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Abstract: Microsystems are key enabling technologies, with applications found in almost every
industrial field, including in vitro diagnostic, energy harvesting, automotive, telecommunication,
drug screening, etc. Microsystems, such as microsensors and actuators, are typically made up
of components below 1000 microns in size that can be manufactured at low unit cost through
mass-production. Yet, their development for commercial or educational purposes has typically
been limited to specialized laboratories in upper-income countries due to the initial investment
costs associated with the microfabrication equipment and processes. However, recent technological
advances have enabled the development of low-cost microfabrication tools. In this paper, we describe
a range of low-cost approaches and equipment (below £1000), developed or adapted and implemented
in our laboratories. We describe processes including photolithography, micromilling, 3D printing,
xurography and screen-printing used for the microfabrication of structural and functional materials.
The processes that can be used to shape a range of materials with sub-millimetre feature sizes are
demonstrated here in the context of lab-on-chips, but they can be adapted for other applications.
We anticipate that this paper, which will enable researchers to build a low-cost microfabrication
toolbox in a wide range of settings, will spark a new interest in microsystems.
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1. Introduction

Microsystems are miniature devices typically made up of components between 1 and 1000 µm in
size. They usually consist of moving or static mechanical and electrical parts that can interact with
their surroundings. These features, combined with the possibility to integrate them with modern
semiconductor technologies, makes microsystems excellent microsensor or microactuator candidates.
Due to their small size, they can be mass manufactured at low unit cost via parallel processing
techniques and they can be integrated seamlessly with other devices. Examples of microsystems
include accelerometers, gyroscopes, pressure sensors, micropumps and gravimetric sensors, which are
now found in a number of consumer products, including mobile phones, cars, or energy harvesting
and medical devices. The manufacturing of microsystem evolved from the semiconductor fabrication
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processes initially developed to fabricate integrated circuits [1]. While the early microsystems were
made of silicon or other semiconductors, polymers, metals and ceramics are now routinely used [1].

The fact that such microsystems are manufactured and operated at the microscale challenges
our approach to fabrication technologies and our conception of the influence of physical forces at
play. Before discussing the fabrication technologies, and in particular low-cost technologies, which is
the focus of this paper, we give a brief overview of the scale dependence of physical forces and their
effect on microsystems. In particular, we focus on effects that dominate at the macroscale and become
negligible at the microscale and vice versa. Such effects can have positive or negative impacts on the
operation of microsystems as illustrated in three example:

1. Heat exchange. Due to the large surface to volume ratio, the heating or cooling of microdevices
happens on a much faster timescale. This property is useful for the development of micro-heating
elements with fast response and uniform temperature distribution, for example, in the context of
gas sensing [2].

2. Surface forces. The large surface to volume ratio of microdevices implies that surface forces play
an important role at the microscale. One consequence of this is the difficulty to use conventional
mechanical motors and coupling, such as gears, to induce motion due to the large forces needed
to overcome stiction. The most common approaches to induce motion in microsystems rely on
piezoelectric, capacitive, or magnetic actuation mechanisms [1].

3. Laminar flow. In the case of fluid, flow regimes are typically laminar for aqueous solutions at the
microscale. This is due to the fact that, at this scale, viscous forces dominate over inertial forces.
The Reynolds number that represents this ratio is used to specify the transition between turbulent
and laminar flow. It is defined as Re = uL/ν, where u is the flow velocity of the single-phase fluid;
L, the characteristic length scale and ν, the kinematic viscosity. In the laminar regime, occurring
at low Reynolds numbers, the flow properties can be quantified easily and manipulated in a
controlled way [3]. This feature is used in microfluidics, for example, for diagnosis and samples
processing applications [4].

The three examples above can be formalised using the scaling laws, which describe the relationship
between two physical quantities that scale with dimensions, and can be used to understand the transition
from macroscopic to microscopic dimensions [1,5].

Having highlighted some of the advantages of microsystems, let us now evaluate their fabrication.
As mentioned above, the processes used to manufacture such devices have evolved from semiconductor
industry processes. Due to the size constraints and the necessity to operate in a contamination-free
environment, the fabrication of microsystems typically relies on highly specialised equipment usually
operated in a clean room environment. Therefore, the cost associated with conventional microsystems
fabrication is high and has restricted the development (and teaching) of microsystems to specialised
laboratories and institutions in upper-income countries. However, recent technological advances and
the recognition that some processes do not need to be operated in a clean room has paved the way for
the development and implementation of low-cost microfabrication tools. Clean rooms are necessary to
maintain high production yield, however, this constraint can be relaxed to some extent (as a rule of
thumb, the environment should be as clean as possible) for research and development purposes.

