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Abstract

Mesenchymal stem cells (MSCs) are of particular
interest for the treatment of immune-related diseases
because of their immunosuppressive capacities.
However, few clinical trials of MSCs have yielded
satisfactory results. A number of clinical trials using
MSCs are currently in progress worldwide. Unfortunately,
protocols and methods, including optimized culture
conditions for the harvest of MSCs, have not been
standardized. In this regard, complications in the ex vivo
expansion of MSCs and MSC heterogeneity have been
implicated in the failure of clinical trials. In this review,
potential strategies to obtain MSCs with improved
immunosuppressive properties and the potential roles
of specific immunomodulatory genes, which are
differentially upregulated in certain culture conditions,
will be discussed.

Introduction

Human mesenchymal stem cells (MSCs) can be isolated
from a wide variety of tissues [1] and are promising can-
didates for cell-based transplantation and regenerative
medicine therapies. Some of the unique features of
MSCs that make them attractive targets for therapeutic
applications are their tendency to preferentially home to
damaged tissues, their unique immunosuppressive prop-
erties [2], their capacity for self-renewal, and their multi-
lineage differentiation potential [3]. To date, more than
500 clinical trials involving the infusion or transplant-
ation of MSCs have been registered at ClinicalTrials.gov,
and about 20 % of them depend on the immunosuppres-
sive properties of MSCs. Although the immunosuppres-
sive properties of MSCs have been confirmed and most
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phase I clinical trials have not shown any biosafety issues,
only modest outcomes have been obtained in further trial
phases [4-6].

MSCs exhibit heterogeneity not only among donors
but also according to the tissue from which they are
isolated, such as adipose tissue and bone marrow (BM)
[7-9]. Moreover, MSCs isolated from the same tissue
of the same donor still tend to exhibit phenotypic and
functional variability because of a lack of standardization
in preparative protocols and culture methods [8, 10-12].
Therefore, it may be possible to enhance or suppress a
certain function of MSCs by controlling their culture
conditions. In this review, potential strategies to obtain
MSCs with improved immunosuppressive properties and
the potential roles of specific immunomodulatory genes,
which are differentially upregulated in certain culture
conditions, will be discussed.

Mesenchymal stem cells

MSCs were first characterized by Friedenstein and col-
leagues, who identified an adherent, fibroblast-like cell
population in adult BM [13, 14]. The International Society
for Cellular Therapy (ISCT) provided three minimal cri-
teria to define human MSCs with regard to their culture
characteristics, biomarkers, and developmental potential
[15]. First, MSCs must be plastic-adherent when main-
tained in standard culture conditions. Second, MSCs must
express CD105 (SH2), CD73 (SH3/4), and CD90 and must
not express CD45, CD34, CD14 CD11b, CD79«, CD19, or
HLA-DR. Third, MSCs must differentiate into osteoblasts,
adipocytes, and chondroblasts in vitro. These minimal cri-
teria proposed by the ISCT to define human MSCs have
been accepted and widely used by many investigators to
characterize cells [15]. However, MSCs from different
sources and donors and cultured under different condi-
tions do not always behave in the same way in cell therap-
ies, even though they meet the ISCT criteria [8, 16—20].
One possible reason for this discrepancy is that MSCs
have many features (such as multipotency; variability of
proliferation and migration potential; secretion of various
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cytokines, chemokines, and growth factors; and immuno-
modulatory functions) which are critical to exert their
therapeutic effects; however, the ISCT criteria do not re-
flect these functional aspects of MSCs [8]. In fact, MSCs
have the capacity to differentiate into multiple tissues, in-
cluding bone, cartilage [21, 22], tendon [23], muscle [24],
fat [25], and BM stromal connective tissue, the latter of
which supports hematopoietic cell differentiation [26, 27].
In addition, MSCs have immunosuppressive properties
and reduce inflammation, suppressing lymphocyte allor-
eactivity in vitro in mixed lymphocyte reaction assays
[28, 29]. Intravenous administration of MSCs improves
the outcome of neural [30] and lung [31] injury in experi-
mental animal models primarily through paracrine effects
and a shift from the production of pro-inflammatory to
anti-inflammatory cytokines at the site of injury. MSCs ex-
posed to interferon (IFN)-y are activated and suppress
graft-versus-host disease (GVHD) in vivo [2]. Thus, the
immunosuppressive properties of MSCs may be able to
repair tissue damage caused by the immune system in
autoimmune-induced inflammatory bowel diseases such
as Crohn’s disease [32] and ulcerative colitis [33], treat
GVHD of the gut, liver, and skin after allogeneic
hematopoietic stem cell (HSC) transplantation [34—36],
and prevent the rejection of organ transplants [37, 38].
However, the detailed mechanisms underlying the
therapeutic effects of MSCs, a heterogeneous popula-
tion of ex vivo expanded cells [39-41], have not been
fully elucidated.

