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Abstract

Neutrophils play significant roles in immune homeostasis and as neutralizers of micro-

bial infections. Recent evidence further suggests heterogeneity of neutrophil devel-

opmental and activation states that exert specialized effector functions during inflam-

matory disease conditions. Neutrophils can play multiple roles during viral infections,

secreting inflammatory mediators and cytokines that contribute significantly to host

defense and pathogenicity. However, their roles in viral immunity are not well under-

stood. In this review, we present an overview of neutrophil heterogeneity and its

impact on the course and severity of viral respiratory infectious diseases. We focus on

the evidence demonstrating the crucial roles neutrophils play in the immune response

toward respiratory infections, using influenza as amodel.We further extend theunder-

standing of neutrophil function with the studies pertaining to COVID-19 disease and

its neutrophil-associated pathologies. Finally, we discuss the relevance of these results

for future therapeutic options through targeting and regulating neutrophil-specific

responses.
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1 INTRODUCTION

Neutrophils are known as early responders against bacterial or fun-

gal infections, releasing their powerful antimicrobial arsenal to neu-

tralize and contain the infection. Neutrophils were first reported by

Elie Metchnikoff in 1883 as professional phagocytes.1 They are capa-

ble of engulfing foreign microbes and neutralizing them with various

secretory granules2 and potent reactive oxygen species (ROS).3 Neu-

trophils also have the unique ability to release neutrophil extracellular

traps (NETs) to limit the spread of infections.4 These NETswere shown

to help neutralize large fungal hypha together with the secretion of

cytotoxic granules.5,6 The effects of neutrophil-mediated immunity are
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further amplified as neutrophils work in large numbers, forming a con-

certed effort to eliminate foreign threats. Although beneficial, these

effects can often be detrimental to the host tissues and the immune

response,7,8 including further exacerbation of organ damage, resulting

in critical and life-threatening conditions.9 In viral diseases, however,

the roles neutrophils play are not well understood. Furthermore, the

recent evidence of a strong neutrophil presence in severe acute respi-

ratory syndrome coronavirus (SARS-CoV2)-infected patients has gar-

nered interest in the function theseneutrophils elicit in theprogression

of COVID-19 disease.10,11

Neutrophils are innate immune cells that are frequently overlooked

in discussions of viral immunity, in part because adaptive immune cells

such as T and B cells are recognized to play essential roles in ini-

tiating cytotoxic killing and antibody generation in response to viral

infection, both of which are major steps toward viral clearance. While

the role of neutrophils in viral infection is still unclear, growing evi-

dence suggests that neutrophils play a role in resolving viral infec-

tion. For instance, data from preclinical mouse models of influenza

A virus (IAV) infection show depletion of neutrophils by anti-Ly6G

or anti-Gr1 antibody treatment led to severe disease outcomes in

infected mice.12,13 Similar findings were also made in encephalitis14

and HSV-115 infection models, supporting the need for neutrophils to

achieve optimal viral immunity. Studies have also demonstrated that

mice with deficient inflammasome signaling through the NLPR3 path-

way have poor neutrophil recruitment due to decreased production of

neutrophil chemokines such as KC, TNF-α, and IL-1b, which results in

severe pathology and mortality following an IAV infection.16,17 Neu-

trophils in respiratory syncytial virus (RSV) infections, on the other

hand, has been proven in several studies to have no influence on viral

load or pathogenicity.18–20 Although some studies suggest that neu-

trophils play a beneficial or redundant role in the body, clinical obser-

vation indicated that a high neutrophil count is associated with the

severity of many diseases. For instance, hematologic analysis and clin-

ical studies of COVID-19 patients’ neutrophil counts showed strong

association with disease severity.21–23 It has been proposed that the

neutrophil-to-lymphocyte ratio (NLR), which has been used to strat-

ify cancer patients,24,25 may be utilized as a predictive and prognostic

marker for COVID-19 patients.10,11,26 These results suggest that the

presence of neutrophils in severe types of inflammation is linked to dis-

ease severity in COVID-19 patients. Here, we will review the current

evidence of neutrophil heterogeneity and consolidate information on

neutrophil function in viral respiratory infection. We expect to better

understand the role of neutrophils in the immune response to viral res-

piratory infections and their participation in the pathology of the most

severe cases.