In this paper, we report a range of low-cost microfabrication approaches and equipment developed
or implemented in our laboratories. We detail the processes and provide all the information to build
or adapt the tools for the microfabrication of structural and functional materials capable of reaching
sub-millimetre feature sizes (see Figure 1). In particular, we have selected, developed or modified
equipment to stay below £1000 per tool, set as an arbitrary cost limit. For each technique and
equipment presented, we highlight the advantages and limitations and we provide examples of similar
approaches elsewhere. In particular, we report a low-cost ultraviolet light-emitting diode (UV LED)
lithography set-up for single layer exposure; a “per object” process to optimize high resolution fused
filament 3D printing; a low feed rate process as a method to compensate for the low rotation speed for
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low-cost micromilling, a process to cut thick polydimethylsiloxane (PDMS) sheets using xurography;
and a low-cost screen printing rig based on a conventional table-top computer numerical controlled
(CNC) router.
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Figure 1. Overview of the low-cost processes presented in the manuscript for the structuring of
structural and functional material with feature sizes below 1 mm.

Due to the research focus of our labs, many examples are borrowed from the fabrication of
microfluidic or lab-on-a-chip devices, but the techniques described in the manuscript can be used to
fabricate other microdevices.

2. Materials and Methods

Table 1 summarizes the list of equipment described in the manuscript, including indicative
prices and suppliers. More information, including the bill of materials (BOM), circuit diagram,
and specific process parameters are found in Appendices A–E as listed in Table 1. Further information,
including code, settings and videos are provided in Supplementary Materials.

Table 1. List of equipment mentioned in this paper.

Equipment
Ultraviolet Light

Emitting Diode (UV
LED) Lithography

3D Printer Fused
Filament

Fabrication (FFF)
Milling Machine Cutting Plotter

(Xurography) Screen Printing

Cost <£ 800 ~£ 600 ~£ 400 ~£ 200 <£ 300

Evaluated feature
size (this manuscript)

5 µm (with
acetate mask)

220 µm with 0.2 mm
nozzle diameter. 400 µm 500 µm 500 µm

Minimum feature
size

<1 µm (with chrome
mask)

~100 µm with 0.1
mm nozzle * 100 µm 100 µm 30 µm

Resolution
limitations

Function of mask
and photoresist

Function of nozzle
diameter and
feature size

Function of tooling
diametre

Function of the
rigidity and

thickness of the film

Function of screen
mesh size

Model and
instructions

Custom built
Bill of materials
(BOM), circuit

diagram and code in
Appendix A

Prusa i3 MK3
Example process

parameters in
Appendix B

Proxxon MF70
CNC-ready

Example process
parameters in
Appendix C

Silhouette Curio
Example process

parameters in
Appendix D

Custom built rig
Assembly instruction

in Appendix E

Typical materials
UV sensitive resin

(e.g., SU8,
AZ®series)

Acrylonitrile
butadiene styrene

(ABS), Polyethylene
Terephthalate-Glycol

(PETG)

Polycarbonate (PC),
Polystyrene (PS),

Polymethyl methacrylate
(PMMA), Cyclic olefin

copolymer (COC)

Acetate film,
polyimide adhesive

film, PDMS sheet
Silver or carbon ink

* For positive features, scales with nozzle diameter/negative features depend on printer resolution per axis.
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3. Results and Discussion

In this section, we describe low-cost equipment and associated processes for the sub-millimetre
patterning of materials. We cover both structural materials (i.e., materials that are typically used to
provide a mechanical structure to support other devices or mask certain area of a given substrate) and
functional materials (i.e., materials that confer function to a device, including, e.g., organic or metallic
inks used as electrodes for heating, electronic connection or sensing).

3.1. Photolithography

Photolithography, which relies on light-to-pattern photosensitive materials, is one of the central
processes used in the fabrication of integrated circuit (IC) and microsystems [6–9]. The photosensitive
material, typically a photoresist, is UV irradiated through a photomask and developed to form
three-dimensional structures on the substrate. In the case of negative photoresist, the UV irradiation
initiates polymerisation, thus preventing the dissolution of the exposed areas when soaked into the
development solvent [1].