Heterogeneity of mesenchymal stem cells

MSCs vary tremendously in terms of phenotypic and
functional characteristics such as their proliferation
capacity, expression of several cell surface markers, and
secretion of cytokines [7-10]. Interestingly, although
MSCs have been continuously adapted in many labora-
tories, their heterogeneity is considered to be due mainly
to the use of non-standardized culture protocols, includ-
ing the starting material, culture media, levels of sera/cy-
tokines/oxygen, number of passages, and cell density [7,
42, 43]. In this regard, Ho and colleagues [43] classified
MSC heterogeneity as follows: (1) cellular heterogeneity
of the initial population, (2) varied expansion capacity of
specific subsets of cells and of the final population, and
(3) long-term biological function of MSCs. In particular,
ex vivo expansion of MSCs is used to develop and
maintain MSCs for cell therapy, and the methods used
to expand and characterize MSCs are critical for their
preparation. Moreover, MSCs express a wide variety of
cytokines, chemokines, and growth factors that are im-
portant for cell migration, homing, and immunomodu-
lation, following reconstitution of damaged tissues
[44—48]. Based on their functional effects, differences
in the secretion of these molecules by MSCs may be

Page 2 of 10

critical for the outcomes of cell therapies. In this re-
gard, it is important to identify the best subpopulation
of cells, to determine how the cells are expanded and
characterized ex vivo, and to determine when the cells
should be used clinically.

Numerous attempts have been made to develop more
specific procedures for the isolation and preparation of
appropriate subsets of MSCs from a heterogeneous cell
population [7, 11, 43]. The protocol most commonly
used in preclinical and clinical studies to isolate MSCs
from various tissues is centrifugation over a density gra-
dient followed by ex vivo expansion, which removes
hematopoietic cell contamination. With this method, cell
recovery from each tissue is variable among operators,
and technical expertise is required to consistently obtain
MSCs with a high efficiency. In addition, numerous pu-
tative human MSC surface markers (i.e, CD49a [49],
CD73 [3], CD105 [50], CD106 [51], CD271 [52], MSC
antigen-1 [53], Stro-1 [54], and stage-specific embryonic
antigen-4 [55]) have been identified thus far. These
markers are used alone or in combination to enrich
homogeneous MSCs and to avoid cellular contamin-
ation. Unfortunately, many of these markers are widely
expressed in stromal cells and lack specificity, contribut-
ing to the significant heterogeneity among MSCs derived
in a single isolation [56].

MSC culture variables include medium formulation,
culture surface substrate, cell seeding density, physio-
chemical environment, and subculture protocols. In par-
ticular, the development of well-formulated culture media
for the isolation and expansion of MSCs is imperative;
however, this is as an extremely difficult process because
of the high complexity of media formulations. In this
regard, the disclosed medium formulations for MSCs
(e.g., those reported in [57-60]) are best positioned to
be further developed by the many investigators inter-
ested in the therapeutic applications of MSCs. Unlike
some cell types, MSCs can survive in hypoxic environ-
ments for several days by upregulating survival pathways
[61, 62] and increasing cellular metabolism [63]. Cell
numbers are also increased when cells proliferate under
low oxygen tension [64, 65]. Differentiation into different
mesenchymal lineages can be enhanced by culture under
some hypoxic conditions [66, 67]; however, the effects
seem to depend on various variables such as the exact
oxygen tension, time in culture, and use of hypoxic pre-
culture. Moreover, hypoxic conditions enhance the para-
crine role of MSCs by altering cytokine and growth factor
release [68-70] and play an import role in mobilizing
MSCs and recruiting them to sites of injury [69, 71, 72].
Thus, hypoxic preconditioning of MSCs prior to implant-
ation and associated hypoxic conditioned medium can im-
prove cell survival in vivo, which has significant effects on
the long-term effectiveness of MSC therapy. However,
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protocols to prepare and characterize MSCs have not been
standardized. If the heterogeneity of MSCs cannot be min-
imized, it might take a long time to produce satisfactory
clinical results.

