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always occur concurrently was made in 
the underlying model of spread. This 
remained true even when interventions 
such as vaccination [8] were included 
in the forward projections (Figure 1E). 
(For further information about our ana-
lysis and additional discussion, see the 
Supplementary Material.)

For forecasting the effects of some 
interventions, such as those that reduce 
the time between symptom onset and 
isolation, it might be necessary to ensure 
that infectious periods and symptomatic 
periods are accurately represented by 
the epidemiological model. However, 
for predicting the impacts of vaccina-
tion campaigns during Ebola outbreaks, 
it may not be necessary to measure the 
lengths of these periods with abso-
lute precision. Careful testing of model 
assumptions during outbreaks—as well 
as long-term engagement between clini-
cians, modelers, and policy  makers—will 
help optimize the development of public 
health policy.

SUPPLEMENTARY DATA

Supplementary materials are available 
at Clinical Infectious Diseases online. 
Consisting of data provided by the 
authors to benefit the reader, the posted 
materials are not copyedited and are the 
sole responsibility of the authors, so ques-
tions or comments should be addressed 
to the corresponding author.
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Role of Egg-adaptation 
Mutations in Low Influenza 
A(H3N2) Vaccine Effectiveness 
During the 2012–2013 Season

To the Editor—The egg-adapted 
A(H3N2) vaccine component IVR-165 
was associated with low influenza vac-
cine effectiveness (VE approximately 
40%) during the 2012–2013 season [1]. 
IVR-165 bore 3 amino acid substitutions 
(H156Q, G186V, and S219Y) compared 
to the vaccine strain recommended 
by the World Health Organization (A/
Victoria/361/2011). Notably, position 156 
is located near the receptor binding site 
within immunodominant antigenic site B 
at the top of the hemagglutinin head and 
is 1 of just 7 positions associated with all 

major A(H3N2) antigenic cluster transi-
tions since 1968 [2]. As such, the in vitro 
H156Q reversion that occurred with 
egg adaptation of the 2012–2013 vaccine 
strain is thought to have contributed to 
low influenza VE that season [1].

In their recent publication, Cobey et al 
hypothesize that vaccine mismatch due 
to egg-adaptation mutations should be 
evident as a different profile of influenza 
variants infecting vaccinated compared 
to unvaccinated people, whereas their 
sequence analysis detected no difference 
in 2012–2013 [3]. Their hypothesis, how-
ever, does not seem valid. By way of illus-
tration, Cobey and co-authors have also 
proposed that egg-adaptation mutations 
(notably T160K, a loss of glycosylation) 
[4] played a key role in the low VE (<40%) 
against A(H3N2) in 2016–2017 and 
2017–2018 [5–8]. However, they did not 
test their hypothesis of differing influenza 
variants by vaccine status for those par-
ticular seasons. In fact, viruses sequenced 
from Canadian VE study participants 
showed that there were also no differences 
in the profile of infecting influenza vari-
ants by vaccination status in 2016–2017 
(n  =  574) or 2017–2018 mid-season 
(n  =  229; Table  1). We do not interpret 
those findings as ruling out a role for 
egg-adaptation mutations. Instead, and 
contrary to the assumption of Cobey et al, 
if egg-adaptation mutations affect anti-
genicity and reduce the immunogenicity 
of seasonal vaccine, then the infecting 
A(H3N2) strain should be independent 
of vaccination status—as observed in our 
data for 2016–2018 and also by Cobey 
et al for 2012–2013.

Cobey et  al further argue that, unlike 
anti-sera drawn from naive ferrets, anti-sera 
collected from adults vaccinated with the 
egg-adapted IVR-165 do not distinguish it 
from the recommended vaccine strain or 
circulating clade 3C.2 or 3C.3 viruses [3]. 
They report titers pre-vaccination and 
fold changes post-vaccination that were 
highly correlated across these test viruses. 
However, their correlations were driven 
by a majority of titers that started low and 
showed minimal or no vaccine-induced 
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change. Their serologic analyses pooled just 
28 adults aged 30–40  years and 33 adults 
aged 65–87 years. Although their figure 2 
does not permit exact quantification owing 
to overlapping pairs and missing data, most 
sera displayed a <4-fold rise in vaccine-in-
duced titers and a substantial proportion 
showed a <2-fold rise (within the margin 
of error of the dilutional hemagglutination 
inhibition assay) [9]. Although 20/56 (36%) 
participants seroconverted to IVR-165, this 
pooled finding is also difficult to interpret in 
the context of conventional immunogenic-
ity thresholds for annual vaccine approval 
requiring seroconversion in at least 40% of 
young adults and 30% of elderly adults [10]. 
Either way, without the comparator of sera 

drawn from adults vaccinated with cell cul-
ture–based (or other non-egg–based) vac-
cine, the serologic findings presented by 
Cobey et al do not resolve a role for egg-ad-
aptation mutations.

Ultimately, egg-adaptation mutations 
that result in altered antigenicity and poor 
immunological responses (including min-
imal boosting of cross-reactive antibody) 
are not mutually exclusive phenomena. 
As we have underscored previously, more 
definitive investigations are needed to 
understand how these alterations may 
interact with other agent-host factors to 
modulate VE, including variation in prim-
ing epochs, birth cohort effects, and under-
lying immunological landscapes [11].