Usually, the radiation in the UV range is achieved using gas-discharge lamps. Such sources
produce a wide spectrum of light that needs to be filtered to the selected wavelength. Moreover,
these lamps have a limited lifetime of approximately 2000 h, and require regular calibration, significant
time to warm up and cooling during operation. Conventional mask aligners that allow for UV
irradiation and positioning of photomask to enable multilayer patterning typically cost in excess of
£ 50 k.

Building up on a low cost UV light-emitting diode (LED) wafer scale mask aligner that enables
sub-micron patterning with alignment resolution lower than 10 µm that we developed previously [10],
we propose a low-cost version set-up with an Arduino based timer for single layer exposure.

At the core of the set-up (Figure 2) is a 365 nm UV LED that has a 20,000 h lifetime, does not
need warming time or cooling and whose power output is constant, removing the need for calibration.
Combined with a collimating lens, we have used the lamp to successfully fabricate single layer master
moulds using SU8 2000 and 3000 series photoresists (Microchem Corp., Westborough, MA, USA) and
acetate or chrome masks (Microlitho Ltd., Chelmsford, UK). Low-cost photomasks can also be printed
using inkjet printing on acetate [11]. The moulds were used to fabricate PDMS microfluidics devices
(see e.g., [12,13]) using a replication moulding approach also known as soft-lithography [8]. It is noted
that the same set-up can be used with other photoresists, for lift-off [1] to deposit electrodes or other
functional materials for example.Micromachines 2020, 11, 135 5 of 16 
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Figure 2. Low-cost photolithography set-up. (a) Ultraviolet light-emitting diode (UV LED) set-up at
Universitas Indonesia, for single layer exposure. (b) Scanning electron microscope (SEM) micrograph
of a polydimethylsiloxane (PDMS) microstructure replicated from a master mould (SU8 3025 on silicon
wafer). (c) SEM micrograph of SU8 (2000.5) structures obtained using a chrome mask.

The set-up comprising UV LED, optics and an Arduino microcontroller (see Appendix A) costs
less than £ 800 and enables to reach feature sizes comparable to conventional UV photolithography [1].
In particular, it allows for the development of features down to 5 µm with acetate masks and is expected
to reach sub-micron sizes with a chrome mask in contact mode and appropriate photoresist. To obtain



Micromachines 2020, 11, 135 5 of 16

high reproduction fidelity of the features on the mask, it is important to minimize the gap between the
mask and the wafer. This can be achieved for acetate masks by stacking a 5 mm thick quartz window,
the acetate mask (with printed features against the photoresist), and the coated wafer (in this order)
onto a thin sponge covering the entire surface of the wafer. For higher resolution, using e.g., a chrome
mask, the mask should be pressed more actively against the wafer using additional weight or a clamp.
The addition of a xyz-stage and appropriate mask holder would enable multiple mask processes.

3.2. Three-Dimensional (3D) Printing

Three-dimensional (3D) printing is a process for building 3 dimensional objects from computer
aided design models. Consumer grade 3D printing platforms suit the fabrication of devices with
features larger than 100 µm in the XY plane and as low as 35 µm in the Z axis. Custom built equipment
can perform well at even higher resolution [14] but will typically require extensive knowledge of the
various components of a 3D printer (software/mechanics/fluidics) and are less likely to result in broadly
reproducible designs.

Several 3D printing technologies may be used to achieve sub-millimeter features, but low cost
(<£1000) applications limit the market to fused filament fabrication (FFF) and liquid crystal display
(LCD) based stereolitography (SLA) printers. FFF relies on the deposition of fused polymer filament
in stacks to produce 3D shapes, while SLA-based printing relies on stacks of photosensitive resin
polymerized by exposure to a defined wavelength of light.

Low-cost LCD-SLA printers can outperform FFF printers in feature size but require fine tuning of
the printing process depending on the resin used and layer height. FFF has an overall lower cost of
equipment and consumables, lower complexity for setup and is supported by a larger community base.
Waste produced by SLA printers requires careful handling due to its toxicity, and post-processing for
removal of uncured resin typically requires the use of Isopropanol. This results in added requirements
to meet health and safety and waste disposal regulations. These factors have led us to focus on the
development of methodologies based on FFF, and this will be the focus of this section.

The last decade has seen explosive growth of low-cost FFF-based 3D printers. Competition has
driven hardware suppliers to diversify their offer, integrate new sensors and develop improved control
software. These improvements have focused on broadening material selection and integration of
multiple materials, perfecting the level of detail of printed parts, increasing reliability and extensive
correction of known issues leading to suboptimal surface finish. The open nature of the community
has also led to the cross-integration of improvements and extensive networks of suppliers. FFF can be
used to quickly prototype microfluidics systems either through direct production of devices or creation
of moulds for polymerisation of PDMS [15,16].

