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Abstract

Kinetic models of metabolism can be constructed to predict cellular regulation and devise

metabolic engineering strategies, and various promising computational workflows have

been developed in recent years for this. Due to the uncertainty in the kinetic parameter val-

ues required to build kinetic models, these workflows rely on ensemble modeling (EM) prin-

ciples for sampling and building populations of models describing observed physiologies.

Sensitivity coefficients from metabolic control analysis (MCA) of kinetic models can provide

important insight about cellular control around a given physiological steady state. However,

despite considering populations of kinetic models and their model outputs, current

approaches do not provide adequate tools for statistical inference. To derive conclusions

from model outputs, such as MCA sensitivity coefficients, it is necessary to rank/compare

populations of variables with each other. Currently existing workflows consider confidence

intervals (CIs) that are derived independently for each comparable variable. Hence, it is

important to derive simultaneous CIs for the variables that we wish to rank/compare. Herein,

we used an existing large-scale kinetic model of Escherichia Coli metabolism to present

how univariate CIs can lead to incorrect conclusions, and we present a new workflow that

applies three different multivariate statistical approaches. We use the Bonferroni and the

exact normal methods to build symmetric CIs using the normality assumptions. We then

suggest how bootstrapping can compute asymmetric CIs whilst relaxing this normality

assumption. We conclude that the Bonferroni and the exact normal methods can provide

simple and efficient ways for constructing reliable CIs, with the exact normal method favored

over the Bonferroni when the compared variables present dependencies. Bootstrapping,

despite its significantly higher computational cost, is recommended when comparing non-

normal distributions of variables. Additionally, we show how the Bonferroni method can

readily be used to estimate required sample numbers to attain a certain CI size.

Author summary

Due to various sources of uncertainty, populations of kinetic models of metabolism are

generally constructed to derive conclusions about the dynamics of the modeled
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physiology. However, computational ensemble modeling (EM) frameworks for building

populations of kinetic models do not systematically handle the uncertainty underlying

model-based conclusions. Although kinetic models could suggest that modifying the level

of certain enzymes would on average increase a flux of interest, this information is incom-

plete if we do not know with what certainty the model predicts this. We can instead use

statistical inference approaches to quantify the level of confidence for which certain

model conclusions lie within the confidence intervals. We demonstrate how three statisti-

cal methodologies can be applied to construct confidence intervals around distributions

of output variables derived from populations of kinetic models. We discuss the advantages

and disadvantages of applying these three methods and provide advice on their usage in

EM. This will lead to improved metabolic engineering decisions by helping engineers

focus on the most robust conclusions.

Introduction

Kinetic models are becoming essential computational tools for studying the metabolism of

organisms and for understanding the dynamics of their cellular biochemical interactions [1].

However, the construction of kinetic models remains a challenging endeavor as there are large

uncertainties in the rate expressions describing all the reactions making up these cellular inter-

actions [2]. This is often because reaction mechanisms are rarely fully characterized for an

organism, making it difficult to select appropriate rate expressions for reactions, and informa-

tion on the parameter values required by these expressions is very scarce. Several ensemble

modeling (EM) approaches that assign kinetic mechanisms to reactions, incorporate experi-

mental data, and sample unknown kinetic parameter values have emerged for generating popu-

lations of kinetic models [3–6]. Yet, given the promising methodologies that exist for

constructing populations of large-scale kinetic models, the community lacks procedures for

examining their uncertainty.

Kinetic models are generally constructed with a particular objective, such as improving a

substrate’s production, increasing cellular growth, or advising experimentalists on which phys-

iological properties should be measured [1]. Irrespective of the objective, comparing popula-

tions of variables—such as metabolic control analysis (MCA) sensitivity coefficients—

computed from the kinetic models is a fundamental step in deriving conclusions from compu-

tational modeling and engineering. To meaningfully compare populations of variables, it is

important to consider their associated uncertainty. Unfortunately, innumerous statistical

approaches exist for this, making it sometimes a dubious task to select the “correct” method

[7]. Despite originating from statistical mechanics, EM has only been employed in systems

biology for two decades [8], and its use of statistical methods for managing uncertainty

remains, to our knowledge, untapped.