2 DEVELOPMENT AND FUNCTIONAL
HETEROGENEITY OF NEUTROPHILS

The daily production of billions of neutrophils takes place within

the bone marrow, where committed progenitors reside in special-

ized niches providing growth signals and developmental cues. Due to

the short lifespan of neutrophils, this developmental process is crit-

ical in producing a steady supply to the circulation. Granulopoiesis

is therefore well studied, and is described by the characterization

of the various maturation stages through their granule content and

morphologic attributes.27 According to their granule content and

nuclear shape, neutrophils are produced in a step-wise order of

early myoblasts → promyelocytes →> myelocytes → metamyelo-

cytes→ band cells→ segmented neutrophils.28–31 Under homeostatic

conditions, only the mature segmented neutrophils exit the bone mar-

row, performing their various roles.32 However, during inflammatory

conditions, hematologists typically observe immature phenotypes of

neutrophils in the circulation. This is commonly known as a left shift

and is used as an indicator of inflammation.33

These immature phenotypes have been widely reported in various

inflammatory conditions, ranging from cancer, pregnancy, stress, car-

diovascular diseases, and notably viral infections.34–38 The way these

immature neutrophils are characterized differs between research

groups. There is no standardized approach for phenotyping neutrophil

subsets, making it difficult to corroborate functional data from multi-

ple laboratories. Some groups have proposedmarkers to identify these

subsets, such as CD10,39 CD177,40 Olfactomedin-4 (OLFM4),41 and

CD49d.42 Separating these subtypes can be difficult since they might

emerge from various distinct neutrophil precursor stages with differ-

ent degrees of maturity. A more profound knowledge of the ontogeny

of the neutrophils will be required to overcome this issue. In recent

years, several research groups have characterized neutrophil develop-

ment at each stepof differentiation andmaturation. Theadvancements

in single-cell technologies and sequencing techniques have led to the

identification and characterization of various neutrophil progenitors

andprecursors in bothmice andhumans.32,43–46 This includes the early

progenitors, such as the proNeus46 and eNePs,45 as well as late pre-

cursors preNeus,32 NePs,44 andNeuPs.47 In-depth single-cell analyses

further reveal finer transcriptomic distinct developmental stages43,48

(Figure 1). These studies demonstrate that immature neutrophils can

exist in the circulation during disease states, creating a heterogene-

ity of developmental states that can potentially elicit various unique

functions in response to the inflammatory stimulus. However, it is still

unclear if these immature forms go on to become functionally distinct

mature neutrophils.

Mature neutrophils undergo an ageing process when released into

the circulation, decreasing their expression of L selectin (CD62L) while

increasing chemokine receptor CXCR4 expression.49,50 Aged neu-

trophils are then cleared from the circulation by specialized efferocytic

macrophages present in the lung, liver, and spleen.27 This physiologic

process regulates granulopoiesis, providing feedback signaling to the

bone marrow through an IL-23 and IL-17-mediated manner.51 Clear-

ance of aged neutrophils also prevents unwanted necrosis or spillage

of their store of cytotoxic granules.52 Interfering with this clearance

process results in an accumulation of circulating aged neutrophils.

This build-up of exhausted phagocytes has been shown to play signif-

icant roles in disease. Aged neutrophils have a much higher phagocytic

activity as compared with the non-aged neutrophils.53 Additionally,

they respond faster toward inflammatory signals, migrating to sites of
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F IGURE 1 Characterization of neutrophil subsets in mice and humans. Neutrophil development is historically characterized by various
morphologic structures and granules using bonemarrow smears. Undifferentiatedmyeloblasts differentiate into promyelocytes, myelocytes,
nonproliferatingmeta-myelocytes, band cells, and finally mature as segmented neutrophils. These stages are accompanied by stage-specific
granules. The advent of high dimensional single-cell phenotyping technologies enabled both the transcriptome and protein expression
characterization of the developmental continuum, giving rise to the identification of discrete subsets proposed by various groups. These enable
the study of neutrophils in viral inflammatory conditions and discover subset-specific functions leading to disease pathology and resolution.
Created with BioRender.com

infection to neutralize threats. A transgenic mouse model affecting

the ageing process in neutrophils showed these distinctions in func-

tionality between aged and fresh neutrophils. In this model, the group

showed that mice with mostly aged neutrophils were able to survive

better against fungal infections as compared with mice with mostly

fresh neutrophils. However, aged neutrophils confer a worse disease

pathology in a vascular inflammation model, resulting in larger infarc-

tion sizes and poorer survival.54 Therefore, it is important to consider

the heterogeneity of neutrophil age states in addition to the develop-

mental state of the circulating neutrophils during inflammatory states

such as viral infections.

Neutrophils in the circulation also comprise a subset of myeloid-

derived suppressor cells that possess immune-modulating prop-

erties observed in various conditions such as cancer, pregnancy,

and sepsis.35,55,56 These neutrophils possess a general identity of

Ly6G+CD11b+ and can have a morphologic resemblance of both

immature and mature neutrophil phenotypes as described by various

groups.57 These suppressor cells are reported to inhibit T cell prolifer-

ation and activation, dampening the immune response. They may also

be akin to low-density neutrophils (LDN) found in the mononuclear

fraction after density gradient separation.58 LDNs are also reported

as a combination of immature and mature phenotypes observed first

in SLE58 and rheumatoid arthritis.59 These cells have perhaps degran-

ulated and accumulated in the bloodstream of these patients, as

reported by some groups.60,61 This indicates that neutrophils can exist

in various states, eliciting both beneficial and detrimental functions to

the immune response.

In the lung specifically, a major subset of neutrophils exists as a

marginated, intravascular pool, adhering to the endothelium of capil-

laries and postcapillary venules. These neutrophils have been shown to

be activated once in the lung, acquiring higher expression of adhesion

receptors such as CD11b but lower expression of CD62L.62 Notably,

the authors argued that this phenomenon occurs regardless of the

inflammatory condition. Recent evidence inmice further proposes that

neutrophils change at the transcriptome level when they infiltrate var-

ious tissues.63 In the study, the group showed a lung-specific signature

in the neutrophils, possessing proangiogenic genes involved in vascu-

lar growth and repair. Intravital imaging of lung neutrophils showed

that they interact closely with B cells, allowing for their clearance by

macrophages. A disruption of neutrophil clearance by B cell depletion
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was shown to cause pathologic consequences.64 This opens new ques-

tionsonhowtissueneutrophils, suchas those in the lungs, are activated

during viral respiratory diseases (VRDs) and how this might impact

their function against the infection.