However, FFF printers suffer many drawbacks for microfluidic device fabrication, including surface
roughness, and filament stock variability (requiring calibration when filament supplier/material/lot
changes). Moreover, the control of filament extrusion remains a challenge using non-specialist software
and hardware as variations of internal nozzle pressure are amplified when using small diameter
nozzles [17]. One way to reduce these variations is to slow down the extrusion through overall
decreased printing speed and reduced acceleration per axis. However, this approach leads to extended
printing times which is not practical for large prints.

We have addressed these issues by proposing the introduction of “per object” settings to bring
more flexibility to the mould-printing process. Here, we purpose an approach in which three separate
objects (base, device and wall) are used to allow for iteration through print settings. Using this
approach, a base for the device can be produced quickly with a desired thickness, and top layer
smoothing is done through a process called ironing. This process involves a second pass of the hot
nozzle over the printed area with a much reduced filament flow to allow the nozzle margins to remove
excess material left during the initial pass, as well as maintain minimal flow to ensure a smooth
finish. This smoother surface enables better contact of PDMS devices to other surfaces avoiding leaks.
Walls can be produced with standard extrusion settings. Finally, the device itself can have a dedicated
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set of settings to optimize dimensional accuracy. In complex devices these layers can be further broken
down into separate objects in order to vary settings as required.

The process parameters reported here have been optimized for the MK3 variant of the Prusa
i3 (Prusa Research, Prague, Czech Republic) and a 0.2 mm nozzle diameter that enabled us to
consistently fabricate moulds with features of approximately 200 µm (Figure 3). Using the Cura slicer
(Ultimaker BV, Utrecht, The Netherlands), and RS Pro 1.75 mm acrylonitrile butadiene styrene (ABS)
filament (RS Components, Corby, UK) moulds are printed and PDMS-based devices replicated using
soft-lithography [8]. SEM images of moulds and devices can be seen in Figure 3a–f. It is noted that the
shape of extruded sections is also substantially different from typical rectangular channels obtained
through photolithography, and this factor should be taken into account when modelling microfluidic
devices. Appendix B includes more details about the process and the profiles used for printing of the
mould shown in Figure 3.
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Figure 3. Example device in acrylonitrile butadiene styrene (ABS), with corresponding design and
photo of the Prusa i3 MK3 equipped with 0.2 mm nozzle (top) and SEM images of mould (panels a, b
and c) and PDMS replica (panels d, e and f) features. (a) channel sizing and parallelism; (b) effect of
curved path on filament deposition; (c) effect of multiple concentric lines on round features; (d) visibility
of ironing path on replicated devices; (e) elliptical nature of filament deposition and surface smoothness;
(f) channel-to-channel variation.

3.3. Micromilling

Micromilling is a vertical milling process for machining micro-cavities such as microchannels and
microreservoirs by using end mill cutters with diameters of less than 1 mm (typically in the order of 100
µm). A prototype can be fabricated in less than 1 h after the design stage [18]. Micromilling is widely
used for direct machining of microfluidic devices on polymer substrates. In this context, it was shown
that the minimum feature size is the same as the tool diameter as demonstrated with polystyrene
(PS), polymethylmethacrylate (PMMA), and cyclic olefin copolymer (COC) by using 127 µm diameter
end-mill [18]. Moreover, micromilling of PMMA by using end-mills with diameter as low as 20 µm
have also been demonstrated [19]. On the other hand, the process can also be utilized to fabricate
moulds for embossing [20] or PDMS moulding.
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The principles of operation of micromilling are essentially the same as for the conventional vertical
milling process. However, the dimensions involved in micromilling (small diameter of the cutter,
low uncut chip thickness depending on the feed rate) strongly affect the characteristics of the process.
For example, cutting forces increase with increasing chip thickness (tc) [21], as given by tc = ft/ω, with ft
being the feed per tooth on the cutter (the feed divided by the number of cutting teeth) and ω being
the rotational speed of the cutting tool. Therefore, to reduce the risk of fracture failure of the cutting
tool, rotational speed of the cutting tool is typically increased to maintain low lead time. However,
high-speed (up to 100,000 rpm) milling machines typically cost more than ~£10k.