Kinetic models of metabolism are generally constructed around a given steady state of

interest that characterizes the system. Assuming that we know the metabolite concentrations,

the flux values, and the reaction mechanisms describing the system, we still have uncertainty

in the kinetic parameter values. The Optimization and Risk Analysis of Complex Living Enti-

ties (ORACLE) framework handles this uncertainty by considering multiple alternative sets of

models by sampling the parameter space until enough models are obtained such that the mean

and several other statistical modes of the model outputs converge [4, 9, 10]. Another EM

approach generates populations of models to search for a unique model that best fits experi-

mental data to construct a time-course dynamic model that describes the system [3, 11]. A
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workflow for constructing kinetic models considers populations and assesses statistical signifi-

cance using the univariate analysis of uncertainty in variables [5]. However, these frameworks

for building kinetic models do not appear to consider multivariate statistical methods when

accounting for uncertainty.

The purpose of this paper is to suggest how multivariate statistical approaches can be used

to construct simultaneous confidence intervals (CIs) for considering uncertainty in the out-

puts of populations of kinetic models. As there is no unique approach for constructing simul-

taneous CIs, we addressed this goal by assessing several different methods, which each come

with certain underlying assumptions and caveats that should be taken into consideration

before application. We compared different approaches that can be applied to our data and

make recommendations on how such approaches can serve the community by attributing sta-

tistical significance to variables and handling uncertainty.

Simultaneous CIs are ranges that contain the true means of a set of variables with a fixed

probability called coverage. Unlike well-known univariate CIs, simultaneous CIs calculate

their coverage by accounting for the multiplicity of variables. Their constructions can be

approximate or very technical, depending on the underlying distribution of the data. In this

paper, we present three multivariate methods: Bonferroni’s correction (BCI), the exact normal

(ENCI), and the bootstrap (BootCI). We discuss their advantages, disadvantages, and assump-

tions to suggest how these methods can be successfully applied for comparing variables com-

puted with EM techniques.

To apply these methods, we used a published kinetic model [12] of aerobically grown E. coli
that was derived from the iJO1366 genome-scale reconstruction [13]. The ORACLE frame-

work was used to compute populations of flux control coefficients (FCCs) derived with MCA.

The FCCs represent the fold change in a specific flux with respect to the perturbation of an

enzyme’s activity of p = 275 enzymatic reactions with respect to their enzymes. We studied the

FCCs of n = 50,000 kinetic models using the three previously mentioned methods for con-

structing simultaneous CIs and suggested a workflow (Fig 1) for applying them. The algo-

rithms used for constructing the simultaneous CIs are available in the supplementary material

(S1 Methods).

Results and discussion

Kinetic models studied

Because we needed an ensemble of kinetic models and quantitative model outputs that we

could assess statistically, we used a published kinetic model of E. coli from Hameri et al. [12]

for this study. Their reduced stoichiometric model of E. coli was obtained using the redGEM

and lumpGEM algorithms [14, 15] from the iJO1366 genome-scale metabolic model [13]. It is

composed of 277 enzymatic reactions and 160 metabolites distributed over the cytosol, peri-

plasm, and extracellular space (S1 Table).

We studied four different operational configurations—also referred to as flux directionality

profiles (FDPs) in their publication [12]—that were able to characterize the physiology of aero-

bically grown E. coli. These four FDPs each have different reaction directionalities, and a refer-

ence steady state was selected for the fluxes and the metabolite concentrations for each one. To

account for uncertainty in kinetic parameters, the authors considered populations of kinetic

models by efficiently sampling this parameter space with ORACLE. The populations of 50,000

kinetic models from their work [12], were used for each FDP to study the FCCs. As our study

focused on comparing statistical methods for deriving CIs around the outputs of populations

of kinetic models, we do not discuss the differences in these four operational configurations

Statistical inference in ensemble modeling of cellular metabolism
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(FDPs) nor their biological implications and refer the reader instead to the original publication

[12].

