potential of each RNA transcript, we

employed a simple expression threshold-based approach similar to our previous study [21].

Briefly, in this approach, for every transcript, we designated a threshold, which determines

whether a sample is in the early or late stage of cancer. The threshold was selected by iterating

from the minimum to maximum expression of that transcript across all the patients. The

threshold which gives maximum AUROC of classification between early and late-stage sample

was reported. Briefly, if the mean expression of a transcript is greater in the early-stage than

late-stage, and the log2 FPKM value of that transcript is found to be higher than the selected

threshold for a given sample, then we assign that sample as early-stage otherwise late-stage.

While, if the transcript’s average log2 FPKM value is greater in late-stage as compared to the

early-stage, and the log2 FPKM of that transcript is greater than the threshold for a given sam-

ple, then we assign that sample as the late-stage sample otherwise as to the early-stage. Subse-

quently, threshold-based models were developed for each feature. Eventually, they were

ranked based on their performance in the segregation of samples into different classes. Using

the method mentioned above, AUROC was also calculated for cancer vs. normal samples.

Feature selection

To further improve the classification accuracy and to develop multiple-genes classification

models, we used state-of-the-art techniques to select relevant features. First, we performed fea-

ture selection by employing an attribute evaluator named ‘SymmetricalUncertAttributeSetE-

val’ with the search method of ‘FCBFSearch’ of WEKA. The FCBF (Fast Correlation-Based

Feature) algorithm uses mainly correlation to identify important discriminating features in

high-dimensional datasets in reduced feature space [31]. Secondly, we employed the sklearn.

feature_selection. F_ANOVA method of feature selection using the Scikit-learn package [32].

This method selects the features by computing F-statistics.

Third, we applied two more advanced feature selection methods for the features (both pro-

tein-coding and non-coding transcripts together), which performed best in comparison to

other features. One was the (Support Vector Classifier) SVC with the L1 penalty using Scikit-

learn [33], and the other was a Wrapper approach for feature selection. In a wrapper-based

approach, human opinion dynamics optimizer has been used as a search algorithm to search

through the space of possible feature subsets with the objective of maximizing MCC on the

training set. This is an iterative algorithm in which each candidate solution represents a feature

subset. The solution is encoded using a 100-bit binary vector where 1 and 0 indicate the pres-

ence and absence of a feature in a subset, respectively. The quality of features selected is
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evaluated using support vector machine (SVM) and 10-fold cross-validation. The details of the

algorithm can be found in publications [34, 35]. The algorithm has been implemented in

MATLAB1 using LIBSVM and CODO (an open-source library hosted on https://github.

com/rishemjit/CODO).

Implementation of machine learning techniques

We have developed machine learning models using two software; Scikit-learn package and

Waikato Environment for Knowledge Analysis (WEKA) [36]. We employed SVC using Scikit-

learn and used the Radial Basis Function (RBF) kernel of SVC at different parameters; g 2

[10−3–10], c 2 [1–10] using grid search for optimizing the SVC performance. In addition, ran-

dom forests, sequential minimal optimization (SMO), Naïve Bayes, and J48 were employed

using WEKA software.

Cross-validation technique

The validation is an indispensable part of evaluating the performance of a prediction method.

In this direction, the ten-fold cross-validation technique is exploited to calculate the perfor-

mance of early vs. late-stage and cancer vs. normal classification models. Here, the dataset is

randomly divided into ten sets, from which nine sets are used as training sets and the leftover

tenth set as a testing dataset. This process is repeated ten times in such a manner that each set

is used once as a testing dataset.

Performance measures

In the present study, the performance of different models was measured by employing thresh-

old-dependent and threshold-independent parameters. In case of threshold-dependent param-

eters, sensitivity (Sens), specificity (Spec), overall accuracy (Acc (%)), Matthews correlation

coefficient (MCC), Precision, Recall and F1 score were calculated by using Eqs (3)–(9), respec-

tively:

SensitivityðSensÞ ¼
TP

TP þ FN
� 100 ð3Þ

SpecificityðSpecÞ ¼
TN

TN þ FP
� 100 ð4Þ

AccuracyðAccÞ ¼
TP þ TN

TP þ FPþ TN þ FN
� 100 ð5Þ

MCC ¼
ðTP � TNÞðFP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð6Þ

Precision ¼
TP

TP þ FP
ð7Þ

Recall ¼
TP

TPþ FN
ð8Þ

F1 score ¼ 2 �
Precision � Recall
Precisionþ Recall

ð9Þ
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where FP, FN, TP, and TN are false positive predictions, false negative predictions, true posi-

tive and true negative, respectively.

We also calculated a threshold-independent parameter called AUROC value, which is com-

puted from the receiver operating characteristic (ROC) plot in this study. The ROC curve is

produced by plotting true positive rate against the false positive rate at different thresholds. In

addition, to ascertain the reliability of prediction, we also calculated PPV (Positive Predictive

Value) and NPV (Negative Predictive Value) at various thresholds using the probability score

obtained by employing SVC.

Multiclass classification

The multiclass classification was implemented using the approach of one vs. rest multiclass

SVC classifier employing the Scikit-learn package [37].