In recent years, preparing cell therapy products using
MSCs often required complex procedures, such as mul-
tiple cell-selection steps, ex vivo expansion, cell activation
(e.g., priming or licensing), encapsulation, and genetic
modifications [73, 74]. These complex procedures reflect
the increasing sophistication of cell therapies and their
production methods but have also occurred in response to
the potential risks and increasingly rigorous regulatory re-
quirements for these novel cell therapies. In fact, among
the methods described above, ex vivo expansion and cell
activation may have only minimal regulatory issues in
terms of their clinical application because ex vivo expan-
sion is a general method used in cell culture and cell acti-
vation is a simple method in which cells are merely
primed with cytokines such as IFN-y, which are commer-
cially available and approved by the US Food and Drug
Administration for the treatment of several diseases [72,
75, 76]. However, there are many concerns regarding the
use of engineered or modified cell therapy products for
clinical applications, and appropriate solutions need to be
developed in the near future.

Modulating cell confluency to overcome
mesenchymal stem cell heterogeneity

As previously mentioned, despite the well-known advan-
tageous biological properties of MSCs, they have not
been successfully adapted in clinical trials, because of
the lack of standardized protocols, and this has resulted
in their notorious heterogeneity. Many studies have ex-
amined the expansion capability and phenotypic proper-
ties of MSCs; however, the underlying mechanisms and
the types of genes involved have been neglected. Among
the various growth conditions, cell confluency is sug-
gested to be a primary factor that can affect the charac-
teristics of highly heterogeneous MSCs [77, 78]. MSCs
have a better proliferation capacity when they are grown
at a low confluency because this provides the space for
cells to proliferate and means that nutrients and oxygen
are shared by fewer cells [7, 42, 43]. A low initial plating
density is considered to be beneficial for ex vivo MSC
expansion [7-10]; however, most studies have investi-
gated the effect of the initial plating density on the cap-
ability of MSCs to differentiate or expand in vitro, not
on their biological functions in vivo [7, 11, 43]. By con-
trast, we reported that genes linked to immunity,
defense, cell communication, signal transduction, and
cell motility are more highly upregulated in MSCs har-
vested at a high confluency than in MSCs harvested at a
low confluency [79, 80]. These reports also indicate that
the immunosuppressive properties of MSCs are enhanced
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via complex pathways involving these upregulated genes.
Thus, ex vivo expansion of MSCs and harvesting of MSCs
at an adequate density could be a promising strategy to
prepare MSCs for use in regenerative medicine.

Cell proliferation-related genes are upregulated mainly in
mesenchymal stem cells at a low density

Changes in the expression levels of cell proliferation-
related genes during in vitro MSC culture are important
for the capability of these cells to further proliferate and
differentiate [78, 81, 82]. Previous studies suggest that a
low initial plating density results in faster MSC expan-
sion, leading to higher MSC vyields [7, 11, 43]. Growth at
higher densities is constrained by density-dependent
growth inhibition; therefore, cells plated at a lower dens-
ity have a higher doubling number per passage. Our
gene expression profile data showed that 29 genes regu-
lating proliferation, differentiation, and cell cycling activ-
ities were upregulated in MSCs harvested at a low
confluency (50 %) but that only four of these genes were
upregulated in MSCs harvested at a high confluency
(>90 %) [79]. At a lower plating density, MSCs were dis-
persed evenly over the plate and rapidly filled the avail-
able space over time. As cells became confluent, their
proliferation slowed because of cell-to-cell contact and
this was reflected in the reduced expression of
proliferation-related genes. Therefore, the improved pro-
liferation rate of MSCs at a low confluency is due not
only to the higher availability of space and conditions
that increase the number of cells but also to the interac-
tions of genes. However, the influence of gene expres-
sion levels on the proliferation potential of MSCs must
be investigated further.