Uncertainty in flux control coefficients

FCCs derived from MCA have been used for metabolic engineering purposes to provide

insight into the rate limiting steps of a metabolic network. For example, comparing FCCs can

help locate which enzyme could be edited to achieve a certain target metabolic state. Hence,

we used FCCs as variables to demonstrate how CIs can be constructed around them. For our

initial studies into CIs, we focused on the first FDP from Hameri et al. [12] (FDP1) and refer

to it herein as Case 1. To illustrate simultaneous CIs in this section, it was easier to focus on

Fig 1. Schematic diagram of workflow carried out in the study. Key steps (red) of the workflow for constructing CIs,

with necessary inputs in purple. When the necessary tasks (green) are completed for each step (red), one can move to

the next step, repeating the cycle when the confidence intervals do not pass. Only after robust CIs are constructed

should one move on to the applications in blue to prevent incorrect conclusions.

https://doi.org/10.1371/journal.pcbi.1007536.g001
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Case 1, and the other three alternative cases are presented only in later sections. For this work,

we considered the n = 50,000 stable kinetic models of Case 1 that they [12] generated with the

ORACLE workflow. We consider p = 275 FCCs of glucose uptake (GLCptspp) to determine

which enzymes have the most control on it and could be of interest for editing. GLCptspp was

chosen as an example rather than for any specific biological reasons/objective. The p = 275

FCCs will be considered as the variables, for which we have n = 50,000 observations (i.e.

kinetic models).

Confidence intervals

The width of a CI is a measure of the uncertainty in a given variable. A wider CI implies a

larger range of numerical values that the variable could take within a defined level of confi-

dence. Differences in CIs for the same set of variables constructed using different statistical

methods could provide conclusions/recommendations that are method dependent. It is there-

fore important to know which methodology to apply for a given study. We considered four

methodologies for building CIs, which are presented in the Materials and Methods; one with-

out correction, and three that account for the simultaneous coverage level. We used Case 1 as

an example to study and compare the CIs. We pre-processed Case 1 data by removing vari-

ables that had a standard deviation below a tolerance level of 10−9. For insight into which vari-

ables have the largest population mean μ, Fig 2 displays sample means sorted by absolute value

along with their CIs as generated using the four different methods. The method without cor-

rection, referred to as the univariate approach, constructs CIs that are considerably narrower

(Fig 2A) than the ones constructed using the three multivariate methods that account for

simultaneous coverage (Fig 2B, 2C and 2D). These differences in CIs could be interpreted as

having a higher confidence in a variable when using the univariate rather than a multivariate

approach. Thus, univariate CIs are less accurate for analyzing the system as they take less infor-

mation into account.

We first applied Bonferroni’s corrections (BCI) for generating the CIs, which are used for

increasing the confidence level when testing/comparing multiple variables. We noted that the

CI ranges were considerably wider than the ones obtained via univariate t-distributions with-

out correction (Fig 2A and 2B). This was expected as the coverage levels were adjusted for

simultaneity and were thus more conservative. The second method applied was the exact nor-

mal method (ENCI) that uses correlation of variables to adjust the CIs. The CIs calculated

using ENCI were narrower than ones computed with Bonferroni’s correction, as the latter

accounts for the dependencies of the variables (Fig 2B and 2C).