Functional enrichment of genes

Enrichment of genes was done using the Enrichr tool [38, 39]. Only those terms were selected

for which adjusted p-value was less than 0.05. The Enrichr tool applies the Fisher’s exact test

along with the adjustment using Bonferroni correction to give adjusted p-values.

Results

The primary objective of the current study is the identification of the key genomic entities

from 60,483 RNA transcripts that can segregate early vs. late-stage samples and tumor vs. non-

tumor samples of PTC based on extensive bioinformatics analysis. Subsequently, in silico pre-

diction models were developed using key RNA transcripts implementing various machine

learning techniques. Notably, in the current study, we have considered the expression values

of RNA transcripts as features for the analysis. To rule out the batch effects in the subsequent

analysis, we calculated the Dispersion Separability Criterion (DSC) value. The DSC value for

the TCGA-THCA data is 0.26 (p-value<0.0005), which is less than 0.5, a commonly used

DSC threshold for indicating batch effects (S2 Fig). This indicates that there were no strong

batch effects in the TCGA-THCA expression data. The overall workflow of this study is pre-

sented in Fig 1, and the results are explained in the following sections.

Single RNA transcript-based stage classification

To rank the classification potential of each RNA transcript for segregating early and late-stage

samples, we developed a stage classification method using the expression threshold of each

RNA transcript (see methods). Briefly, in this approach, for every transcript/feature from

60,483 RNA transcripts, we designated a threshold, which determines whether a sample is in

the early or late stage of cancer. This threshold was chosen by iterating from the minimum to

maximum value of the expression for that transcript across all the patients. Here, a stage was

assigned to a sample if the expression of an RNA transcript was more than the threshold; in

case the RNA transcript was overexpressed in samples of that stage. Subsequently, RNA tran-

scripts were ranked based on the discriminatory power in terms of AUROC of the threshold

model. Eventually, we obtained 179 transcripts which had an AUROC score greater than equal

to 0.60 and named as THCA-EL-AUROC. We have selected a cut off value of 0.60 to select the

maximum features which performed better than random features (AUROC = 0.50). The

THCA-EL-AUROC panel contains key transcripts that can help to discriminate early-stage

samples from late-stage samples. Thus, they can be further explored for their potential bio-

marker capability in stage identification of PTC samples (S2 Table and S3 Fig), although more
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research is needed to confirm this hypothesis. The DCN protein (overexpressed in late-stage)

coding transcript shows the highest AUROC of 0.66. It is a proteoglycan whose role is well

established in discriminating benign and metastatic thyroid and other tumors [40, 41]. Out of

179 transcripts, 166 are protein-coding, six are lincRNA, and the other seven belong to other

classes of non-coding transcripts (S2 Table). The 34 out of 179 RNA transcripts have a signifi-

cant adjusted p-value of less than 0.05 (S2 Table).

The 166 protein-coding transcripts are significantly enriched in nine oncogenic signatures

from MSigDB Database [42] (S3 Table) that points out these genes have also been previously

implicated in many cancers. Additionally, the 166 protein-coding transcripts are enriched in

many pathways of the KEGG database, such as Focal adhesion pathway (5% genes, adjusted p-

value = 4.0e-5), PI3K-Akt signaling pathway (3.5% genes, adjusted p-value = 0.001), Proteogly-

cans in cancer (3% genes, adjusted p-value = 0.007). Further, the enriched terms of gene ontol-

ogy for 166 protein-coding transcripts are mainly related to matrix organization and collagen

binding (S4 Fig).

Stage classification model using multiple RNA transcripts

As shown in the above section and S2 Table, individual 179 RNA transcripts (THCA-E-

L-AUROC) have limited ability to classify early and late-stage samples with maximum

AUROC 0.66. Therefore, to develop a model that can classify the stage of samples with high

precision, we used the expression of multiple RNA transcripts. The stage classification models

based on THCA-EL-AUROC (179 RNA transcripts) features were developed implementing a

number of machine learning techniques. As shown in S4 Table, the SVC model achieved F1

score of 0.69 with AUROC of 0.72 (95% CI: 0.67–0.78) on training data and F1 score of 0.67

on the validation data with AUROC of 0.70 (95% CI: 0.59–0.82). There is a marginal improve-

ment in the performance of the models developed using multiple transcripts (AUROC 0.70, S4

Table) as compared to the single gene model (AUROC 0.66 for DCN gene). We further tried

few other intricate feature selection methods taking different subsets of transcripts in the fol-

lowing sections to further improve the performance of our models.