3 NEUTROPHILS AND VRDs

Respiratory viruses are one of the greatest contributors to endemics

and pandemics in the history of humankind, with a significant morbid-

ity and mortality rate.65,66 The most common ones are influenza virus,

RSV, parainfluenza virus, metapneumovirus, rhinovirus (RV), coron-

avirus, and adenovirus. They can affect the upper respiratory tract,

which presents mild to moderate symptoms such as fever, cough, sore

throat, and/or running nose.67,68 This infection can progress to the

lower respiratory tract, which causes damage to the lungs and results

in severe symptoms such as pneumonia.65,68–78 In pediatric hospital-

izations for lower respiratory tract illnesses (LRTIs), 40% are caused by

seasonal parainfluenza virus epidemics.72 RV, typically associatedwith

upper respiratory tract illnesses (URTIs) such as the common cold, has

been reported to result in severe LRTIs and is the second leading cause

of pneumonia and bronchiolitis in infants and young children.74 In IAV

infections, clinical studies have reported pneumonia as the most fre-

quent severe clinical manifestation, affecting an estimated one-third

of the IAV-infected and hospitalized patients.79–81 Severe pneumonia

can progressively develop into acute respiratory distress syndrome

(ARDS), the most severe form of acute respiratory failure.82 A life-

threatening respiratory condition with a pooled mortality rate of 43%

across various evaluated studies, ARDS is characterized by pulmonary

edema with large infiltration of neutrophils into the interstitial and

bronchioalveolar space.83

Infiltration of neutrophils is a common trait inVRDs, reported in IAV,

RSV, metapneumovirus, RV, adenovirus, and coronaviruses.79,84–88 In

RSV infection, an increased number of neutrophils in the lung is a hall-

mark for disease severity in both humans and mice.89,90 Severe RSV-

infected infants have neutrophils as the predominant cell type in the

bronchoalveolar lavage (BAL).89 An increase in lung neutrophils, mark-

ers, and genes of neutrophil function and activation has been shown

in severe IAV and SARS-CoV-2 infections.91–97 Additionally, neutrophil

infiltration is also observed in URTIs. RV and adenovirus are typical

causes of URTIs, such as the common cold. In the early course of cold

from symptomatic RV-infected patients, neutrophils have been shown

to infiltrate the nasalmucosa and secretion.98 During the common cold

of adenovirus-infected children, a high level of neutrophils, HNP-1, -3,

and -4 was observed in their upper respiratory tracts.99 This increased

level of neutrophils observedacross respiratory viral infections empha-

sizes the importance of studying the role of neutrophils in VRDs.

4 TAKING EVIDENCE FROM IAV INFECTIONS

Before delving into the biologic significance of neutrophil subsets for

viral immunity, we first integrate the current evidence of neutrophils

in viral respiratory infections to ascertain their functions, both ben-

eficial and detrimental to the host. Among the numerous research

involving neutrophils and viral infections, IAV infection investigations

have made significant contributions to our understanding of the sev-

eral functions neutrophils can play during a VRD. IAV is the cause of

the yearly seasonal flu and the global human flu pandemics.100 Since

1900, 5 influenza pandemics has hit the world, with the most recent

2009 IAV H1N1 causing over half a million deaths globally.101 More-

over, a global estimate of 5million severely diseased and 650 thousand

respiratory deaths has been associated with seasonal influenza each

year.102 Due to its seasonal emergence and multiple subtypes, IAV is

a persistent global public health concern that results in a spectrum of

pathologic severity.100 Due to the diversity of individual patients and

the difficulties of conducting mechanistic research on human individ-

uals, IAV infection studies are widely carried out on mice, which pro-

vides clueson thepathologyand responses that neutrophils participate

in.103 It is important to consider murine models of viral infections as

well as human studies as they, together, form a cohesive understand-

ing of the mechanisms and underlying pathologies. When possible, we

also incorporate relevant studies of other respiratory viruses to com-

plement our comprehension of neutrophil function.