The third method that we applied for generating CIs is called bootstrapping (BootCIs),

which is used when considering non-normal distributions of variables. BootCIs generally pro-

duced slightly narrower CIs than the ones derived using ENCI (Fig 2C and 2D). This was also

expected, as the BootCIs are less conservative than the exact normal ones. Nevertheless, when

the distribution was heavily skewed, the asymmetric CI could be considerably larger on one

side of the data point. Asymmetric CIs, such as the BootCIs, do not assume a normal distribu-

tion (i.e. symmetry) of the data like with the BCI and the ENCI. Instead, asymmetric CIs

account for a systemic bias of the data in a given direction. Hence, the BCI and the ENCI

methods are inaccurate when representing asymmetric data and that BootCIs should always

be used instead. This happened with the oxygen transport (O2tex), phosphofructokinase

(PFK), phosphate transport (PItex), and carbon dioxide transport (CO2tpp) pathways (Fig 3).

As BootCIs use the observed data to derive the CIs, they appear more representative and

adapted to the studied data.

Statistical inference in ensemble modeling of cellular metabolism
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The computational times for obtaining BCIs, ENCIs, and BootCIs were recorded as 0.12 s,

0.47 s, and 3,520 s, respectively (Mac Pro, 2.7 GHz 12-Core Intel Xeon E5, 64 GB 1866 MHz

DDR3 ECC). As expected, the computation was considerably longer for the BootCIs than for

both the Bonferroni’s and exact normal methods due to its intense re-sampling (see Materials

and Methods).

Even though it is challenging to rank variables based on their uncertainty, with CIs we can

still quantify how certain we are about the numerical value of variables. For instance,

Fig 2. Control coefficients for glucose transport (GLCptspp) and their CIs derived using different methodologies. The

diamonds indicate the mean of the FCCs in decreasing order of absolute mean. CIs were derived using (A) univariate t-

distributions for n = 1 degrees of freedom, (B) Bonferroni, (C) exact normal, and (D) bootstrapping approaches (for more

information, see Materials and Methods). The lower and upper whiskers correspond to the CI range. The CIs are blue when they

include zero at the 95% confidence level and red if they do not. Numerical values are given in the supplementary information (S2

Table).

https://doi.org/10.1371/journal.pcbi.1007536.g002

Fig 3. Top flux control coefficients of glucose uptake (GLCptspp) with confidence intervals determined using four different statistical approaches. The top 10

FCCs based on absolute mean are reported with diamonds. The whiskers indicate the CIs for univariate (magenta), Bonferroni (blue), exact normal (red), and

bootstrapping (black). The reader is referred to the Materials and Methods for technical details on CI computation. Numerical values are given in the supplementary

information (S2 Table).

https://doi.org/10.1371/journal.pcbi.1007536.g003
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uncertainty can be used as a way to exclude/select certain variables for further study when

designing an experiment. However, differences in the CIs around FCCs could lead to opposing

recommendations about which enzymes to target for a given study. For example, if we only

considered univariate CIs, we could conclude for Case 1 that PFK is an interesting target

enzyme (Fig 3) as it has control over the flux of interest and a relatively narrow CI. However, if

we apply the three multivariate methods to construct CIs, we note that these CIs are consider-

ably larger and even include zero within the range for BootCIs, making PFK a less attractive

target (Fig 3). Consequently we could make different conclusions about the confidence levels

depending on the statistical method, particularly when comparing univariate CIs to ones con-

structed with a multivariate approach.

Due to the underdetermined nature of the system, alternative steady-state solutions could

describe the experimentally observed E. coli physiology [12]. As mentioned previously, Hameri

et al. described four FDPs, herein called cases, and we next considered populations of kinetic

models around these four cases and compared their MCA outputs. Studying these outputs can

help elucidate why steady-state solutions affect the MCA-based control patterns and metabolic

engineering decisions. Fortunately, the three multivariate statistical techniques presented in

this publication could be applied for building simultaneous CIs to provide the average differ-

ence between two data sets for our case study (see also S1 Methods). These three multivariate

techniques were then compared with the often-used univariate approach.

Case study: Mean difference confidence intervals

We were interested in studying the four operational configurations, FDPs, that could charac-

terize the physiology of aerobically grown E. coli, which were published by Hameri et al. [12].