Fig 1. The overall flow of the study, including the number of samples in each class and types of feature selections explored for the development of

machine learning models. The green arrows represent that only protein-coding features have been explored to segregate cancer and normal samples. The

blue arrows indicate that both protein-coding and non-protein coding features individually and in combination have been explored to segregate early vs

late-stage samples. For multiclass classification, protein-coding and non-protein coding transcripts in combination are explored to segregate early, late and

normal samples.

https://doi.org/10.1371/journal.pone.0231629.g001
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Protein-coding transcripts

From the previous results, it is evident that protein-coding transcripts were the major type of

transcripts in THCA-EL-AUROC signature, therefore in this analysis, at first, we selected

19,814 protein-coding transcripts from 60,483 transcripts. Subsequently, different feature

selection techniques like FCBF-WEKA (Fast correlation-based feature selection method pres-

ent in WEKA) [43] and F_ANOVA [32] applied on these protein-coding transcripts. Thereaf-

ter, the prediction models were developed based on the selected set of features employing

different machine learning techniques like SVC, RF, SMO, Naïve Bayes, and J48. The SVC

model based on 37 features (selected by FCBF-WEKA) is the top performer with F1 score of

0.75 and 0.79 AUROC (95% CI: 0.74–0.84) on training data and F1 score of 0.72 with 0.66

AUROC (95% CI: 0.54–0.77) on the validation (THCA-EL-PC, Table 1) using 37 features

obtained using SVC. There was a marginal increase in the performance in terms of accuracy,

but the number of features was reduced to a reasonable extent as compared to THCA-E-

L-AUROC. The performance using other algorithms like Random Forest, Naïve Bayes, SMO,

and J48 was lower on the validation dataset, as shown in Table 1.

To understand the interaction network among the key identified protein-coding genes, inter-

action analysis was performed in the STRING database [44] (S5 Fig) with THCA-EL-PC tran-

scripts. On adding less than ten indirect nodes, we observed three important clusters enriched in

different pathways.HIST1H2BJ, the transcript present in our signature forms a cluster, and this

cluster is enriched in nucleosome cellular component. This cluster has also shown to be related to

the progression of prostate cancer [45]. Another cluster of three genes is enriched in the dihydroli-

poyl dehydrogenase complex (FDR<0.01), out of whichDBT is present in our original signature.

In addition, one more cluster of three genes is a part of the checkpoint clamp complex, out of

which RAD1 is present in the original signature, and is involved in DNA damage response [46].

In addition, the top 100 features (S5 Table) were selected using the F_ANOVA feature

selection method. The SVC based model has achieved F1 score of 0.71 with AUROC of 0.73

(95% CI: 0.68–0.79) on the training data, and F1 score of 0.68 with 0.71 AUROC (95% CI:

0.60–0.82) is obtained on the validation data (THCA-EL-F-PC, S6 Table).

Cancer hallmark based transcripts

Hanahan and Weinberg uncovered the importance of eight biological processes that played a vital

role in tumor growth and metastatic propagation and called them as cancer hallmark processes

Table 1. The performance measures of the prediction models developed based on 37-protein-coding mRNA feature set (THCA-EL-PC) selected by FCBF-WEKA

feature selection method on training and validation dataset by implementing various machine-learning algorithms.

Classifier Dataset TP FP TN FN Recall (%) Precision (%) Spec (%) Acc (%) MCC AUROC (95% CI) F1 Score

SVC Training 219 52 81 46 82.64 0.81 60.9 75.38 0.44 0.79 (0.74–0.84) 0.75

Validation 57 18 16 11 83.82 0.76 47.06 71.57 0.33 0.66 (0.54–0.77) 0.72

SMO Training 244 68 65 21 92.08 0.78 48.87 77.64 0.47 0.70 (0.66–0.75) 0.78

Validation 60 24 10 8 88.24 0.71 29.41 68.63 0.22 0.59 (0.50–67) 0.69

J48 Training 180 47 86 85 67.92 0.79 64.66 66.83 0.31 0.66 (0.61–0.72) 0.66

Validation 50 16 18 18 73.53 0.76 52.94 66.67 0.26 0.66 (0.55–0.77) 0.67

NB Training 190 39 94 75 71.7 0.83 70.68 71.36 0.4 0.77 (0.72–0.82) 0.71

Validation 47 15 19 21 69.12 0.76 55.88 64.71 0.24 0.63 (0.51–0.75) 0.46

RF Training 225 52 81 40 84.91 0.81 60.9 76.88 0.47 0.8 (0.75–0.85) 0.76

Validation 52 18 16 16 76.47 0.74 47.06 66.67 0.24 0.60 (0.47–0.73) 0.5

TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative; Spec: Specificity; Acc: Accuracy; MCC: Matthews Correlation Coefficient; AUROC: Area

under Receiver operating characteristic curve; CI: Confidence Interval.

https://doi.org/10.1371/journal.pone.0231629.t001
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[47]. Thus, genes involved in these processes could also act as key signature markers. Here, we

have tried to ascertain only relevant transcripts from this subset of cancer hallmark genes.

To develop prediction models based on the cancer hallmark genes, initially, 4,814 cancer

hallmark specific genes extracted from 60,483 transcripts. Subsequently, the number of fea-

tures was reduced using various features selection techniques followed by the development of

prediction models. Towards this, the 15 transcripts selected by FCBF-WEKA (THCA-EL-H)

from cancer hallmark genes were used to develop models. The F1 score of 0.68 with AUROC

of 0.71 (95% CI: 0.66–0.77) is attained on the training data, while the F1 score of 0.69 with

AUROC of 0.73 (95% CI: 0.61–0.85) is obtained on the validation dataset (S7 Table). Out of 15

transcripts, two transcripts PROC and NLK (adjusted p-value = 0.002) are involved in the

developmental pathway of the Wnt signaling, and are shown to be dysregulated in cancer [48].