5 ANTIVIRAL NEUTROPHIL FUNCTIONS IN
VRDs

Neutrophils are phagocytes, and their ability to engulf viral parti-

cles suggests a possible antiviral function. Indeed, Mullarkey et al.104

demonstrated that neutrophils perform antibody-dependent cellular

phagocytosis (ADCP) on IAV through Hemagglutinin stalk protein-

specific IgG antibodies. The opsonized viral particles are phagocytosed

by neutrophils resulting in the generation of ROS and perhaps the

elimination of virus. In a study using a flank model of Modified Vac-

cinia Ankara (MVA) infection, it was demonstrated that neutrophils

harboring viruses were shown to be APCs. Duffy et al.105 discovered

the infected neutrophils that homed to the bone marrow activated

residing CD8+ memory T cells specific to MVA. This effect was later

seen to be abrogated by a disruption in neutrophil migration through

CCR1 signaling. Additionally, Hufford et al.106 reported de novo syn-

thesis of viral RNA and protein of IAV in neutrophils, suggesting how

they can be infected and serve as antigen-presenter cells to CD8+

T cells for antiviral immunity function. Additionally, Hufford’s group

showed an increase in IFNγ production in activated CD8+ T cells, but

not CD4+ T cells, and the depletion of neutrophils through anti-Ly6G

antibodies showed a significant decrease of these activated CD8+ T

cells in the lungs.106 Notably, while being infected and act as trans-

porters/presenters, neutrophils were incapable of supporting active

IAV growth.107 In an elegant study by Lim et al.,108 neutrophils were

shown to secrete the chemokineCXCL12,which induced themigration

of influenza-specific CD8+ T cells to the infected lung. This function

of T cell recruitment was lost with either neutrophil-specific knock-

out of CXCL12 or blocking its receptor, CXCR4, through the inhibitor

AMD3100.
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Degranulation of antimicrobial peptides and mediators has been

shown to greatly damage lung epithelial cells and tight junction

integrity.109,110 These powerful proteinases and granules serve to

eliminate microbial threats and contain infections. Though it seems

unnecessary in viral infections, these mediators are key players in viral

clearance. In VRDs like RSV, matrix metalloproteinase 9 (MMP-9) is

important for viral clearance.111 Dabo et al.111 demonstrated that

MMP-9 decreases RSV infectivity and modulates neutrophil recruit-

ment and cytokine generation in the lung using an MMP-9 knock-out

model of RSV infection. Another study reported similar findings, show-

ing that secretion of MMP-9 through TLR signaling was required for

neutrophil migration to the lung on IAV-infected mice.112 It is still

unclear how MMP-9 reduces infectivity of RSV, possibly disrupting

viral attachment or indirectly triggering signaling cascades of recep-

tors MMP-9 is known to bind to.113,114 Apart from MMP-9, it was

demonstrated that the neutrophil-derived cathelicidin LL-37has direct

antiviral effects, interactingwith the virus and decreasing its virulence,

suppressing both IAV and RSV infections. Separately, antimicrobial

peptides called human neutrophil peptides can neutralize IAV through

a process of viral aggregation. This process was shown to promote

uptake of IAV by neutrophils, preventing further infections.115,116

Along with antimicrobial peptides, neutrophils produce considerable

amounts of ROS via oxidative burst, which can be used to remove

phagocytosed material or cause tissue damage. Oxidative burst has

been detected in mice during IAV and RSV infection.117–119 Excessive

amounts of ROS, when inflammation is prolonged, can often lead to

severe disease pathology in IAV infection.117,120 Additionally, medi-

ators like myeloperoxidase (MPO) and neutrophil elastase (NE) can

either proteolyse or catalyze ROS production.121 MPO was shown to

be important for viral clearance but also a contributor of lung tissue

damage.122 Similarly, NE has been found in the respiratory tract and

serum of severe RSV-infected infants, potentially contributing to dis-

ease pathology.123,124 Interestingly, individuals with chronic granulo-

matous disease exhibit ROS-deficient neutrophils but no increased vul-

nerability to VRDs, indicating that ROS may be primarily engaged in

disease pathogenesis as the disease progresses.125

ROS is also linked to another important neutrophil function: NET

formation. NETosis has garnered much contention as an antiviral role

in VRDs. Persistent NET formation in IAV-infected models was associ-

ated with lung damage and increased pathogenesis, as NETs are highly

toxic.126,127 ARD-related histopathologic manifestations such as dif-

fuse alveolar damage (DAD) caused by alveolar injury were entan-

gled with NETs. NET formation and endothelial damage were detected

when alveolar epithelial cells (AECs) were infected, suggesting the

potential link of NET formation to alveolar damage in IAV-infected

patients. Additionally, high extracellular histones levels were found in

the lungs of IAV-infected mice and were shown to exacerbate lung

pathology.128 RSV-infected epithelial cells were shown to be recog-

nized by neutrophils, triggeringNETosis,129–133 which can captureRSV

particles in vitro.133 Additionally, histones have been shown to neu-

tralize H3N2 and H1N1 IAV.134 These findings highlight NETosis as

potential antiviral capabilities against VRDs. On the other hand, close

examinations of patients’ sputum, lung biopsies, or mouse models with

severe VRDs frequently reveal elevated NETs and neutrophil levels,

suggesting neutrophils as major drivers of disease pathology and mor-

tality in severe disease.128,135,136 Most of the airway obstructions dur-

ing severeRSV infectionswere found to haveNETs plugs.133 As a result

of this, airway obstruction and poor prognosis may be linked to an

increased neutrophil response by NETs. However, these observations

are likely a consequence of uncontrolled disease progression, led by

dysregulation of cellular signaling and unresolved inflammation.137,138

After executing their functions, neutrophils can perform an addi-

tional function in the lung by secreting epidermal growth factor (EGF),

which has been demonstrated to be required for monocyte develop-

ment into competent APCs. A recent study showed that the absence

of EGF significantly reduced CD8+ T cell cytokine expression and acti-

vation, and showed a marked decrease in dendritic cell maturation

markers like MHCII and CD86.139 Collectively, the data suggest that

neutrophilsmay carry out their antiviral activities through indirect pro-

cesses.