We studied their populations of 50,000 stable kinetic models for these four operational config-

urations. The first was herein labeled Case 1 and was presented in the previous section to dem-

onstrate the different methods for constructing CIs. The three other cases will be referred to as

Case 2, Case 3, and Case 4. Cases 2–4 correspond to FDP2-4 from the same publication [12],

and we will not discuss their biological differences in this work as the focus lies instead in the

CIs. We were interested herein in comparing how different the FCCs for GLCptspp were for

these four cases and how conclusions could differ when using different statistical

methodologies.

In order to make this case study more comprehensible, we made a pre-selection of the

FCCs for GLCptspp that we wanted to compare. For each case, we built the bootstrapped

simultaneous CIs and kept the seven FCCs with the largest absolute value in mean amongst

those significantly different from zero. The union of these top seven FCCs of the cases was

selected for the comparisons, resulting in 15 FCCs to be compared. Since we wanted to com-

pare these 15 FCCs between all four cases, i.e. six possible combinations of two, this resulted in

90 comparisons overall (15 x 6).

The three multivariate statistical methods presented in Materials and Methods were used to

construct CIs for these 90 comparisons. Again, the bootstrapping approach was expected to be

the most appropriate because of the aforementioned skewedness of the data. Overall, as shown

in Fig 4, 45 comparisons were significant based on the bootstrapping approach. In compari-

son, the BCI and the ENCI resulted in 44 and 39 significant comparisons, respectively (S1 and

S2 Figs). Since the variables have little correlation in this case study, the complexity of the

ENCI over BCI seems not to be needed.

We also noted that the comparison of nicotinamide adenine dinucleotide kinase (NADK)

between Cases 1 and 2 and between Cases 1 and 3 appeared to be significant when using the

BootCIs, whereas the other two multivariate approaches would suggest it is insignificant. This

Statistical inference in ensemble modeling of cellular metabolism
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example shows that the BCI and ENCI approaches relying on the normality assumption may

lead to different conclusions than the bootstrapping method when dealing with skewed distri-

butions. Comparisons of the other pairs of cases did not reveal notable differences. Overall,

Fig 4. Case study: Differences in means using bootstrapping. Comparison of the differences in means of 15 FCCs for GLCptspp across four cases using the

bootstrapping method (see Materials and Methods). The whiskers indicate the CIs, and the diamonds report the estimates of the differences in means. The CIs

are blue with a hollow diamond when they include zero at the 95% confidence level and red with a plain diamond if they do not. The tests were carried out

globally on the 90 estimates, even though we report each case comparison as a separate plot. Numerical values are given in the supplementary information (S3

Table).

https://doi.org/10.1371/journal.pcbi.1007536.g004
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there were no major differences in the widths of the CIs derived for the 90 comparisons for

these three multivariate statistical methods.

Regarding the overall results in the applications, we observed very few differences between

the statistical methods. This led us to prefer BCIs due to their simplicity. The absence of any

major differences between these methods can be explained by the fact that the correction for

simultaneity is the first and most important aspect before accounting for the dependence and

for the skewness of the distribution. This was probably due to the very large number of vari-

ables/comparisons in our considered examples. In addition, it was evident that the main factor

driving the size of the CIs was the standard deviation of the distributions. We had a clear

example of variance inhomogeneity between the variables. If all these techniques take this

inhomogeneity reasonably well into account, it is not surprising to see that most variation

from one CI to another is indeed due to the standard deviation. This was probably why taking

one technique or another did not noticeably change the practical results.

It should also be mentioned that the BCI, even in its simplicity, allows a sample size calcula-

tion to estimate the number of samples required to achieve a certain level of confidence (see

Materials and Methods, Section 5). This is an a posteriori calculation that is done based on the

samples that we already have. For instance, to attain BCIs that have a maximal margin of error

of 0.1, we would require around 1.9 million samples for our case studies based on the 90 com-

parisons that we performed here. Obviously, this estimated number of required samples is sub-

ject to the basic and conservative assumptions of the BCI and only serves as an indication.