The other two genes CYSLTR1 and ADRB1, are enriched in GPCRs terms (adjusted p-

value = 0.04). CYSLTR1 is upregulated in colon cancer patients and associated with poor prog-

nosis [49]. A similar performance is obtained on 50 genes selected using the F_ANOVA

method (THCA-EL-FH, S8 Table).

Protein-coding and non-coding transcripts

Further to ascertain the role of both coding and non-coding transcripts, we explored all the

60,483 transcripts to identify relevant features that can segregate early and late stage samples.

The 78 transcripts (THCA-EL-All-WEKA) were chosen using FCBF-WEKA based feature

selection algorithm. The SVC model based on the THCA-EL-All-WEKA panel performed well

and attained F1 score of 0.78 and 0.86 AUROC (95% CI: 0.83–0.90) on the training dataset

and F1 score of 0.70 with 0.73 AUROC (95% CI: 0.63–0.84) on the validation dataset (S9

Table). Among the 78 selected features, 28 are protein-coding transcripts, 12 are long non-

coding RNA, 12 are antisense transcripts, 11 are processed pseudogenes, and others are differ-

ent non-coding RNAs (S10 Table).

Nest we applied another feature selection method called F_ANOVA to select top 100 fea-

tures. The SVC model using these 100 features achieved F1 score of 0.72 with 0.77 AUROC

(95% CI: 0.66–0.77) on the training data and F1 score of 0.63 with 0.68 AUROC (95% CI:

0.56–0.79) on the validation data (THCA-EL-All-F, S12 Table).

Additionally, the top 100 features selected using the F_ANOVA were further subjected to

the second stage of feature selection. In this stage, a wrapper-based approach combining

human opinion dynamics optimizer and SVC has been employed (see methods for details).

The number of features was reduced to 27 (S13 Table, THCA-EL-CODO). It achieved F1

score of 0.59 and 0.72 AUROC (95% CI: 0.67–0.78) on the training set and F1 score of 0.58

and 0.73 AUROC (95% CI: 0.62–0.84) on the validation set using the Naïve Bayes Classifier

(S14 Table).

From the above analysis, it has been observed that the prediction models based on both pro-

tein-coding and non-coding transcripts gave higher performance as compared to protein-cod-

ing and cancer hallmark protein-coding transcripts alone. One of our recent studies has

shown that the prediction model based on the SVC-L1 feature selection method achieved

higher performance with the minimum number of features [50]. Hence, we performed feature

selection using the SVC with L1 penalty (see methods). SVC-L1 method resulted in 36 tran-

scripts (shown in S15 Table). The SVC classifier based on the THCA-EL-SVC-L1 features

attained F1 score of 0.75 with 0.73 AUROC (95% CI: 0.62–0.84) (Table 2) on the validation

data. Notably, the prediction model based on 36 features is the best model among all the pre-

diction models developed using different feature sets in classifying early and late-stage samples

in terms of the number of features, accuracy, and F1 score on the validation dataset.
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Further, we also calculated PPV and NPV on various thresholds of the SVC probability

score (Table 3). On the training data, for the SVC score greater than 0.90, 161 early-stage sam-

ples are correctly predicted out of a total of 170 samples predicted as early-stage samples

(PPV = 94.71%). In the case of late-stage samples, 60 out of 64 late-stage predicted samples are

correct (NPV = 93.75%). In the case of validation data, the PPV is 85.71%, and the NPV is

Table 2. The performance measures of the prediction models developed based 36-full feature set (THCA-EL-SVC-L1) selected by SVC-L1 on training and validation

dataset by implementing various machine-learning algorithms.

Classifier Dataset TP FP TN FN Recall (%) Precision Spec (%) Acc (%) MCC AUROC (95% CI) F1 Score

SVC Training 228 17 116 37 86.04 0.93 87.22 86.43 0.71 0.93 (0.91–0.96) 0.86

Validation 52 10 24 16 76.47 0.84 70.59 74.51 0.45 0.73 (0.62–0.84) 0.75

SMO Training 252 30 103 13 95.09 0.89 77.44 89.2 0.75 0.86 (0.82–90) 0.89

Validation 59 16 18 9 86.76 0.79 52.94 75.49 0.42 0.7 (0.60–0.79)) 0.75

J48 Training 178 52 81 87 67.17 0.77 60.9 65.08 0.27 0.66 (0.60–0.71) 0.65

Validation 51 17 17 17 75 0.75 50 66.67 0.25 0.62 (0.50–0.73) 0.67

NB Training 239 39 94 26 90.19 0.86 70.68 83.67 0.63 0.87 (0.83–0.91) 0.84

Validation 58 15 19 10 85.29 0.79 55.88 75.49 0.43 0.72 (0.62–0.83) 0.75

RF Training 197 32 101 68 74.34 0.86 75.94 74.87 0.48 0.84 (0.80–0.88) 0.73

Validation 46 11 23 22 67.65 0.81 67.65 67.65 0.34 0.75 (0.64–0.85) 0.69

TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative; Spec: Specificity; Acc: Accuracy; MCC: Matthews Correlation Coefficient; AUROC: Area

under Receiver operating characteristic curve; CI: Confidence Interval.

https://doi.org/10.1371/journal.pone.0231629.t002

Table 3. The performance of SVC based model at the different threshold in term of the probability of correct prediction, developed using 36-full feature set

(THCA-EL-SVC-L1) on training and validation dataset.