6 RECRUITMENT OF NEUTROPHILS TO THE
INFECTED RESPIRATORY TRACT

The innate immune players in the lung include the residential lung

leukocytes and the epithelial cells lining the alveolar surface and

the conducting airways.140 The immune cells in healthy lung tissues

are ∼95% alveolar macrophages, 1–4% lymphocytes, and ∼1% neu-

trophils. Pattern recognition receptors (PRRs) such as TLRs are found

on alveolar walls and epithelial cells lining the respiratory tract to

sense pathogen-associatedmolecular patterns anddamage-associated

molecular patterns.141–144 These epithelial cells in the airway are

the first to be infected,145 secreting proinflammatory cytokines and

chemokines to activate and recruit leukocytes into the infected respi-

ratory tract.146,147 These mediators include MIP-1α, TNF-α, IL-1, IL-6,
CXCL1, CXCL2, CXCL10, and IL-17.148–151 Enhanced levels of proin-

flammatory cytokines and Type I IFNs are also contributed by infected

alveolar macrophages.152–156 Depending on the inflammatory stimuli,

massive infiltration can occur, leading to lung tissue damage and loss of

lung function147,157,158 (Figure 2).

Following IAV infection and activation of tissue-resident

macrophages and epithelial cells, neutrophils are the first wave of

immune cells recruited to the site of infection, which is approxi-

mately 2 days after the IAV infection.13,159–161 During IAV, RSV, and

SARS-CoV infection, MyD88/TRIF signaling is crucial for recruitment

of neutrophil to the lung.162–164,165,84 Following IAV infection, an

increase in both local and systemic levels of neutrophils was commonly

observed in clinical patients, mice, and ferrets. This neutrophilia

correlates with the increased IL-6, CCL2, CXCL8, and CXCL10 lev-

els and disease severity of IAV infections.153,166–168 The release of

proinflammatory cytokines (e.g., TNF-α , IL-1, and IL-6), chemokines

(CCL2, CCL7, CXCR8), complement component C5a, and leukotriene

B4 attracts neutrophils to the infected respiratory airway.83,169–172

Similarly, these molecules were highly associated with increased

disease severity.
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F IGURE 2 Neutrophil recruitment and action in the infected airway tract. Evidence now shows the presence of developing neutrophil
precursors in the circulation during viral infections. These subsets may provide immunosuppressive or effector functions that are not fully
understood. In the infected lungs, through recruitment by cytokines (such as IL-1b, LTB4, C5a, and TNF-α), TLRs, and pattern recognition receptors
(PRRs), neutrophils perform various functions that help control the infection. Left unchecked, these actions lead toward increased disease severity
and tissue damage. Created with BioRender.com

Aftermigration to the infected airway, neutrophils are found to con-

fer a protective function to the host in both the early and late stages

of the infection.67 Cell depletion studies in mice revealed that recu-

peration from severe cases of IAV depended heavily on neutrophils

presence and contribution.13 Interestingly, mild IAV infection did not

exhibit a similar dependency on neutrophils. Moreover, studies in

mice using IAV strains with varying levels of virulence suggest that

neutrophil response is dependent on the pathogenicity of the viral

infection.173

In the lungs, the release of proinflammatory cytokine IL-6 is essen-

tial to stimulate neutrophil survival and promote viral clearance, as

it can reinstate antiapoptotic factors levels (Mcl-1 and Bcl-XL) sup-

pressed by IAV.168 Low levels of IL-6, coupledwith lowneutrophil num-

bers, strongly correlated with increased disease severity. However,

retention of neutrophils might not be necessarily beneficial. Retain-

ment of lung neutrophils has been associatedwith IAVdisease severity,

and observed especially in highly pathogenic IAV strains.112,155,173,174

CXCL8 (a neutrophil chemoattractant) increase in lung airspaces was

correlated to elevated neutrophil numbers from recovered patients

with ARDS.175,176 Notably, this increase was correlated to higher dis-

ease severity and symptoms.

As mentioned, neutrophils are needed in the early stage of IAV

infection for viral clearance. They are effectors in viral clearance, but

the accumulation of neutrophils are signs of dysregulated inflamma-

tory signaling and life-threatening tissue damage. In IAV, mild lung

pathology can be observed in neutrophil-depleted mice, while ARDS-

like pathology and excessive neutrophil infiltration were found in

macrophage-depleted mice.110 Hence, neutrophil responses need to

be well balanced during IAV to have an adequate but not excessive

inflammation response. Itmight also bemore beneficial for neutrophils

to have early apoptosis later into the IAV infection to prevent excessive

neutrophil accumulation in the lung.

7 SEX, AGE, AND THE ACCUMULATION OF
NEUTROPHILS IN INFECTED LUNGS

IAV infection severity has been associated with multiple demographic

factors such as age and sex.177 For both seasonal and pandemic

strains of IAV, children below the age of 10 and adults above age

65 have an increased risk of disease severity. Their immunocompro-

mised nature leaves them more vulnerable to infections. Interestingly,
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young adults (15–49 years of age) have severe outcomes during IAV

pandemics as compared with seasonal outbreaks, and this increased

risk is seen more in females than in males. This observation was

attributed to the male reproductive hormone, testosterone, that has

been shown to confer protection in male mice.178 Interestingly, treat-

ment of female mice with high doses of exogenous estradiol showed

higher survival rates.179 In estradiol-treated female mice, increased

neutrophil recruitment was observed, and the depletion of neutrophils

reverses the protective effects of the treatment.180 This suggests that

the protective effect of estradiol is influenced by its amount produced,

which might account for the higher risk in females. Future studies are

required to study the role of sex differences and the response toward

IAV and other VRDs.