Additionally, we noted that BootCIs provided certain minor advantages over the other

methods at the cost of a higher computational effort, particularly when the distributions were

heavily tailed or asymmetric. Hence, if the additional computational resources are available, it

might be safer to apply the BootCIs when dealing with these kinds of data sets. As this was

clearly the case for us and we had the computational resources, it was certainly worth investi-

gating and applying the BootCIs to obtain our results. Should the BootCI approach be too

complex to implement computationally, it would be worthwhile to consider the ENCI over the

BCI in the presence of high dependencies between the variables because the ENCI accounts

for the correlation of the variables.

The most distinct observation comes again when we contrast these three multivariate

approaches (Figs 4 and S1 and S2) to the univariate one (Fig 5). The univariate method would

suggest that 60 comparisons out of the 90 are actually significant. This is considerably more

than the multivariate approaches, which had at maximum 45 significant comparisons, or the

bootstrapping case (Fig 4). Using the univariate approach could result in claiming that more

differences between the model outputs are significant when they are actually not according to

the multivariate approaches. Thus, multivariate methods should be favored when making

model-based decisions based on multiple variables rather than applying the standard univari-

ate approach.

Conclusion

We hereby introduced, to our knowledge, the first computational workflow for assigning sta-

tistical significance to EM outputs in systems biology. This work studied how alternative statis-

tical approaches could be applied for computing CIs for the MCA outputs of populations of

non-linear kinetic models of the metabolism of aerobically grown E. coli. We investigated the

differences in three distinct methods—Bonferroni’s correction, exact normal, and bootstrap—

in calculating simultaneous CIs and discussed the particularities and assumptions of these

approaches. We demonstrated that we could successfully use these three methods to build CIs

for populations of models and that there were no considerable differences in the CIs derived

Statistical inference in ensemble modeling of cellular metabolism
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for the presented data using the three methods. Therefore, Bonferroni’s correction was

remarkable for its simplicity and for its ability to estimate the sample sizes required for achiev-

ing a certain confidence level. We highlighted that the bootstrapping approach, although more

complicated computationally and algorithmically, provided certain clear advantages when

Fig 5. Case study: Differences of means using the univariate method. Comparison of the differences in means of 15 FCCs for GLCptspp across four cases

using the univariate method (see Materials and Methods). The whiskers indicate the CIs, and the diamonds report the estimates of the differences in means.

The CIs are blue with a hollow diamond when they include zero at 95% confidence level and red with a plain diamond if they do not. The tests were carried out

globally on the 90 estimates even though we report each case comparison as a separate plot. Numerical values are given in the supplementary information (S3

Table).

https://doi.org/10.1371/journal.pcbi.1007536.g005

Statistical inference in ensemble modeling of cellular metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007536 December 9, 2019 11 / 16

https://doi.org/10.1371/journal.pcbi.1007536.g005
https://doi.org/10.1371/journal.pcbi.1007536


handling data with highly asymmetric and/or skewed distributions. Independent of the

method used, it was crucial to consider the multivariate correction of CIs for their simultane-

ity. Univariate CIs could lead to misleading model-based conclusions when comparing popu-

lations of multiple variables. Hence, we propose a workflow (Fig 1) that can be used to

construct CIs for the outputs—not only limited to control coefficients derived from MCA—of

populations of kinetic models.

Materials and methods

Kinetic model

A published kinetic model [12] of aerobically grown E. coli was used for the purpose of this

study. In the original publication, the authors presented four different operational configura-

tions referred to as flux directionality profiles (FDPs). The populations of 50,000 kinetic mod-

els for each FDP were considered herein for comparing the distributions of flux control

coefficients (FCC) with the presented statistical methods. For further information about the

populations of kinetic models used here, we refer the reader to the original publication [12].