Threshold/ Cut-offs Prediction of Early-stage Prediction of Late-stage

Total Predictions Correct Prediction PPV Total Predictions Correct Prediction NPV

Performance of Training Dataset

1.00 16 16 100.00 6 6 100.00

0.95 136 131 96.32 42 40 95.24

0.90 170 161 94.71 64 60 93.75

0.85 199 188 94.47 71 67 94.37

0.80 219 207 94.52 80 76 95.00

0.75 233 221 94.85 86 81 94.19

0.70 244 227 93.03 91 86 94.51

0.65 254 235 92.52 98 90 91.84

0.60 261 240 91.95 106 97 91.51

Performance of Validation Dataset

1.00 0 0 0.00 0 0 0.00

0.95 28 25 89.29 9 7 77.78

0.90 42 36 85.71 12 8 66.67

0.85 47 39 82.98 15 9 60.00

0.80 54 45 83.33 16 10 62.50

0.75 58 48 82.76 19 12 63.16

0.70 62 52 83.87 22 14 63.64

0.65 65 53 81.54 22 14 63.64

0.60 70 56 80.00 25 16 64.00

PPV: Positive Predictive Value; NPV: Negative Predictive Value.

https://doi.org/10.1371/journal.pone.0231629.t003
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66.67% (Table 3). This shows that at the SVC score of 0.90, there is a high probability of correct

positive (early-stage) and negative (late-stage) prediction. At the threshold of 0.70, at which we

presented other performance measures in Table 2, the PPV for training data is 93.03%, and

NPV is 94.51%, while, in case of validation, the PPV is 83.87%, and NPV is 63.64% (Table 3).

One of the advantages of this prediction model is that it resulted in a more balanced sensi-

tivity and specificity along with higher F1 score on a smaller number of features (36 features,

THCA-EL-SVC-L1) as compared to 78 features (THCA-EL-All-WEKA) selected by WEKA.

These 36 transcripts consist of 17 protein-coding genes, six long non-coding RNAs, and rest

other types of non-coding RNA transcripts (S15 Table). The TERT gene in this signature has

been an important oncogene in the case of PTC [51]. Overexpression of TERT induced by the

MAP pathway has shown to aggravate tumor development [52].

This model is deemed as the paramount model in our analysis for binary classification for

early and late-stage samples. This also points out that both protein-coding and non-coding

transcripts play an important role in tumor development.

Independent validation. Eventually, to assess the classification potential of these features,

validation performance is also evaluated on the external validation dataset, i.e., GSE48953, in

addition to the independent dataset from TCGA. The GSE48953 dataset contains only 18 com-

mon features with that of 36-features signature. Therefore, we developed a model based on

only those common 18 features. This model correctly predicted 70.6% (12 samples out of 17

samples) of early samples and 100% (3 samples) of late-stage samples of external validation

dataset, as shown in Table 4. These results further strengthen and validate the classification

potential of our signature for the segregation of early and late-stage samples.

The performance of different prediction models based on various feature sets for the segre-

gation of early-stage and late-stage samples of training and validation datasets in terms of

AUROC curves is depicted in Fig 2.

Multiclass classification

One of the limitations of binary classification is that it would force even normal samples into

either early or late-stage samples. Therefore, we implemented the multiclass classification by

considering the normal samples available in TCGA for thyroid cancer.

From the above analysis, it has been observed that the prediction model developed based

on features selected by the SVC-L1 method has higher performance with the minimum num-

ber of features. Therefore, we employed the SVC-L1 to select 107 RNA-transcripts (THCA--

NEL-M, S16 Table) from 60,483 transcripts and classified normal, early and late-stage

samples. This model obtained F1 score of 0.99, 0.88, 0.77 (Normal, Early, and Late) on the

training dataset with AUROC of 0.99 (95% CI: 0.98–0.99), 0.93 (95% CI: 0.92–0.94), and 0.91

(95% CI: 0.90–0.93), respectively. The same model on the validation data attained F1 score of

0.88, 0.78 and 0.55 (Normal, Early and Late) with AUROC of 0.95 (95% CI: 0.84–1), 0.76 (95%

CI: 0.66–0.85), and 0.72 (95% CI: 0.61–0.83), respectively (Table 5).

Table 4. The performance measures of the SVC based model, developed using 18-features set on training (TCGA dataset) and external validation (GSE48953)

dataset.