Since the lead time is not of major importance for research and development purposes, we propose
to decrease the feed rate instead. In particular, we have shown that a desktop milling machine with
an acceptable positioning accuracy (depending on the application) can be utilized for micromilling.
We have fabricated micromixers by feeding 200µm diameter end-mill, rotating at 2000 rpm, at 5 mm/min
against PMMA blocks using a desktop milling machine (ProLight Machining Center WPLM1000,
Light Machines Corp., Manchester, NH, US) [22]. Figure 4 depicts a low-cost (~£ 500) milling machine
(Proxxon MF70 CNC-ready, Wecker, Luxemburg) with 20,000 rpm spindle and 5 µm resolution
machining a microfluidic device. An example, with corresponding part program, and process
parameters is presented in Appendix C.
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Figure 4. Proxxon MF70/CNC-Ready micro milling machine at Middle East Technical University,
Mechanical Engineering Department and close-up views of 400 µm diameter end-mill and a sample
microfluidic device (serpentine micromixer) milled on PMMA substrate. (b) Microscope view of
channels micromilled at 20,000 rpm, 10,000 rpm and 5000 rpm spindle speeds after 2 min sonication.
Feed rate was fixed at 3 mm/min. Increasing burr formation with decreasing spindle speed implies
overheating problems at low-feed (less than 10 mm/min) milling at low spindle speeds. Scale bar shows
500 µm.

Although low-feed machining, characterized by feed rates less than or equal to 10 mm/min,
solves the need for high-cost equipment with spindle speeds greater than 20,000 rpm, it may also
introduce new challenges such as overheating of the cutting tool and the substrate, which may lead
to increased burr formation. We have tested milling of 400 µm channels at spindle speeds ranging
between 5000 rpm and 20,000 rpm at a fixed feed rate of 3 mm/min. We observe on Figure 4b that a
spindle speed of 20,000 rpm produces burr-free channels, however, we note that the burr formation
increases as the spindle speed is reduced as hypothesized.
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3.4. Xurography

Laser machining is widely used to prototype microdevices, including open-channel microfluidic
devices [23]. However, lasers are expensive and require skilled operators. Desktop cutters, such as
the Silhouette Curio™ (Figure 5a) that costs ~£200 and is easy to setup up and run, appears as an
interesting low-cost alternative. Open structures such as channels, can be easily designed on the
free software Silhouette Studio®, which allows for design features down to 100 µm in thin films [24].
The incisions are made with a sintered tungsten alloy blade (Figure 5b,c) into the desired material.
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Figure 5. Low cost desktop cutter. (a) The desktop Silhouette Curio™: (b) Tunable tungsten alloy blade
used to make incisions. (c) Sintered tungsten alloy blade set to 1000 µm cut depth. (d) Silhouette
Curio™ cutting into a 500 µm sheet of PDMS. (e) A PDMS microfluidic channel successfully cut using
the Silhouette Curio™. Height and width of the channel were set to 500 µm.

Xurography has been used to cut cyclo-olefin-based flow chambers to study microtubules dynamics
under mechanical stress [25], cut omniphobic fluoroalkylated paper (RF paper) in the production
of microfluidic paper-based analytical devices [26] and create moulds for soft-lithography [27].
Even though xurography can achieve good fidelity and reproducibility when cutting relatively thin
(<200 µm) and rigid sheets of materials, the use of thick and soft materials (such as PDMS) is more
challenging as the sheets deform during the cut process [24].

Here we report a novel approach that consists in adding Kapton® (polyimide) adhesive tape to
cover the PDMS sheet prior to cutting. This approach provides more rigidity to the material, and
reduces the risk of movement during the cut process, producing more uniform channel width and
wall structure with cut accuracy comparable to that obtained using rigid sheets. We noted a 17% (+/-
9%) variation in channel width for the PDMS sheet alone (5 samples) and 7% (+/- 4%) when adding
Kapton® on top of the PDMS sheet (5 samples) compared to the same channel cut in Kapton® tape
(average of 10 samples, 500 µm channel width). The addition of the tape also acts as a structural
support during the transportation of the PDMS post cut.

We have cut sheets of 500 µm thick PDMS (1:10 ratio of curing agent to base from Sylgard 184)
with open channels. Such structures are typically used for the production of organ-on-a-chip devices
requiring overlapping channels. With the blade adjusted to a height of 500 µm, speed and force of cut
set to 2 and 20 respectively (arbitrary from Silhouette Studio®), the program was run and the incisions
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were made on PDMS covered with tape, creating open channels of 500 µm depth and 500 µm width
(Figure 5e).