Genes related to the functional characteristics of
mesenchymal stem cells, including immunomodulation,
are more highly expressed in high-density cultures

Our microarray analysis showed that a number of genes
(276 of 24,526 genes) that control biological functions,
including immunosuppression—such as prostaglandin
D, synthase (PTGDS), prostaglandin E synthase (PTGES),
chemokine (C-X-C motif) receptor type 7 (CXCR?), vas-
cular cell adhesion molecule 1 (VCAM]I), and natural-
killer group 2 member D (NKG2D) ligand 1 (ULBPI)—
were highly upregulated in MSCs at a high confluency
(Table 1 and Fig. 1) [79, 80]. These genes reportedly dir-
ectly or indirectly (or both) affect the immunomodula-
tory activities of MSCs. Specifically, PTGDS and PTGES
synthesize prostaglandin (PG) E,, which can stimulate
or inhibit the activities of antigen-presenting cells
(APCs), inhibit the proliferation of immature B cells and
T cells, and regulate intracellular calcium release and
p59(fyn) protein tyrosine kinase activity [83-85]. Al-
though it remains controversial whether other types of
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Table 1 Gene Ontology analysis based on immunomodulatory function-associated genes upregulated in high-density MSC

cultures (>90 %)

Gene Ontology Category_Biological Process Total number of genes Number of upregulated genes Enrichment P value
GO:0005576_extracellular region 21,529 91 17.89 <0.001
G0:0022610_biological adhesion 6813 37 831 <0.001
G0:0002253_activation of immune response 1360 6 3.87 0016
GO:0016477_cell migration 5281 14 3.53 <0.001
GO:0042981_regulation of apoptosis 7116 26 2.1 <0.001
GO:0006955_immune response 6130 23 1.81 0.0012
G0:0050920_regulation of chemotaxis 598 3 1.79 0.084
GO:0048771 _tissue remodeling 632 5 1.67 0.001
GO:0001558_regulation of cell growth 1805 8 132 0.033
GO:0042611_MHC protein complex 759 4 1.05 0.063

Microarray analysis was performed to compare the gene expression profiles of MSCs that were seeded at a density of 200 and 5000 cells/cm?, which were around
50 % and 90 % confluent on day 7, respectively. Upregulated genes in MSC cultures seeded at a density of 5000 cells/cm? were sorted on the basis of gene
expression profiles (fold change > 2 and P value < 0.05) and classified according to their related biological processes based on Gene Ontology terms by using

DAVID Bioinformatics Resources 6.7

MSC mesenchymal stem cell, DAVID Database for Annotation, Visualization and Integrated Discovery

PG function as pro- or anti-immunomodulatory mole-
cules, PTGES is remarkable in terms of its immunosup-
pressive activities [84, 85]. The ability of MSCs to
migrate, which is determined mainly by a panel of signals
including chemokines, is closely related to the functions
of MSCs in immune regulation and tissue repair [86].
CXCR7, which mainly activates mitogen-activated protein
kinases and induces signaling following ligand binding,
can regulate the immune system and inflammation via G
protein-coupled receptors [87, 88]. Recently, many studies
demonstrated that CXCR7, not chemokine (C-X-C motif)
receptor 4 (CXCR4), mediates stromal cell-derived factor
1 (also known as CXCL12)-induced migration of various
cells, including MSCs, and BM engraftment of cultured
HSCs [89-92]. In addition, several studies have reported

that MSCs can selectively migrate to specific injury sites
after systemic infusion. This migration is mediated by very
late antigen 4 (VLA4) and VCAM]1, which allow MSCs to
adhere to vascular endothelial cells and subsequently cross
endothelial barriers [93, 94]. A certain type of APC assists
the interaction of VCAMI1 with VLA4 such that MSCs
can migrate to inflammation sites and regulate T cell-
mediated inflammation and pathology in non-lymphoid
tissues [95-97]. On the other hand, ULBP1 is a ligand
for NKG2D receptor, and the interaction of ULBP1 and
NKG2D is reportedly essential for the delivery of acti-
vating signals to natural killer (NK) cells or the regula-
tion of T-cell receptor-mediated activation of T cells or
both [98-101]. We clearly showed the inhibitory roles
of ULBP1 in the regulation of T-cell proliferation

Plate MSCs Final confluency
at a high density Pretreatment  Harvest 1 >90%
(5,000 cells/cm?) with IFN-y MSCs