Dataset TP FP TN FN Recall (%) Precision Spec (%) Acc (%) MCC AUROC (95% CI) F1 Score

Training 220 50 83 45 83.02 0.81 62.41 76.13 0.46 0.81 (0.76–0.85) 0.76

ExternalValidation 12 0 3 5 70.59 1.00 100 75 0.51 0.78 (0.58–9.98) 0.75

TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative; Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews Correlation Coefficient;

AUROC: Area under Receiver operating characteristic curve; CI: Confidence Interval.

https://doi.org/10.1371/journal.pone.0231629.t004
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Discrimination of cancer vs. normal samples

Single gene-based models. In this section, we ranked RNA transcripts on this basis of

their AUROC for categorizing the PTCs samples from the non-tumorous samples. First, out of

60,483 features, those features with a variance of less than 0.02 were removed; thus, the num-

ber of transcripts reduced to 24,334. Among 24,334 transcripts, there are 8,180 RNA tran-

scripts, which have AUROC of 0.6 or higher. Further, to identify highly discriminatory RNA

transcripts, we selected 426 RNA transcripts having AUROC of 0.85 or greater (S17 Table).

The overlapping sense transcript RP11-363E7.4 and protein-coding transcript FAM84A show

AUROC of 0.96 and 0.95, respectively, for classifying cancer and normal samples. Gene Ontol-

ogy pathway enrichment analysis for 386 protein-coding transcripts from the top 426 tran-

scripts is shown in S6 Fig. Gene enrichment analysis revealed that 11 genes from the 386

transcripts are involved in the axon guidance pathway from KEGG. These genes comprising

axon guidance pathway have been shown to play an important role in tumorigenesis [53].

Fig 2. The AUROC plot comparing the performance of prediction models based on different feature sets for segregating early and late-

stage tissue samples of (A) Training dataset and (B) Validation dataset.

https://doi.org/10.1371/journal.pone.0231629.g002

Table 5. The performance measures of the multiclass prediction model developed based on 107 features selected by SVC-L1 on training and validation dataset by

implementing SVC.

Training Data

Class Recall (%) Precision (%) Spec (%) Acc (%) MCC AUROC (95% CI) F1 Score Number of samples

Normal 100 98 99 99 0.98 0.99(0.98–0.99) 0.99 46

Early 88 86 79 86 0.72 0.93(0.92–0.94) 0.88 265

Late 77 81 92 87 0.67 0.91(0.90–0.93) 0.77 133

Validation Data

Normal 92 92 99 98 0.91 0.95 (0.84–1.00) 0.88 12

Early 79 75 58 74 0.44 0.76 (0.66–0.85) 0.78 68

Late 53 58 87 75 0.34 0.72 (0.61–0.83) 0.55 34

Spec: Specificity; Acc: Accuracy; MCC: Matthews Correlation Coefficient; AUROC: Area under Receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0231629.t005
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Enrichment analysis shows that eight genes from 386 signatures have been also found in lung

cancer-specific 86 genes defined in KEGG. Further, many of the genes are enriched in biologi-

cal processes that regulate the expression of non-coding RNAs. The enriched cellular compo-

nents’ terms are mostly related to interleukin receptor complexes, T-cell receptor complexes,

and plasma membrane components. Serum IL-2 has been shown to discriminate patients with

active thyroid cancer from the healthy with a sensitivity of 98%, and specificity of 58% [54].

Besides the protein-coding genes, 17 long non-coding RNAs were identified with AUROC

above 0.85.

Among 17 lincRNAs, the PTCSC3 has been reported as highly thyroid-specific, and found

to be downregulated in thyroid tumor tissues and thyroid cell lines [55]. LINC00936, RP11-
774O3.3 and LINC00205 have been observed to be involved in other cancers [56, 57]. Taken

together, it points out the literature validation of the key signatures identified in our study.

Protein-coding RNA transcript-based signatures. Our next goal was to develop a prediction

model based on the least number of only protein-coding RNA features to classify cancer and

normal samples with high precision. Therefore, we selected the top five features RELN,

RASSF9, PLA2R1,MMRN1, and RPS6KA5 using F_ANOVA (THCA-CN-F). The prediction

models were developed based on these five RNA-transcripts using various machine-learning

algorithms. The SVC model attained F1 score of 0.98 and 0.97 AUROC (95% CI: 0.93–1) on

the training dataset and F1 score of 0.97 and 0.99 AUROC (95% CI: 0.91–1) on the validation

dataset (Table 6). As there was a large difference in the number of cancer samples and normal

samples, we down-sampled the larger dataset and selected only 58 cancer samples correspond-

ing to the 58 normal samples (THCA-CN-P). Subsequently, leave-one-out SVC model was

developed using the same five features and obtained 0.99 AUROC. Also, we selected random

58 cancer samples (THCA-CN-R) and developed a leave-one-out cross-validation SVC model

and obtained 0.96 AUROC (S7 Fig). As there is no outsized change in the performance by

down-sampling the cancer samples, we incorporated the model with all the 500 samples as the

final model.

Gene enrichment analysis revealed that RELN and RPS6KA5 are associated with activation

of cyclic AMP (cAMP) response element-binding protein (CREB) transcription factor

(adjusted p-value<0.01), which is responsible for tumor initiation, progression, and metastasis

[58]. RELN is an extracellular glycoprotein that plays a vital role in neuronal migration and has

been shown to be downregulated in many cancers [59, 60].