Simultaneous CIs for variable significance

A CI is an interval that contains the population mean μ with a probability of 1 – α. This proba-

bility is also known as the coverage. The population mean can be thought of as the limit sample

mean as n tends to infinity. The CI is built from the sampled data and is thus random. The cov-

erage is to be understood as the proportion of times the CI would contain μ if the sampling

were repeated a large number of times.

The variable significance is judged by its population mean μ estimated by the sample aver-

age. This estimate is tainted by uncertainty due to data variation, and this uncertainty is quan-

tified by CIs. Because of the equivalence between a statistical test and CI, to be of real

importance, a variable sample average should be large in absolute with a CI bounded away

from zero to ensure that this large estimated value is due to pure chance. In the following, sev-

eral constructions of CI are presented.

Univariate and simultaneous CIs. CIs can be built using numerous techniques and for

any variables. The most well-known CIs for the mean are univariate and based on the t-distri-

bution. To account for the variability, univariate CIs at level of 1 – α, for α = 5%, are added

around each sample mean (see Fig 2). Checking that the CI contains 0 is equivalent to making

a statistical test that μ = 0 at level α. All technical details are included in the Supplementary

materials (S1 Methods).

Used as such, univariate CI are misleading, since a correction for the inspection of p vari-

ables is needed. This need, well-known for multiple testing [16], is the same for CIs. Indeed,

the simultaneous coverage of several CIs, which is the probability of containing all population

means, may be much lower than each univariate coverage. In the remainder of this section, we

present three ways to build a corrected CI, called a simultaneous CI.

Bonferroni’s simultaneous confidence interval (BCI). The Bonferroni’s correction,

probably the most used method, guarantees the simultaneous coverage 1 – αS by dividing the

univariate α levels by p, giving α = αS / p, where αS is defined as the simultaneous confidence

level of multiple CIs. For example, with two variables, each CI is built at α = .025 and the

simultaneous coverage is (1−α)2 = .9752 = .951. On a larger scale, such as with our 275 vari-

ables, the simultaneous coverage without correction would be .95275� .00 if the variables were

all independent. Hence, it is almost certain that at least one of the population means is not con-

tained in the corresponding CI. This correction is approximate and correct only if the variables
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are all independent (see S1 Methods). Otherwise, it is often too conservative, which means that

the CIs are too wide [17].

An important aspect is that, even when Bonferroni’s correction (or any other) is appropri-

ate, the univariate coverage will be 1 – α> 1 – αS. Thus, taken individually, each CI is conser-

vative. This is the cost of having simultaneous correction and is illustrated in Fig 2B. The

independence assumption of Bonferroni’s correction is not often satisfied, as shown in our

case in (S4 Table). Hence, we felt encouraged to consider alternative approaches that account

for the dependency of the variables being compared.

The exact normal (ENCI). The exact normal method [18] attempts to release Bonferro-

ni’s assumption of independence between the CIs. The method uses multivariate normal dis-

tributions Np(0, Γ) to correct for the dependencies of the p variables using an estimate of Γ, the

correlation matrix of the observations. If the variables exhibit dependence, the resulting simul-

taneous CIs are expected to be smaller than the ones derived with Bonferroni’s correction. The

price to pay is in terms of computational and mathematical complexity. For the technical

details, see Supplementary materials (S1 Methods).

Both the exact normal and the Bonferroni’s correction rely on the normal distributions

assumption for constructing CIs. However, extreme observations and asymmetry in the data

justify using methods that relax this assumption.

Bootstrapped simultaneous CI (BootCI). Originated from Beran’s work [19], the Boot-

CIs generalize the exact normal by relaxing the normality assumption. The approach is based

on the data re-sampling to estimate a root statistical distribution. Coupled with a pre-pivoting

technique, tail balancing, and under some technical assumptions, the method provides asym-

metric simultaneous CIs with

- the correct target simultaneous coverage

- equal marginal coverages

- outside tail balance, i.e. the same probability on both sides out of the CIs.

