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Abstract: Some studies have reported that a core vestibular projection (CVP) injury is associated with
dizziness following a brain injury using diffusion tensor tractography (DTT). On the other hand, there
has been no DTT study on dizziness caused by a CVP injury in patients with mild traumatic brain
injury (TBI). In this study, DTT was used to examine the relationship between dizziness and CVP
injury in patients with mild TBI. Forty-three patients with mild TBI and twenty-nine normal subjects
were recruited. The patients were classified into two groups based on the dizziness score: group A,
patients with a dizziness score less than 2 on the sub-item score for dizziness in the Rivermead
Post-concussion Symptoms Questionnaire; group B, patients with a dizziness score above 2. The tract
volume (TV) in group B was significantly lower than group A and the control group (p < 0.05). By
contrast, the TV in group A was similar to the control group (p > 0.05). Regarding the correlation,
the dizziness score of all patients showed a strong negative correlation with the TV of the CVP
(r = −0.711, p < 0.05). DTT revealed the CVP injury in patients with dizziness after mild TBI. In
addition, the severity of dizziness of these patients was closely related to the injury severity of
the CVP.

Keywords: dizziness; core vestibular projection; vestibular nuclei; parieto-insular vestibular cortex;
mild traumatic brain injury; diffusion tensor tractography

1. Introduction

Dizziness is an umbrella term that includes a range of symptoms, such as vertigo,
disorientation, and light-headedness [1,2]. The condition occurs because of an impairment
of spatial orientation and motion perception [3]. Regarding the pathophysiological mech-
anism of dizziness, two main causes are known [4,5]: (1) injury to the vestibular system
(benign paroxysmal positional vertigo (BPPV) and labyrinthine concussion), and (2) injury
to the non-vestibular system (central system injury and psychological factors). Although
the most common cause of dizziness is BPPV, a central vestibular system injury after a
brain injury is also a common cause [6]. The central vestibular system has a unique role in
sensorimotor control and perception. It consists of the vestibular nuclei (VN), cerebellum,
thalamus, and vertebral cortex, particularly the parieto-insular vestibular cortex (PIVC),
which is a core region of the vestibular cortex [7,8]. Among these brain regions, the PIVC is
involved in processing motion perception and spatial orientation, in particular the correla-
tion with head motion in space, twisting the neck, and the motion of a visual target [7,9–11].
The pathway between the PIVC and VN is called the core vestibular projection (CVP).
Hence, injury to the CVP is associated with dizziness [12,13].

A traumatic brain injury (TBI) causes focal and diffuse brain injury and is classified
into three types (mild, moderate, and severe) according to the severity; mild TBI has been
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reported in up to 85% of cases of TBI [14–16]. The majority of cases of mild TBI presented
at least one clinical symptom, such as headache, dizziness, anxiety, depression, and fa-
tigue [17–20]. Among these clinical symptoms, dizziness is the most common clinical
symptom and has been reported in up to 80% of cases following a mild TBI [1,21,22]. There-
fore, it is important to determine the precise pathophysiological mechanism of dizziness
for management in patients with mild TBI. On the other hand, little is known about this
topic in patients with mild TBI.

Precise estimations of CVP have been limited because it has not clearly discriminated
from the adjacent neural structures on conventional brain MRI. By contrast, diffusion
tensor tractography (DTT), which is derived from diffusion tensor imaging (DTI), can
detect invisible or micro-injuries to the brain by measuring the diffusion of water molecules
in the white matter and estimating the CVP by a three-dimensional reconstruction [23–25].
Meanwhile, edema, which is a hallmark of TBI, should be controlled before applying
DTI. The glymphatic system is a waste clearance as a brain-wide network of perivascular
pathways. Acuapoin-4, a plasma membrane channel, affects the glymphatic function
and a key role in the formation and clearance of cerebral edema [26–28]. Recent studies
demonstrated that targeting acuapoin-4 using trifluoperazine was a viable treatment for
edema [29,30]. Some studies have reported that a CVP injury is associated with dizziness
after ischemic and hemorrhagic stroke using DTT [31–33]. However, there are no reports of
DTT studies on dizziness caused by an injury to the CVP in patients with mild TBI. In the
current study, DTT was used to examine the relationship between dizziness and a CVP
injury in patients with mild TBI.

2. Methods
2.1. Subjects

Forty-three patients (male: 15, female: 28, mean age: 39.3 ± 9.0 years, range:
21–49 years) with mild TBI and twenty-nine age- and sex-matched healthy control subjects
(male: 11, female: 18, mean age: 38.5 ± 7.3 years, range: 23–49 years) with no prior history
of neurological, physical, or psychiatric illness were recruited for this study (Table 1). The
following inclusion criteria were used to recruit the patients: (1) loss of consciousness (LOC)
for <30 min, posttraumatic amnesia (PTA) for ≤24 h, and initial Glasgow Coma Scale (GCS)
score of 13–15 [15];_ENREF_22 (2) no specific lesion observed on brain MRI (T1-weighted,
T2-weighted, and fluid-attenuated inversion recovery images); (3) more than one month
elapsed since the onset of TBI; (4) age range: 20–50 years; (5) presence of dizziness that
excluded the other causes except for the brain as confirmed by an otolaryngologist. All
healthy subjects understood the purpose of the study and provided written, informed
consent before starting this study. The patients’ consent could not be obtained because this
study was conducted retrospectively. The study protocol without the patients’ consent was
approved by the Institutional Review Board of a local university hospital.