While other respiratory viruses such as the RSV, parainfluenza

virus, metapneumovirus, RV, and adenovirus affect mainly children,68

the influenza virus and coronavirus have more disease complications

in elderly of 65 years old and above.65,181,182 Young children can

excrete the viruses earlier and over a longer period of time than

adults.65 A recent study conducted by Kulkarni et al.174 between

lung neutrophil infiltration and age demonstrated an increased level

of neutrophils in aged compared with young mice. This observation

might have been contributed by the elevated secretion of neutrophil-

recruiting chemokines, CXCL1 and CXCL2, by AECs in infected, aged

mice. The receptor of these neutrophil chemoattractants, CXCR2, is

highly expressed on circulating neutrophils for chemotaxis to the site

of inflammation.183 CXCR2 has been shown to play a major role in

neutrophil migration to the lungs during influenza infection, but the

neutrophils recruited were reported as dispensable for influenza viral

clearance.86,184–186 This suggests that the increase in disease severity

and mortality rate concerning age is related to the increased secretion

of CXCL1 and CXCL2, which attract excessive numbers of neutrophils

to the lungs and confer a pathogenic effect.174 This corresponds to

ageing studies in humans, where individuals aged above 60 have defi-

ciencies in circulating neutrophils and reductions in neutrophil effector

functions such as phagocytosis of bacteria, production of NETs, ROS,

andmigration.187

However, a study conducted by Lu et al.188 demonstrated increased

resistance to IAV infection in aged as comparedwith youngmice.While

younger mice showed a faster viral clearance, they also had a higher

mortality rate and tissue damage. Due to their weakened immune sys-

tem, aged mice cleared viruses more slowly without causing tissue

damage. Studies by Kulkarni et al.174 and Lu et al.188 employed the

same viral strain (H1N1; PR8) and mouse strain (female C57BL/6),

however their findings were inconsistent. Notably, in the second study

by Lu et al.,188 the age range of themice is significantly older. Thus, this

age difference inmicemay account for the observed disparity in exper-

imental results. Hence, this suggests that stronger immune responses

might not result in better survival rates, and therapies targeted at

reducing excessive neutrophil levels may have to take into considera-

tion the age group and sex of the patient.

With age, neutrophil functions such as phagocytosis and ROS pro-

duction decline.189,190 Numerous retrospective studies have demon-

strated, severe COVID-19 disease is frequently observed in elderly

patients.22,191–194 Transcriptomic and cytokine analyses of aged

COVID-19 patients revealed higher degranulation signatures and IFN-

γ signaling. This was also similarly seen using a non-human primate

model of SARS-CoV2 infection, including a higher level of VEGF in the

lungs of old macaques.195 Interestingly, the airway epithelial cells of

children with SARS-CoV2 possessed augmented antiviral sensing and

immune cell activation.196 This, along with the higher viral sensing

and IFN production in myeloid cells, prevents children from acquiring

severe disease pathology.

8 CORONAVIRUS (SARS, MERS, SARS-COV2):
HIGH NEUTROPHIL COUNTS OBSERVED IN
CORONAVIRUS-INFECTED PATIENTS

Coronaviruses are enveloped, positive-sense single-stranded RNA

viruseswith spike-like structures on their viral surfaceswhenobserved

under the electron microscope.197,198 Similar to IAV, they can cause

mild to severe respiratory infections in humans that progress toward

fatal outcomes.197 Since 2000, the emergence of highly pathogenic

coronavirus as pandemics has been an unsolved global public health

concern. SARS-CoV in 2002 and Middle East respiratory syndrome

coronavirus (MERS-CoV) in 2012 have caused a high mortality rate of

9.6% and 35.5%, respectively.199

Only a few investigations have been conducted to determine the

involvement of neutrophils in SARS-CoVandMERS-CoV infection. Ani-

mal models that are ideal for studying these coronaviruses are cur-

rently being investigated.200–203 In the acute phase of SARS-CoV infec-

tion, a high neutrophil count and a low number of CD4+ and CD8+ T

cells were observed in patients’ blood, whichwas correlatedwith unfa-

vorable consequences.204–206 Theexcessive neutrophilsmayhave con-

tributed to lesion formation in SARS-CoV-infected patients via secre-

tion of granules and ROS that give rise to necrosis in neighboring cells

and recruitment of other inflammatory cells. For MERS-CoV infection,

high levels of IL-8 (CXCL8), IL-1α, and IL-1βwereexpressed in the lower
respiratory tract of patients.207 These cytokines positively correlated

with case fatality rates that were reported. Notably, the high expres-

sion level of IL-8 and IL-1β in MER-CoV patients can be drawn parallel

to the studies conductedwith IAV.175,176 This suggests a similar inflam-

matory response observed in both VRDs, allowing us to understand

deeper the mechanisms that underlie coronavirus infections through

IAV infection studies.