3.5. Screen Printing

Screen printing is a technique used to deposit ink through structured screen meshes. A blade or
squeegee is moved across the mesh to fill its open apertures with ink. The pressure on the blade puts the
mesh into contact with the substrate, which results in the transfer of ink patterns as shown in Figure 6.
One of the main application of screen printing is the deposition of electrodes for electrochemical
sensing [28]. Recently the technique has been used for wearable sensors [29] and photovoltaic [30]
applications as well as for flow sensing where inks are used as heating and sensing elements [31].
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Figure 6. Screen printing. (a) Screen printing device and principle of operation (inset). (b,c) carbon-based
electrode deposited using screen printing at two magnifications.

Screen printing is typically used to produce patterns with lateral feature sizes below 100 µm
and thickness between 5 and 100 µm [32]. The structured screen mesh is usually fabricated using
photosensitive emulsion scooped across the mesh, and exposed through a photomask using a
photolithography approach. In our case, the UV LED set-up described above has been used to fabricate
the screen meshes from T120 polyester screen from Nectex with wire mesh of 45 ± 1 µm. Of note,
the resolution of the patterns is determined by the wire spacing of the meshes used.

Our screen printing rig was assembled for less than £ 300 by modifying a standard 3-axis-mini-CNC
router. The modifications consisted of customized parts to accommodate a squeegee on the x-axis
and a frame to attach the screen to the chassis of the CNC router (Figure 6a). The distance between
the squeegee and the silk screen was set between 0.15 and 0.4 mm. The displacement and speeds are
adjusted to provide enough pressure to allow for screen printing on the printed circuit board (PCB)
after loading the ink on the screen. Figure 6b and c show an example of carbon-based electrodes
deposited using this rig, the assembly of which is detailed in Appendix E.

4. Conclusions

In this paper, we have presented a range of low-cost microfabrication approaches and equipment,
developed or implemented in our laboratories. In particular, we have covered photolithography,
micromilling, 3D printing, xurography and screen-printing. Some platforms were fabricated and
assembled by us (e.g., photolithography set-up), others were bought off-the-shelf (e.g., desktop cutter)
and some resulted from mechanical modification or parameter adaptation of existing equipment
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(screen printing, 3D printing and micromilling device). Importantly, all of them address the need for
low-cost microfabrication tools capable of generating patterns with sub-millimeter feature sizes.

The techniques and devices presented can be combined to fabricate complex devices, such as
lab-on-a-chip platforms. For example, an amperometric-based platform can be fabricated by combining
a microfluidic channel network (fabricated using replication moulding of PDMS over a mould realized
using micromilling, 3D printing or photolithography) and three electrodes for electrochemical sensing
(deposited via screen printing on a PCB). The PDMS microfluidic chip can then be secured over the
PCB using a 3D printed clamp. In addition, by providing all information necessary to build and/or
operate the various pieces of equipment described in the paper, following the open source model,
we anticipate that some readers will modify and adapt them to suit further specific requirements.

Microsystems are key enabling technologies, and are widely used in in vitro diagnostic (IVD),
energy harvesting, automotive and navigation, telecommunication, drug screening, etc. With this paper,
we aim to lower the entry barrier (for both research and educational purposes) into the fascinating and
highly promising world of microsystems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/2/135/s1:
Video S1: MicroMilling.mp4 (Micromilling - video), Code S1: Timer_UV_LED_countdown.ino (Photolithograhy -
Arduino Timer code), Code S2: GCode_MicroMilling.docx (Micromilling - GCode), Design file S1: 0.2 mm Mixer
device.3mf (3D printing - file), Design file S2: 500um channel.studio3 (Xurography - open channel design) and
Profile S1: Cura device profile 02 nozzle.curaprofile (3D printing - printer profile).

Author Contributions: Conceptualization, J.C., E.Y. and Y.W.; methodology, R.R., P.K.C. and B.R.; validation and
analysis, R.R., P.K.C., B.R., J.C., E.Y., R.D. and Y.W.; writing—original draft preparation, J.C.; writing—review and
editing, All; supervision, J.C. and R.D.; funding acquisition, J.C., Y.W., E.Y., and R.D. All authors have read and
agreed to the published version of the manuscript.