Supplementary Data
Supplementary materials are available at Clinical 
Infectious Diseases online. Consisting of data 
provided by the authors to benefit the reader, the 
posted materials are not copyedited and are the 
sole responsibility of the authors, so questions 
or comments should be addressed to the corre-
sponding author.
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Table 1. Clade Distribution of A(H3N2) Viruses by Vaccination Status, Canadian Sentinel Practitioner Surveillance Network

Clade/Varianta Unvaccinated, n (%) Vaccinated,b n (%) P  Valuec

A. 2016–2017 full season analysis (1 November 2016 to 30 April 2017)d

Clade 3C.2a 100 (23) 30 (22) .85

 + N31S + D53N + R142G + S144R + N171K + I192T + Q197H 1 (0) 0 (0) 1.00e

 + N121K + S144K 31 (7) 10 (7) .91

 + T131K + R142K + R261Q 61 (14) 20 (15) .82

 Other substitutions 7 (2) 0 (0) .21e

Clade 3C.2a1 320 (73) 103 (76) .54

 Other substitutions without N121K 28 (6) 10 (7) .69

 + N121K + K92R + H311Q 61 (14) 12 (9) .12

 + N121K + R142G 66 (15) 26 (19) .26

 + N121K + T135K + HA2:G150E 67 (15) 26 (19) .29

 + N121K + I140M + HA2:G150E 3 (1) 4 (3) .06e

 + N121K + R142G + I242V + HA2:G150E 89 (20) 24 (18) .49

 N121K + other substitutions 6 (1) 1 (1) 1.00e

Clade 3C.3a 18 (4) 3 (2) .43e

Total 438 (100) 136 (100)

B. 2017–2018 mid-season analysis (5 November 2017 to 13 January 2018)f

Clade 3C.2a 142 (93) 71 (93) .86

 + N31S + D53N + R142G + S144R + N171K + I192T + Q197H 3 (2) 0 (0) .55e

 + N121K + S144K 4 (3) 2 (3) 1.00e

 + T131K + R142K + R261Q 135 (88) 69 (91) .56

Clade 3C.2a1 11 (7) 4 (5) .78e

 + N121K + K92R + H311Q 9 (6) 3 (4) .76e

 + N121K + T135K + HA2:G150E 2 (1) 1 (1) 1.00e

Clade 3C.3a 0 (0) 1 (1) .33e

Total 153 (100) 76 (100)

aSpecimens were tested for influenza viruses using reverse-transcriptase polymerase chain reaction at provincial public health reference laboratories as previously described [5, 7]. Genetic 
characterization of the hemagglutinin was attempted on all influenza-positive original specimens collected from Canadian Sentinel Practitioner Surveillance Network patients using Sanger 
sequencing. Phylogenetic analysis was conducted based on nucleotide sequence using the approximate likelihood method to determine clade distribution and identify major genetic clusters 
(or “parent” groups) in conjunction with published reports. See Supplementary Materials for more details and references related to sequence analysis.
bVaccination status ascertained as per usual based on patient self-report and sentinel practitioner documentation. Patients who self-reported receipt of ≥1 dose of the current season’s 
influenza vaccine ≥2 weeks before onset of influenza-like illness (ILI) were considered vaccinated; those vaccinated <2 weeks before ILI onset were excluded.
cP values based on χ2 test comparing the proportion of viruses within the specified clade/variant vs all other clades/variants among vaccinated vs unvaccinated participants.
dMethods as per [5], but including viruses with specimen collection dates spanning up to 30 April 2017. Associated GenBank sequence numbers for 564 of 574 included viruses are KY583507 
to KY583727, MH216203–MH216328, MH216331–MH216445, and MH216447–MH216548. Ten sequences were of insufficient quality for GenBank submission but were sufficient for clade/
variant determination based on clade-defining amino acid substitutions.
eFisher’s exact test used where >25% of expected cell counts were <5.
fMethods as per [7]. Associated GenBank sequence numbers of included viruses are MG889597– MG889825.
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Response to Skowronski and De 
Serres

To the Editor—Skowronski and De 
Serres make several claims that warrant 
clarification. In our study, we sought to 
explain the low effectiveness of the influ-
enza A/H3N2 vaccine in 2012–2013. We 
first examined whether the influenza 
virus variants that infected vaccinated and 
unvaccinated people differed [1]. We did 
not find a difference, suggesting that anti-
genic variation in a subset of viruses was not 
responsible for low vaccine effectiveness. 
However, this phylogenetic test for anti-
genic mismatch is imperfect. While a clear 
difference would be meaningful, the lack of 
a difference could be attributable to several 
alternatives, including swamping of the 
signal by poor immunogenicity. Therefore, 
we then examined other evidence, using 
human, rather than ferret, serological data 
to evaluate the response to the intended 
vaccine strain (A/Victoria/361/2011), the 
egg-adapted vaccine strain (IVR-165), 
and strains from the 2 dominant circu-
lating clades. We note that previously 
Skowronski and colleagues used data 
derived from ferret experiments to postu-
late that the egg-adaptation mutations in 
IVR-165 lowered vaccine effectiveness by 

causing antigenic mismatch with the cir-
culating strains [2]. Our results underscore 
that the vaccine was poorly immunogenic, 
as Skowrosonski and de Serres note in 
their letter, and also demonstrate that the 
patterns of reactivity in humans are none-
theless inconsistent with ferret-based infer-
ences. The use of samples from 61 human 
donors is, to our knowledge, the largest 
published analysis of human serological 
responses directed against egg vs non-egg 
H3N2 viruses from this season and high-
lights how ferret data alone can mislead. 
We agree with Skowronski and De Serres 
that altered antigenicity and poor immu-
nological responses are not mutually exclu-
sive and that comprehensive studies to 
evaluate the factors that contribute to the 
modest effectiveness of influenza vaccines 
are desperately needed.
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