Table 1. Demographic and clinical data of the patient and control groups.

Group A Group B Control Group

Sex (male:female) 7:8 8:20 11:18
Mean age, years 38.7 (10.6) 39.5 (8.5) 38.5 (7.3)
LOC, minutes 0.8 (1.7) 3.8 (7.7) -
PTA, minutes 4.6 (10.8) 10.2 (16.9) -

GCS score 15.0 (0.0) 15.0 (0.0) -
Mean duration to DTI, months 5.2 (4.9) 7.1 (9.3) -

Dizziness score 0.8 (0.4) 3.0 (0.7) -
Values represent mean (± standard deviation), LOC: loss of consciousness, PTA: posttraumatic amnesia, GCS:
Glasgow Coma Scale, DTI: diffusion tensor imaging.
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2.2. Clinical Evaluation

Dizziness in the sub-item score for the dizziness of Rivermead Post-concussion
Symptoms Questionnaire (RPQ) was used during DTI scanning. The sub-item scores
of dizziness of the RPQ were as follows: full score = 4; 0 points = not experienced at all;
1 point = not a problem; 2 points = mild problem; 3 points = moderate problem;
4 points = severe problem [34]. The patients were classified according to two groups
based on the dizziness score of the RPQ: group A, patients with a dizziness score of the
RPQ less than 2 (<2); group B patients with a dizziness score of the RPQ above 2 (≥2).
Table 1 lists the demographic and clinical data for the three groups.

2.3. Diffusion Tensor Tractography

DTI data were acquired an average of 6.4 ± 7.9 months after the onset of head trauma
using a six-channel head coil on a 1.5 T Philips Gyroscan Intera with 32 non-collinear diffu-
sion sensitizing gradients (Philips, Ltd., Best, The Netherlands). The imaging parameters
were as follows: acquisition matrix = 96 × 96; reconstructed to matrix = 192 × 192; field of
view = 240 × 240 mm2; repetition time = 10,398 ms; echo time = 72 ms; parallel imaging
reduction factor (SENSE factor) = 2; echo-planar imaging factor = 59; b = 1000 s/mm2;
a slice thickness of 2.5 mm. The head motion effects and image distortions due to the
eddy current were corrected by applying affine multi-scale two-dimensional registration
using the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Li-
brary (FSL; www.fmrib.ox.ac.uk/fsl, accessed on 3 May 2021) [35]. One analyzer (Kwon
HG) performed fiber tracking using probabilistic tractography, which was applied in the
default tractography option (5000 streamline samples, 0.5 mm step lengths, curvature
thresholds = 0.2) of the Oxford Centre for FMRIB Software Library [35,36]. The CVP was
reconstructed from a seed region of interest at the VN corresponding to Schwalbe’s and
Deiters’ nuclei at the pons level [31]. The target region of interest was positioned at the
PIVC [31]. The core vestibular projection passes from the vestibular nuclei at the level of
the pons to the PIVC via the posterolateral thalamus [9]. The values of fractional anisotropy
(FA), mean diffusivity (MD), and tract volume (TV) were determined for each subject.

2.4. Statistical Analysis

Statistical analyses were performed using SPSS software (v. 25.0; SPSS, Chicago, IL,
USA). One-way analysis of variance (ANOVA) was performed to determine differences
in FA, MD, and TV values between the three groups. When a significant difference was
detected among the three groups, a Bonferroni post hoc test was performed to determine the
differences in FA, MD, and TV values among the three groups. Using Pearson correlation,
the dizziness score in the Rivermead Post-concussion Symptoms Questionnaire was used
to determine the correlation with the FA, MD, and TV values. The correlation coefficient
(r) indicates the relative strength (0.1–0.3: weak, 0.3–0.5: moderate, >0.5: strong) and
direction (+, −) of a linear relationship between two values [37]. A p-value < 0.05 was
considered significant.

3. Results

Table 2 lists the DTT parameters for the CVP and the correlations between the dizziness
score and DTT parameters of the CVP (Table 2). Group B showed a significantly lower TV
than group A and the control group (p < 0.05) (Figure 1). By contrast, group A showed a
similar TV to the control group (p > 0.05). The FA and MD values were similar in the three
groups (p > 0.05).

The dizziness score of all patients showed a strong negative correlation with the TV of
the CVP (r = −0.711) (p < 0.05). On the other hand, the correlation between the dizziness
score and the FA and MD values of the CVP was weak (p > 0.05).

www.fmrib.ox.ac.uk/fsl
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Table 2. Diffusion tensor tractography parameter values of the core vestibular projection of the
patient and control groups.