Day 0

7
| PTGDS, PTGES, VCAM1, CXCRT7 and ULBP14 1‘

y y

6 MSCs collected
withimproved

immunosuppressive

HLA-DRA, CD274(B7H1), IDO, VCAM1
ICAM2, CCL8, CXCL9 and CXCL10

Fig. 1 Strategies to obtain human MSCs with improved immunosuppressive properties. CCL8 chemokine (C-C motif) ligand 8, CD274(B7H1) B7
homolog 1 (also known as programmed death-ligand 1), CXCL9 chemokine (C-X-C motif) ligand 9, CXCL10 chemokine (C-X-C motif) ligand 10,
CXCR7 chemokine (C-X-C motif) receptor type 7, HLA-DRA major histocompatibility complex, class II, DR alpha chain, ICAM2 intercellular adhesion
molecule 2, IDO indoleamine 2,3-dioxygenase, IFN-y interferon-gamma, MSC mesenchymal stem cell, PTGDS prostaglandin D, synthase, PTGES
prostaglandin E synthase, ULBPT natural-killer group 2 member D ligand 1, VCAM1 vascular cell adhesion protein 1

properties
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in vitro [80]. Furthermore, various cytokines (e.g., inter-
leukin (IL)-15 and -17) are involved in signaling path-
ways in which ULBP1 takes part [102, 103], although
definite mechanisms and signals regulating their activa-
tion still need to be elucidated. These highly expressed
genes may be involved in the immunosuppressive prop-
erties of MSCs, and further studies of their precise roles
in MSC functions are required.

Immunologically relevant effects of
interferon-gamma

Increasing numbers of pre-clinical studies and clinical
trials of MSCs to treat immune-related disease have
shown encouraging results; however, the mechanisms
underlying the immunosuppressive effects of MSCs need
to be further investigated in order to effectively adapt
these cells for therapeutic applications. The ability of
MSCs to modulate the activity of surrounding cells is
not constitutive but rather activated by signals from a
pro-inflammatory environment [104]. This process, termed
priming or licensing, is extremely complex, and little is
known about all of the factors and signaling pathways
involved [105]. Several reports have shown the roles of
IL-1, IFN-y, and tumor necrosis factor-alpha (TNF-a) in
this process [76, 104, 106]. In particular, IFN-y, the type
II IFN, is a remarkable cytokine not only in innate and
adaptive immunity to viral and bacterial infections but
also in tumor control [107-111]. IFN-y was initially be-
lieved to be secreted only by CD4 Thl lymphocytes,
CD8 cytotoxic T lymphocytes, and NK cells; however,
other types of cells, including B cells, NK T cells, and
IL-12-stimulated APCs, can also produce IFN-y
[107-109]. The main signaling pathway of IFN-y
involves JAK/STAT, although it also mediates the
phosphatidylinositol-3 kinase/Akt pathway, phosphoryl-
ation of phospholipase C-y2, and the extracellular
signal-regulated kinase cascade, demonstrating its com-
plex and widespread biological functions [109, 110].
The cellular effects of IFN-y are notable because it can
upregulate class I major histocompatibility complex
(MHC), which is responsible for the host response to
intracellular pathogens and the induction of cell-
mediated immunity, and class II MHC, which promotes
peptide-specific activation of CD4 T cells [108]. The im-
munosuppressive properties of MSCs are activated by
other immune-related factors through IFN-y, by itself or
in combination with one of three pro-inflammatory cy-
tokines, namely, TNF-«, IL-1a, and IL-1f. This has been
demonstrated in a number of studies using GVHD
in vivo models; the recipients of IFN-y~/~ T cells do not
respond to MSCs, and MSCs obtained from IFN-
receptor-1-deficient mice do not possess immunosup-
pressive functions [2, 112]. In addition, after treatment
with TNF-a and IFN-y, MSCs are less effective at
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increasing pro-inflammatory cytokine production by ac-
tivated peripheral blood derived-mononuclear cells and
more efficient at inhibiting T-cell proliferation in an
in vitro model [113]. TNF-a alone is sufficient to upreg-
ulate CXCR4 in MSCs in a time- and dose-dependent
manner [114]. Lower expression of CXCR4 in MSCs
leads to the failure of these cells to migrate into sites of
inflammation and consequently reduces their immuno-
suppressive function [115]. Moreover, IL-1p released
from monocytes enhances the secretion of transforming
growth factor-beta by MSCs, which is involved in the in-
hibition of T-cell proliferation [104, 116]. In the presence
of IFN-y, either TNF-a or IL-1a induces the expression of
intercellular adhesion molecule 1 (ICAM1) and VCAMI,
which are also essential for MSC-mediated immunosup-
pression [117].