Funding: We acknowledge funding from Global Partnership Fund grant (University of Warwick); Newton
Fund—Institutional Links grant, ID 352360246; Engineering and Physical Sciences Research Council grant EPSRC
EP/R00403X/1; Medical Research Council as part of an Interdisciplinary Biomedical Research Doctoral Training
Programme, MR/R502212/1; and Universitas Indonesia grant PITQQ NKB.0330/UN2.R3.1/HKP.05.00/2019. We
would also like to thank Emma Proctor for the fabrication of the devices using the UV LED set-up.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Photolithography set-up. You will find below the BOM, the circuit and assembly diagram.
The Arduino code is found in Supplementary Materials.

Table A1. Photolithography set-up, bill of materials from Thorlabs Inc. (www.thorlabs.com).

Part Number Item Price

SM3A1 Adapter with External SM1 Threads and Internal SM3 Threads 24.15
SM3RC/M Slip Ring for SM3 Lens Tubes M4 Tap 30.84
SM3V10 Ø3” Adjustable Lens Tube 0.81” Travel 1.49
LEDD1B T-Cube LED Driver 1200 mA Max Drive Current 242.66

ACL7560U-A Aspheric Condenser Lens Ø75 mm f = 60 mm NA = 0.61 ARC:
350–700 nm 53.15

M365LP1 365 nm 1150 mW (Min) Mounted LED 1700 mA 345.74
KPS101 15 V 2.4 A Power Supply Unit with 3.5 mm Jack Connector 26.52

http://www.mdpi.com/2072-666X/11/2/135/s1
www.thorlabs.com
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Appendix B

Example using 3D printing. Models of microfluidic devices can be produced using any computer
aided drawing (CAD) tool that is able to export a design in one of the standard file formats used
in 3D printing, such as standard tessellation language (STL), 3D manufacturing file (3MF), additive
manufacturing file (AMF), standard for the exchange of product data (STEP) or object (OBJ). Conversion
of these files into 3D printer-compatible instructions requires further processing using slicing software.

Slicing typically refers to the conversion of 3D objects into flat layers of discrete height that
represent an approximation of the desired 3D shape once stacked, reflecting the nature of this additive
manufacturing process. These layers are then processed into an instruction set (g-code) that can be
used by the 3D printer’s own control firmware to deposit the polymer where necessary and within the
set parameters.

Over the years several slicing software packages have been made available, implementing many
parameters that the end-user can adjust in order to optimize the 3D printing process.

Our example device is a mixer with channels 200 µm wide and 100 µm deep. Examples of difficult
to print features are included such as 45◦ junctions, turns approximating 90◦, small radius 180◦ turns
and features requiring multiple filament passes (thickness >400 µm). Prints have been processed
by removing excess plastic in the observation area (Figure A3) and heating of the mould surface for
approximately 10 s using a heat gun set to 240 ◦C.
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Figure A3. Exploded diagram of the 3D printed mould and device features.

Equipment, software and materials used:

• Prusa i3 Mk3, Prusa Research s.r.o., Prague, Czech Republic
• 0.2 mm diameter nozzle, Kingroon official store (Aliexpress), Hangzhou, China
• Autodesk Fusion 360, Autodesk Inc., San Rafael, CA, USA
• Ultimaker Cura 4.3.0, Ultimaker BV, Utrecht, The Netherlands
• Orange ABS 1.75 mm, RS PRO, cat. no. 832-0333, RS Components, Corby, UK
• Dowsil Sylgard 184, DOW Chemical Company, Midland, MI, USA
• Standard glass slides (for small moulds) or larger ~3 mm thick glass panels (for larger

moulds). Alternatively, a flat substrate capable of withstanding PDMS curing temperatures
without deformation.

• Epoxy resin compatible with mould material and selected flat substrate.

Note for PDMS curing process:
In order to avoid mould deformation under typical PDMS curing conditions (60–70 ◦C) the bottom

surface of the mould should be fixed onto a flat surface using an appropriate epoxy resin
Device specific definitions:

• Line Width: 0.2 mm
• Wall Line Width: 0.2 mm
• Outer Before Inner Walls: True
• Compensate Inner Wall Overlaps: False
• Minimum Wall Flow: 70%
• Fill Gaps Between Walls: Nowhere
• Print Thin Walls: False
• Enable Ironing: False
• Wall Flow: 95%
• Inner Wall Flow: 90%
• Print Speed: 15 mm/s
• Wall Speed: 15 mm/s
• Inner Wall Speed: 15 mm/s
• Initial Layer Speed 15 mm/s
• Infill Jerk: 3 mm/s
• Wall Jerk: 3 mm/s
• Maximum Resolution: 0.05 mm
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• Small Feature Speed: 100%
• First Layer Speed: 100%

Cura Profile—Attachment “Cura device profile 02 nozzle.curaprofile”
Cura Device File—Attachment 3D manufacturing file (3mf) “0.2 mm Mixer device.3mf”

Appendix C

Micromilling example. You will find below the details of the sample, corresponding part program,
and the process parameters.