Group A Group B Control Group

Fractional anisotropy 0.44 0.43 0.43
(0.03) (0.07) (0.03)

Mean diffusivity 0.83 0.83 0.82
(0.05) (0.06) (0.05)

Tract volume
595.53 345.59 † 554.21

(151.51) (240.22) (198.15)

Correlation between the dizziness score and diffusion tensor tractography parameters

Fractional anisotropy Mean diffusivity Tract volume

Core vestibular
projection 0.037 0.091 −0.711 *

Values represent the mean (±standard deviation). †: Significant differences between group A and group B
and between group B and control group, and no significant difference between group A and control group.
* Significant negative correlation between the dizziness score and diffusion tensor tractography parameters,
p < 0.05.
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4. Discussion

This study investigated the relationship between dizziness and the CVP state in
patients with mild TBI. The results are summarized as follows. (1) the TV of the CVP in
group B was lower than that of group A and the control group. However, no significant
difference in any DTT parameters was observed and group B was the only group that
showed dizziness. We thought that group B was more injured by the CVP caused by
traumatic axonal injury than both group A and the control group. (2) The dizziness
score showed a strong negative correlation with only the TV of the CVP. A quantitative
assessment of the state of a neural tract is possible by the DTT parameters, and FA, MD,
and TV are used widely [38,39]. The FA value indicates the degree of directionality of water
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diffusion. Consequently, it reflects the fiber density, axonal diameter, and myelination of
the white matter, whereas the MD value considers the magnitude of water diffusion [38].
In contrast, the TV value represents the volume of the neural tract by counting the number
of voxels [39]. Hence, the decrease in the TV value of the patients (group B) who presented
with dizziness after mild TBI indicated an injury to the CVP. Because the patients in
the present study did not show any specific lesions on conventional MRI, a traumatic
axonal injury, which is defined as an injury of axons due to indirect shearing forces during
acceleration, deceleration, and rotation of the brain, or direct head trauma appeared to be a
plausible pathogenic mechanism for a CVP injury [40–42]. The other result showing that
the dizziness score was strongly negatively correlated with the TV of the CVP suggests
that the severity of dizziness was closely related to the injury severity of the CVP.

Many studies reported dizziness after a mild TBI [1,21,22,43–45]. By contrast, little
is known about the pathophysiological mechanisms related to the central system ori-
gin [46,47]. In 2006, Endo et al. reported that the dizziness of patients with a whiplash
injury was caused by asymmetry of the vertebrobasilar artery, which often affects the
brainstem and causes cerebellar ischemia [46]. Hong et al. (2010) reported that injuries to
the vestibular nuclei and nerve caused dizziness in a stroke patient [47]. Regarding the
studies based on DTT for the CVP, some studies have reported CVP injury in stroke [31–33].
Yeo et al. (2017) attributed the vertigo of 19 patients with middle cerebral artery infarction
to an injury to the CVP [31]. They reported that the decrement of the TV of the CVP was
caused by lesions due to the middle cerebral artery infarction. In 2018, Yeo et al. showed
that the CVP injury was associated with dizziness after a lateral medullary infarction
including the VN [32]. In 2020, Kwon et al. stated that a discontinuation of the CVP at the
basal ganglia level was related to dizziness in a patient with intracerebral hemorrhage [33].
The CVP originated from the VN, ascended at the level of the internal capsule via the pos-
terolateral thalamus, and terminated on the PIVC. Because both the VN and the PIVC are
associated with dizziness, the above studies suggested that the CVP injury was associated
with dizziness and coincided with the present results. Meanwhile, Yeo et al. (2020) reported
that the TV of the CVP was associated with age [48]. Thus, we recruited the patients who
were younger than 50 years old in this study. This is the first study to demonstrate an
injury of the CVP in patients with mild TBI to the best of the authors’ knowledge.

This study is expected to benefit patients exhibiting dizziness after mild TBI because
a brain lesion in mild TBI is difficult to detect using conventional MRI. Nevertheless,
several limitations should be considered. First, detailed information on dizziness could
not be acquired. Second, DTT could lead to both false-positive and negative results
throughout the white matter of the brain because of complex fiber configurations, such as
crossing or kissing fiber and partial volume effects [49]. Therefore, further histopathological
studies to confirm traumatic axonal injury in an animal model or autopsy would be
necessary [40–42]. In addition, regarding the molecular insight, one would need to use
a humanized system allowing real-time monitoring of brain penetration and dynamic
volume change during TBI [50].

In conclusion, DTT was used to examine a CVP injury in patients with dizziness after
mild TBI. In addition, the severity of dizziness of these patients was closely related to
the injury severity of the CVP. Therefore, injured CVP could be involved the dizziness
following the mild TBI. These results suggest that DTI could be useful for detecting a CVP
injury that may not be detected on conventional brain MRI in patients with mild TBI. In
addition, measurement of the CVP could be applied to the evaluation of the dizziness
following the brain injury.
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