Table 6. The performance measures of prediction models developed based on 5-protein coding transcripts (THCA-CN-F) feature set selected by F_ANOVA feature

selection method for discriminating cancer and normal patients on training and independent validation dataset.

Classifier Dataset TP FP TN FN Recall (%) Precision (%) Spec (%) Acc (%) MCC AUROC (95% CI) F1 Score

SVC Training 396 4 42 4 99.00 0.99 91.3 98.21 0.9 0.97 (0.93–1) 0.98

Independent Validation 97 0 12 3 97.00 1.00 100.00 97.32 0.88 0.99 (0.91–1) 0.97

SMO Training 396 6 40 4 99.00 0.99 86.96 97.76 0.88 0.93 (0.88–0.98) 0.98

Validation 97 0 123 97 97.00 1.00 100.00 97.32 0.88 0.98 (0.96–1) 0.87

J48 Training 397 9 37 3 99.25 0.98 80.43 97.31 0.85 0.85 (0.76–95) 0.97

Validation 97 3 9 3 97.00 0.97 75.00 94.64 0.72 0.87 (0.74–0.99) 0.87

NB Training 383 3 43 17 95.75 0.99 93.48 95.52 0.80 0.95 (0.91–0.99) 0.96

Validation 91 0 12 9 91.00 1.00 100.00 91.96 0.72 0.96 (0.93–0.99) 0.92

RF Training 393 5 41 7 98.25 0.99 89.13 97.31 0.86 0.97 (0.93–1) 0.97

Validation 95 0 12 5 95.00 1.00 100 95.54 0.82 0.99 (0.97–1) 0.96

TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative; Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews Correlation Coefficient;

AUROC: Area under Receiver operating characteristic curve; CI: Confidence Interval.

https://doi.org/10.1371/journal.pone.0231629.t006
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Web server implementation

We established a web server, CancerTSP (Thyroid cancer stage prediction), that implements

models developed in the present study for investigation and estimation of cancer stage from

the transcripts’ expression data. The CancerTSP consists of two key modules consisting of pre-

diction and analysis.

The prediction module consists of two modules for predicting the stage of the THCA can-

cer sample. One of the models is based on protein-coding features (THCA-EL-PC), and the

other model is based on both protein-coding and non-protein coding transcripts (THCA-All-

SVC-L1). We also provide a third prediction module based on the THCA-NEL-M features,

which can predict whether the sample is normal, early-stage, or late-stage sample. The results

are displayed on the score thresholds that exhibited a minimum difference in recall and speci-

ficity with maximum accuracy. The user can change the threshold for less or more stringent

results in terms of recall and specificity. The lower threshold will increase the recall but

decrease the specificity and a higher threshold will do the opposite to prediction outcomes (S8

Fig).

The user needs to provide transcript expression (FPKM values) of potential biomarker

genes for every patient. The number of patients corresponds to the number of columns in a

file. The output includes a list of patients and corresponding predicting stage of cancer (early

or late-stage) along with the prediction score (probability value).

Another module is dedicated for analysis which is helpful in evaluating the role of each

transcript in discrimination of early-stage from the late-stage. This module gives p-value (cal-

culated using Wilcoxon rank test) for each transcript that signifies whether the transcript’s

expression varies in the early and late-stage significantly. It also gives expression threshold and

classifying AUROC of each transcript along with the average expression of that gene in the

early and late-stage of cancer. The CancerTSP webserver is available from URL http://webs.

iiitd.edu.in/raghava/cancertsp/ for public use.

Discussion

The current study is an attempt for the identification of reliable RNA expression-based geno-

mic markers that are capable of segregating early-stage patients from late-stage patients of thy-

roid cancer. Despite the benefits of FNA for diagnosing papillary, medullary, and anaplastic

thyroid cancer, it has limited utility in determining the stage and benign or malignant status of

thyroid tumors. In addition, some FNA results suggest but not definitively diagnose papillary

thyroid cancer [61]. The diagnosis of patients at an early stage aids the application of adequate

treatments and disease management which eventually improves the outcome of the patients.

With the advent of genomics technology, publicly available cancer patients’ expression data

from resources like GDC and GEO has expedited the search for expression-based molecular

markers capable of reliable diagnosis in clinical settings.

In the current study, we tried to understand how well (prediction power in terms of

AUROC) the expression of a gene or RNA transcript can predict the stage of the PTC tumor

samples. First, we ranked all the transcripts on the basis of AUROC, calculated based on simple

expression-based threshold models. Here, the expression of a single gene, i.e., DCN, at the

threshold of 3.01 (log2 FPKM), showed maximum AUROC of 0.66. The DCN gene is a mem-

ber of the extracellular small leucine-rich proteoglycan family present in connective tissues.