Since December 2019, the world was hit by SARS-CoV-2. It is a

novel, highly contagious and pathogenic coronavirus that has resulted

inmore than amillion deathsworldwide. Transmitted between humans

via respiratory droplets and close contact, SARS-CoV-2 causesCOVID-

19, which primarily presents as respiratory symptoms.208–210 To

this date, SARS-CoV-2 has overtaken both SARS-CoV and MERS in

the total number of infected individuals and death toll.210–212 Viral

pneumonia caused by SARS-CoV-2 can be grouped into 2 pheno-

types: a milder pneumonia phenotype and an ARDS-like phenotype.

COVID-19 patients can recover from mild pneumonia or progres-

sively develop to themore ARDS-like severe symptoms.213 During this
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progression, conditions such as atelectasis (blockage of the airway)

and lung derecruitment (collapse of the lungs) are developed. Pro-

gression into ARDS occurs 20−30% of the time. Primary histologic

manifestation of severe COVID-19 includes bilateral DAD, pulmonary

edema, and hyaline membranes.214 DAD is also associated with high

mortality in patients. Postmortem histopathologic analysis of COVID-

19 patients reveals endothelialitis, which is the inflammation of the

endothelium and alveolar wall injury with the presence of neutrophils

and lymphocytes.215,216 This suggests that neutrophils and lympho-

cytes contribute to the lung tissue damage and pathogenesis of

COVID-19.

Hence, the association between the NLR and COVID-19 disease

severity has been studied and identified as an early indicator for severe

COVID-19 disease.10,11,217–221 A retrospective cohort study inWuhan

consisting of 210 COVID-19 patients (87 of them are severe cases)

showed a higher NLR of 6-fold difference in severe cases compared

with mild cases, with an increased level of neutrophils and a signifi-

cant reduction in T cell level.218 Neutrophil markers including resistin,

lipocalin-2, hepatocyte growth factor, IL-8,G-CSF, anddual endothelin-

1 and VEGF signal peptide-activated Receptor (DEspR) have also

been identified as predictors of severe COVID-19 disease.97,222 In

critical cases, high NLR and neutrophilia have been associated with

excessive ROS, which may contribute to COVID-19 disease sever-

ity through induction of disease manifestation such as tissue dam-

age, atherosclerosis, thrombosis, and endothelialitis.223 Additionally,

excessive ROS may cause an imbalance of iron homeostasis and con-

tribute to inefficient oxygen transport.224 Furthermore, the elevation

of circulating NETs was observed.225 Studies in patients revealed a

pathogenic role of NETs in disease progression,93,226–239 contribut-

ing to immunothrombosis. In vitro experiments found SARS-CoV-2

capable of activating healthy neutrophils and inducing the release

of NETs, which promotes lung epithelial apoptosis.226 These suggest

that both excessive ROS and NET formation from dysregulated lev-

els of neutrophils in the lung contribute to disease pathology. Hence,

NETosis is a potential therapeutic target against severe COVID-19

disease progression.240 R406, an ATP-competitive SYK inhibitor and

active metabolite of fostamatinib, inhibited NETosis of healthy donor

neutrophils in COVID-19 patient plasma, demonstrating its poten-

tial to inhibit NETosis in COVID-19 patients.241 Interestingly, these

neutrophil-related pathologies closely resemble IAV infections, rein-

forcing how neutrophil functions can be closely studied using IAV as a

model.

To better study COVID-19, animal models are actively being

developed.242,243 While angiotensin-converting enzyme 2 (ACE2) is

the functional receptor in humans for SARS-CoV-2, ACE2 in mice

does not bind to the virus effectively.244 Strategies to overcome this

problem are being explored. Currently, no mouse model replicates

all aspects of COVID-19 displayed in humans.245 However, continued

refinement may result in models even for these aspects of the human

disease. Recent studies using a transgenic mouse model with human

ACE2 demonstrated that the neutrophil mediator S100A8/9 is highly

expressed in SARS-CoV2 infection and inhibition through the drug

paquinimod reduced pathogenesis.246 These models will pave the way

for new insights into themechanisms that neutrophils partake induring

SARS-CoV2 and other VRDs to elucidate possible treatment regimens

that can target neutrophil subsets at various stages of the disease.