Upregulation of immunomodulation-related
genes following preconditioning of mesenchymal
stem cells with interferon-gamma

We previously reported that activated T cells express
higher levels of IFN-y than quiescent T cells and that
IEN-y levels are significantly reduced when activated T
cells are co-cultured with MSCs [118]. This is indicative
of an IFN-y autocrine—paracrine loop. Therefore, prim-
ing of MSCs with IFN-y, in addition to harvesting highly
confluent cells, was expected to produce promising out-
comes with regard to enhancing the immunomodulatory
properties of MSCs. Indeed, 512 of 24,566 genes were
upregulated in IFN-y-preconditioned MSCs (Table 2).
Specifically, immunomodulation-related genes, such as
MHC, class II, DR alpha chain (HLA-DRA) , CD274 (B7
homolog 1 (B7H1)), indoleamine 2,3-dioxygenase (IDO),
VCAMI, ICAM2, chemokine (C-C motif) ligand 8
(CCL8), chemokine (C-X-C motif) ligand 9 (CXCLY),
and chemokine (C-X-C motif) ligand 10 (CXCL10), were
dramatically upregulated by preconditioning MSCs with
IEN-y (Fig. 1). The three identified chemokines (C-C or
C-X-C motif)—namely, CCL8, CXCL9, and CXCL10—play
important roles in the recruitment of leukocytes leading
to various immune responses, whereas the other genes
tend to be more directly involved in the immunomodula-
tory properties of MSCs [119-121]. Specifically, /DO, a
well-known IFN-y-induced gene, was highly upregulated
in IFN-y-preconditioned MSCs, and IDO suppresses
antigen-driven proliferation of T cells [122-124]. IFN-y
stimulated the expression of IDO in MSCs derived from
sources other than BM, including human umbilical cord
blood, adipose tissue, and Wharton’s jelly (a gelatinous
substance derived from the umbilical cord) [118]. The im-
munosuppressive activities of IDO are mediated via the
degradation of tryptophan, an amino acid that is essential
for T-cell proliferation [123-125]. Thus, IDO and a pau-
city of tryptophan have received particular attention in
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Table 2 Gene Ontology analysis based on immunomodulatory function-associated genes upregulated in IFN-y-treated MSC cultures

Gene Ontology Category_Biological Process Total number of genes Number of upregulated genes Enrichment P value
GO:0006952_defense response 9245 75 16.99 <0.001
GO:0006954_inflammatory response 2365 40 16.99 <0.001
GO:0009611_response to wounding 4854 49 16.99 <0.001
GO:0019882_antigen processing and presentation "M 26 8.85 <0.001
GO:0006955_immune response 6130 39 8.85 <0.001
GO:0005125_cytokine activity 1242 22 585 <0.001
GO:0050863_regulation of T-cell activation 1122 17 3.74 <0.001
G0:0042981_regulation of apoptotic process 7118 44 3.58 <0.001
G0:0002819_regulation of adaptive immune response 536 10 2.73 <0.001
GO:0045088_regulation of innate immune response 852 9 233 <0.001

Microarray analysis was performed to evaluate the effect of IFN-y pre-treatment on MSCs. Upregulated genes in MSC cultures pre-treated with IFN-y were sorted
on the basis of gene expression profiles (fold change > 2 and P value < 0.05) and classified according to their related biological processes based on Gene Ontology

terms by using DAVID Bioinformatics Resources 6.7

IFN-y interferon-gamma, MSC mesenchymal stem cell, DAVID Database for Annotation, Visualization and Integrated Discovery