The sample is a serpentine micromixer patterned on a 75 mm × 25 mm × 3 mm PMMA substrate
(Figure A4). The channels forming the micromixer are 400 µm wide and 100 µm deep. The sample was
modeled, and the corresponding part program was generated by using Autodesk Fusion 360, which is
a free CAD/CAM software for students and educators. It should be noted that while generating the
part program in Fusion 360, post-processor should be selected as KOSY, if “nccad” software is used for
running the controller of Proxxon MF70/CNC-Ready.
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Appendix D 

Figure A4. (a) Isometric view of the sample. (b) Basic dimensions of the serpentine micromixer.

0.4 mm diameter K40 grade WC-Co end mill was used to machine the sample. The spindle speed
and the feed rate were set to 20,000 rpm and 60 mm/min, respectively. It should be noted that KOSY
post-processor requires the feed rate to be in 0.1 mm/s. Therefore, the part program should be manually
revised to change the feed rate command from F60 to F10. Any technique mentioned in reference [19]
can be used to mount the workpart on the worktable and to locate the origin of the work coordinate
system on Proxxon MF70/CNC-Ready. The part program to machine the sample shown in Figure A4
along with a video of the micromilling process are given in Supplementary Materials.

Appendix D

Xurography example. You will find below the process parameters optimsed to cut 500 µm-thick
PDMS devices. The parameters for more conventional substrates are given in the operation manual.
A CAD file of the channel presented in Figure 4 is given in Supplementary Materials.

• Blade height 500 µm,
• Speed set to 2 (arbitrary from Silhouette Studio®)
• Force of cut set 20 (arbitrary from Silhouette Studio®)

Appendix E

Our screen printing equipment was built around the CNC 3018 Pro tabletop CNC machine (cost
<£200). We describe below the mechanical modification and assembly (other tabletop CNC machines
can be used with minor modifications).

Step 1: after removing the spindle motor and z-axis assembly, replace with a custom-made,
3D printed squeegee holder (see Supplementary Materials for STL file).
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Step 2: assemble a screen-printing frame grip to the support and attach it to aluminum profile
vertical frame and attach a linear rod and bearing shaft for support.

Micromachines 2020, 11, 135 14 of 16 

 

Xurography example. You will find below the process parameters optimsed to cut 500 µm-thick 

PDMS devices. The parameters for more conventional substrates are given in the operation manual. 

A CAD file of the channel presented in Figure 4 is given in Supplementary Materials. 

 Blade height 500 μm, 

 Speed set to 2 (arbitrary from Silhouette Studio® ) 

 Force of cut set 20 (arbitrary from Silhouette Studio® ) 

Appendix E 

Our screen printing equipment was built around the CNC 3018 Pro tabletop CNC machine (cost 

<£200). We describe below the mechanical modification and assembly (other tabletop CNC machines 

can be used with minor modifications). 

Step 1: after removing the spindle motor and z-axis assembly, replace with a custom-made, 3D 

printed squeegee holder (see supplementary material for STL file). 

 

Figure A5. Squeegee holder and assembly. 

Step 2: assemble a screen-printing frame grip to the support and attach it to aluminum profile 

vertical frame and attach a linear rod and bearing shaft for support. 

 

Figure A6. Vertical frames fitted on the existing computer numerical controlled (CNC) machine 

frame. 

Step 3: Place the PCB on the clamp and attach the screen printing on the frame grip. Tighten the 

bolt on the frame grip so that screen does not move. 

Figure A6. Vertical frames fitted on the existing computer numerical controlled (CNC) machine frame.

Step 3: Place the PCB on the clamp and attach the screen printing on the frame grip. Tighten the
bolt on the frame grip so that screen does not move.Micromachines 2020, 11, 135 15 of 16 

 

 

Figure A7. Images of the screen printing equipment with frame and printed circuit board (PCB). 

The displacements can be controlled using the original controller. Alternatively, a G-code-

controlled 3D positioning device operated by Arduino Uno board through grbl open source firmware 

can be used. 
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The displacements can be controlled using the original controller. Alternatively,
a G-code-controlled 3D positioning device operated by Arduino Uno board through grbl open
source firmware can be used.
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