9 NEUTROPHIL HETEROGENEITY IN VRDS

The current literature on neutrophils in VRDs, covered in this review,

provides the foundation for understanding the role of neutrophil

subsets in VRDs. There are many layers of heterogeneity to con-

sider, resulting from environmental, developmental, and activation

states.27,59,247,248 The first layer of heterogeneity is the neutrophil’s

infection status. IAV-infected neutrophils were shown to produce less

ROS, cathelicidin LL-37, and lipocalin.249–251 This implicates their func-

tional capacity for viral clearance and may explain higher viral loads

that are observed with high infiltrating neutrophil numbers. As dis-

cussed, these infected neutrophils can also act as antigen-presenters

for CD8+ T cell immunity.106

The second layer of heterogeneity is the neutrophil’s develop-

mental status. During inflammation, the appearance of immature

band cells has been observed, marked as a “left shift” of precursor

neutrophils.33,39 Retrospective studies of infants with various VRDs

noted high frequencies of immature neutrophils, and this observa-

tion was not influenced by bacterial coinfections.252 Cortjens et al.253

further identified 3 blood neutrophil subsets during viral infections

in infants, namely immature CD16loCD62Lhi neutrophils, mature

CD16hiCD62Lhi neutrophils, and a suppressive CD16hiCD62Llo sub-

set. The group previously identified the suppressive CD16hiCD62Llo

subset in LPS-treated individuals.254 It is unclear if this LPS-induced

CD16hiCD62Llo subset is analogous to the VRD-induced subset iden-

tified. Recent evidence with single-cell sequencing technologies has

shown that neutrophils in SARS-CoV2-infected patients are frequently

developmentally immature, with lower expression levels of S100a8,

S100a9, CD10, and CD101.255 These neutrophils were also reported

to consist of proneutrophils, preneutrophils, and immature neutrophils

that associate highlywith severeCOVID-19disease.256 Immature neu-

trophils, in particular, showeda strong correlationwithdisease severity

and is suggested to perform better than theNLR.257 Martinelli et al.258

used microarray profiling and compared immature bone marrow neu-

trophils with mature blood neutrophils, showing that immature neu-

trophils lacked type-1 IFN signaling receptors and associated genes.

They further showed the lack of STAT-1 phosphorylation during IFNα
or IFNγ stimulation in immature neutrophils.258 These results sug-

gest a differential ability to respond toward VRDs, leading to a lower

propensity for NET formation and cytokine release. Single-cell anal-

ysis of SARS-CoV2-infected patient leukocytes confirms this, show-

ing proNeus and preNeus in the blood have much lower expression

of IFN signaling genes.256 Moreover, both proNeus and preNeus have

low or no expression of CD16 required for ADCP asmentioned earlier.

This further differentiates the antiviral potential between mature and

immature neutrophil subsets.

The role of immature neutrophils during VRDs is still unclear. It is

proposed that their appearance and accumulation is a consequence
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of the high inflammation present in the patients that stimulates the

premature mobilization of immature neutrophils from the bone mar-

row to the circulation and sites of inflammation. These banded nuclei

cells are perhaps less efficient in providing viral clearance and form-

ing NETs and may trigger the recruitment of more immature granulo-

cytes to compensate for the loss of efficiency in viral clearance. Stud-

ies on immature neutrophils during inflammatory conditions suggest a

high ROS function and migration capacity, but low NETs and phagocy-

tosis function.259,260 This was also shown with in vitro human studies,

demonstrating an increased immature neutrophil migration through

CXCL8 signaling, but a higher propensity for NET formation correlat-

ing with severe COVID-19 disease.261

The third layer of heterogeneity is the neutrophil’s activation sta-

tus. Reports of LDNs in VRDs have suggested a degranulated form

of neutrophils capable of immunosuppression.262,263 This subset of

neutrophils consisted of a mixture of immature and mature pheno-

types, unlike what is commonly thought.262–264 Morrissey et al.262

identified a specific CD16int LDN subset that was shown to possess

enhancedcytokineproductionuponstimulation.RNAsequencinganal-

ysis further suggests increased phagocytosis and degranulation func-

tionwhen comparedwithCD16hi subset.262 However, recent evidence

of LDNs questions this difference with normal density neutrophils

(NDNs). Hardisty et al.265 were able to generate LDNs from activat-

ing NDNs with TNF-α, fMLP, or LPS. These LDNs were shown to have

no significant difference in ROS production or surface marker expres-

sion.Moreover, nodifferential effect onT cell proliferationor IFNγpro-
duction was observed.265 One key difference was the lowered ability

for NET formation, possibly linked to the decrease of granules such

as NE and MPO required for NETosis. Similarly, LDNs of patients with

severe fever with thrombocytopenia syndrome (SFTS) was shown to

be derived from NDNs after culture with SFTS media. However, Li’s

group266 showed that LDNs could secrete higher amounts of IL-8, IL-6

and IL-17, suggesting a contributorof higher cytotoxicity toendothelial

cells. In their study, Li showed that LDNs had higher viral loads, signify-

ing possible differences in antigen-presentation potential.

10 FUTURE OPPORTUNITIES AND CHALLENGES

Neutrophils can play various roles during VRDs. However, some of

these activities that aid in viral clearance can become harmful to the

host when dysregulated. Complicated by a spectrum of heterogeneity

in neutrophil subtypes and states, identifying pathologic neutrophils

remains a significant hurdle in devising biomarkers and novel treat-

ment strategies. Current evidence of neutrophils in VRDs lack a con-

sensus of identifying neutrophil subsets. Lung neutrophils are, at phys-

iologic conditions, different from blood neutrophils phenotypically.63

Surface markers such as CD62L and CD11b, which are used to iden-

tify suppressive and activated neutrophils, were shown to be lower in

expression in lung neutrophils.253,63,267 Moreover, many surfacemark-

ers, used in differentiate neutrophil subsets might alter drastically

depending on severity and disease progression. It is obvious that emer-

gency granulopoiesis occurs duringVRDs,mobilizing immature precur-

sors into the periphery.268 Therefore, an inflammation-stable matura-

tionmarker, such asCD10 (human) andCD101 (mouse), could be incor-

porated into future studies to dissect development-specific changes in

neutrophil activity during VRDs.32,39 Future work also should focus on

lung neutrophils fromBAL samples as the role of the local environment

is increasingly appreciated. We anticipate that these future findings

will lead to novel interventions and therapies capable of modulating

neutrophil activity to improve clinical outcomes.
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