many immune-related disorders. For example, patients
with acute myeloid leukemia or adult T-cell leukemia/
lymphoma were reported to exhibit a higher ratio of
kynurenine (a tryptophan metabolite) to tryptophan than
healthy subjects [126]. Therefore, the enhanced immuno-
suppressive activities of MSCs seem to be highly associ-
ated with IFN-y priming and this is likely due in part to
IDO induction. In addition, CD274 and HLA-DRA play a
role during T-cell activation. HLA-DR encourages B7 sub-
family members of immunoregulatory ligands to bind to
T-cell receptors, and the B7H1 ligand (also known as
CD274) inhibits T-cell responses [122, 127, 128]. In terms
of in vivo adaptation, a few studies have revealed that BM
transplantation of MSCs can control lethal GVHD, al-
though this was not completely successful [129-131]. Fur-
thermore, our unpublished study showed that mice
injected with IFN-y-pretreated MSCs had a higher rate of
survival compared with those injected with untreated
MSCs. Unfortunately MSCs are difficult to adapt as a
first-line treatment for established GVHD because of
the high cost and the lack of successful clinical data
[132-134], and so MSCs harvested at a high density and
preconditioned with IFN-y may provide a solution to
improve the results of future clinical trials (Fig 1).

Strategies to obtain mesenchymal stem cells with

enhanced immunosuppressive properties

In normal culture conditions, MSCs generally proliferate
via cell division but rarely differentiate unless induced by
particular differentiation conditions. Although low-density
culture leads to faster proliferation, MSCs are initially
plated at a lower density (200 cells/cm?) [79, 80, 82, 135]
and it would take at least 2—3 weeks for MSCs to reach
approximately 90 % confluency, as is required. Although
high-density culture leads to slower proliferation, MSCs
are initially plated at a higher density (5000 cells/cm?)

and it takes an average of 7 days for cells to reach ap-
proximately 90 % confluency. In these cells, the ex-
pression of genes related to their function is increased
[79, 80, 82, 136, 137]. These cells continue to proliferate,
albeit slowly, and become over-confluent when prolifera-
tion is further induced. As a result, cells are damaged and
transformed. For this reason, after 7 days of culture at a
high density (5000 cells/cm?), cell confluency is around
90 % and MSCs can be obtained in which the expression
of some genes related to immunosuppressive properties is
increased. In addition, we believe that IFN-y priming must
be applied between 24 and 48 hours before MSCs are ob-
tained for transplantation to use their improved immuno-
suppressive properties [76, 106, 113, 118]. Therefore, we
suggest that low-density culture and thereby faster prolif-
eration are needed to secure a large amount of MSCs and
that MSCs must be cultured at a high density for 1 week
before transplantation to maximize their immunosuppres-
sive properties (Fig. 1). Furthermore, MSCs must be cul-
tured according to the 1-week protocol, in which IFN-y
priming is applied between the fifth and sixth day and
then cells are directly transplanted, to maximize the thera-
peutic effects of MSCs with improved immunosuppressive
properties (Fig. 1).

Conclusions

Cell confluency is of critical importance to produce
functionally qualified MSCs for clinical uses; however, it
is unclear how cell confluency at the time of harvest, not
seeding, alters the expression levels of genes that regulate
a specific biological function, such as immunomodulation.
Although a low cell confluency effectively improves
the in vitro expansion capacity of MSCs, the levels of
immunomodulation-related genes are augmented in
highly confluent MSCs. By contrast, many biological
function-related genes showed a varied expression profile,
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representing the heterogeneity of MSCs. Thus, we pre-
sumed that an additional ex vivo treatment is required to
overcome MSC heterogeneity; indeed, priming of MSCs
with IEN-y successfully improved their immunomodula-
tory functions. The expression profiles and functional ana-
lyses of specific genes presented herein suggest that MSCs
with enhanced immunosuppressive properties can be pro-
duced by preconditioning MSCs that are almost confluent
with IEN-y. Therefore, these strategies are expected to
provide useful guidelines for the collection of functionally
qualified MSCs that can be readily adapted for further
clinical uses, including therapies for immune-related dis-
orders such as GVHD.
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ICAMT: Intercellular adhesion molecule 1; IDO: Indoleamine 2,3-dioxygenase;
IFN: Interferon; IL: Interleukin; ISCT: International Society for Cellular Therapy;
MHC: Major histocompatibility complex; MSC: Mesenchymal stem cell;

NK: Natural killer; NKG2D: Natural-killer group 2 member D; PG: Prostaglandin;
PTGDS: Prostaglandin D synthase; PTGES: Prostaglandin E synthase; TNF-a: Tumor
necrosis factor-alpha; ULBP1: Natural-killer group 2 member D ligand 1;
VCAMT1: Vascular cell adhesion molecule 1; VLA4: Very late antigen 4.
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