The assumption for the bootstrap method is less strict than that for the normality method

in the sense that it does not assume distribution symmetry, but it must be valid. Unfortunately,

it cannot be validated in practice and remains an a priori assumption. Nevertheless, the data

analyzed in this study was significantly skewed (S3 Fig), which suggested the appropriateness

of using bootstrapping.

To the best of our knowledge, BootCIs are the most generally available method that can be

used without any further assumption. They are always more correct than Bonferroni’s and

exact normal CIs in that if the assumptions of those methods are valid, the one of the boot-

strapped method is also valid. The price to pay for the bootstrapping method is yet another

level of technicality and computational complexity. For the technical details, see Supplemen-

tary materials (S1 Methods).

Confidence intervals for comparing cases

The comparison of two cases is made by building CIs based on the difference of their means.

When cases are compared along several variables, simultaneous CIs must be used and can be

built using the three methods highlighted in the previous section. In applications, simulta-

neous CIs are used for multiple comparisons (for example see Miller et al. [20] for a detailed

treatment). Because of the correction for simultaneity, the variables along which the cases dif-

fer can be tested: the differences are significant whenever zero does not belong to the interval
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(see Fig 2 for the application). The mathematical details are reported in the Supplementary

materials (S1 Methods).

Sample size calculation

The uses of confidence intervals and of power analysis are well known in computing required

sample sizes (for example see Goodman et al. [21] for a good overview in the context of clinical

research). The general concept is that the width of a CI is reduced when the sample size

increases. Since this width describes the uncertainty of the corresponding mean, the sample

size required to achieve a given width can be computed.

However, the sample size computation requires prior knowledge or prior data gathering.

Indeed, the length of the CI also depends on the standard deviation that must be guessed or

estimated beforehand. In our application, we thus made an a posteriori sample size calculation

based on the estimated standard deviation from the available sample. We also used BCI

because it is the only method that allows an explicit sample size formula (see Supplementary

materials [S1 Methods] for the technical details). Even if approximate, this calculation would

be quite demanding with the other methods, if not intractable for the bootstrapping approach.

Supporting information

S1 Methods. Algorithms and further details for deriving confidence intervals.

(DOCX)

S1 Table. Reaction and metabolite names for the model.

(XLSX)

S2 Table. Computed means and confidence intervals for Case 1.

(XLSX)

S3 Table. Computed means and confidence intervals for Case 1–4 comparisons.

(XLSX)

S4 Table. Correlation matrix for Case 1 variables.

(XLSX)

S1 Fig. Case study: Differences of means using the Bonferroni method. Comparison of the

differences in means of 15 FCCs for GLCptspp across four cases using the Bonferroni method

(see Materials and Methods). The whiskers indicate the CIs and the diamonds report the esti-

mates of the differences in means. The CIs are blue with a hollow diamond when they include

zero at the 95% confidence level and red with a plain diamond if they do not. The tests were

carried out globally on the 90 estimates, even though we report each case comparison as a sep-

arate plot.

(EPS)

S2 Fig. Case study: Differences of means using the exact normal method. Comparison of

the differences in means of 15 FCCs for GLCptspp across four cases using the exact normal

method (see Materials and Methods). The whiskers indicate the CIs and the diamonds report

the estimates of the differences in means. The CIs are blue with a hollow diamond when they

include zero at the 95% confidence level and red with a plain diamond if they do not. The tests

were carried out globally on the 90 estimates, even though we report each case comparison as a

separate plot.

(EPS)
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S3 Fig. Distributions of control coefficients highlighting non-normal nature of the data.

FCC distributions for the control of GLCptspp with respect to (A) ribulose 5-phosphate

3-epimerase (RPE), (B) PFK, and (C) triose-phosphate isomerase (TPI).

(EPS)
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