Arnaldi et al. showed that DCN could be a potential diagnostic marker and therapeutic target

for PTC [41]. It also has been shown that increased expression of DCN leads to decreased

adhesion and increased migration of glioma cells by downregulation of TGF-β signaling [62].
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Furthermore, the gene-enrichment analysis of 166 protein-coding genes from the

THCA-EL-AUROC signature set revealed their significant enrichment in various KEGG path-

ways including the Focal adhesion pathway, PI3K-Akt signaling pathway, and Proteoglycans

in cancer, etc. Notably, the Focal adhesion kinase has already been shown to be overexpressed

in thyroid cancers [63]. There is a plethora of literature that indicates that PI3K-Akt signaling

pathway components are dysregulated in cancers [64–66]. Further, there is extensive remodel-

ing of tumor stroma, which is related with noticeable variations in proteoglycans expression

and structural variability. Proteoglycans mainly contribute to the formation of a matrix for

tumor growth affecting tissue organization [67]. Thus, the previous literature and enrichment

analysis indicate that these prioritized genes are involved in various cancer progression related

processes and, therefore, can be explored as potential biomarkers of stage classification. How-

ever, more research on large cohorts is warranted to confirm this hypothesis.

Next, various combinations are tested to elucidate potential biomarker subset for segregat-

ing early and late-stage samples. Towards this, we explored various feature spaces like protein-

coding transcripts only, cancer hallmark transcripts, and both types of transcripts (protein-

coding and non-coding transcripts) from the 60,483 RNA transcripts. The SVC model based

on the THCA-EL-All-WEKA (78 features), resulted in F1 score of 0.70 on the validation data.

The various types of features in this signature reveal the role of various non-coding transcripts

along with protein-coding transcripts in the progression of cancer. Out of 28 protein-coding,

five genes; TERT [68], FLT4 [69], DUSP6 [70], USP10 [71] and POMC [72] have already been

implicated in thyroid cancer. miR-3196 has also been found to be downregulated in PTC non-

metastasized patients [73]. This shows that many components out of 78 signatures have

already been implicated in the PTC and other malignancies. These genes can be further inves-

tigated to reveal their role as biomarkers for early-stage of PTC. The SVC model based on

36-features set (THCA-EL-SVC-L1) selected using the SVC-L1 feature selection method, is the

top performer in categorizing early and late-stage samples of the validation dataset with F1

score of 0.75, and resulted in the reduction of the features nearly half as compared to 78 fea-

tures. Further, the performance of 18 features from this panel was also validated using cross-

platform normalization on the external validation data. 70% early-stage samples (Sensitivity)

and 100% late-stage samples (specificity) from the external validation dataset were correctly

predicted. One of the most studied genes, TERT, is part of this signature and its promoter

mutations are closely associated with aggressive clinicopathological characteristics and poor

prognosis in PTC earlier [74]. Next, we also developed the multiclass machine learning predic-

tion models to distinguish normal, early, and late samples. The SVC model based on the

THCA-NEL-M signature of 107 transcripts attained F1 score of 0.88, 0.78, and 0.55 for nor-

mal, early, and late stage classes, respectively on the validation dataset.

Additionally, RNA transcripts having high prediction capability in terms of AUROC for

categorizing cancer and normal samples also have been derived. Interestingly overlapping

sense transcript RP11-363E7.4 showed the highest AUROC of 0.96 in classifying cancer sam-

ples from normal samples. It has been already demonstrated in the literature that sense to anti-

sense transcript ratio increases in cancer [75]. Other protein-coding transcript FAM84A
shows 0.95 AUROC and has already been reported to play a role in metastasis of liver and

colon cancer [76, 77]. In this study, AUROC of most of the signatures to segregate cancer and

normal samples have a similar range as reported by earlier studies, which further validates our

findings [78]. Further, using five protein-coding transcripts (THCA-CL-PC), we were able to

classify cancer samples from normal samples in the validation dataset with F1 score of 0.97.

Eventually, a web server CancerTSP is developed, where the user can provide the tran-

scripts’ expression (FPKM values) and can predict whether the cancer is in the early or late

stage. This type of application where expression of transcripts is used to demarcate the early
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and late stage of cancer using machine learning can provide better understandings about the

role of diverse transcripts responsible for the development of cancer from early to the late

stage. Hence, this resource will help the scientific community in making preliminary hypothe-

ses regarding cancer progression.

Conclusion

In conclusion, 36 RNA-transcripts based SVC prediction model attained considerable perfor-

mance in segregating the early-stage and late-stage PTC tissue samples with F1 score of 0.75.

In addition, prediction models based on five protein-coding transcripts categorized tumorous

and non-tumorous samples of patients with high F1 score of 0.97. Eventually, all prediction

models based on identified candidate markers are integrated into CancerTSP webserver for

the classification of early-stage from late-stage and PTC tumors from normal samples to facili-

tate the research community engaged in this field. We anticipate the current study might

prove to be helpful in recognition of the potential of these new transcriptomic markers for

early diagnosis of PTC. Additionally, further investigation of these markers on larger cohorts

is required to confirm their potential clinical utility.

Limitation of the study

In this study, we have scrutinized potential transcriptomic signatures to distinguish early and

late-stage samples of PTC. One of the limitations associated with these signatures is that they

are derived from tissue samples only, which is an invasive technique for biomarker discovery.

Further, the external dataset used in the current study contains only 20 samples. Thus, field can

be advanced by adopting non-invasive biomarkers from specimens like blood, urine, cell-free

DNA, etc. along with the validation on large sampled cohorts to confirm their clinical utility.
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