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Abstract

In drug delivery, there is often a trade-off between effective killing of the pathogen, and harmful side effects associated with
the treatment. Due to the difficulty in testing every dosing scenario experimentally, a computational approach will be
helpful to assist with the prediction of effective drug delivery methods. In this paper, we have developed a data-driven
predictive system, using machine learning techniques, to determine, in silico, the effectiveness of drug dosing. The system
framework is scalable, autonomous, robust, and has the ability to predict the effectiveness of the current drug treatment
and the subsequent drug-pathogen dynamics. The system consists of a dynamic model incorporating both the drug
concentration and pathogen population into distinct states. These states are then analyzed using a temporal model to
describe the drug-cell interactions over time. The dynamic drug-cell interactions are learned in an adaptive fashion and used
to make sequential predictions on the effectiveness of the dosing strategy. Incorporated into the system is the ability to
adjust the sensitivity and specificity of the learned models based on a threshold level determined by the operator for the
specific application. As a proof-of-concept, the system was validated experimentally using the pathogen Giardia lamblia and
the drug metronidazole in vitro.
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Introduction

A fundamental principle underlying effective treatment of a

pathogen is the trade-off between rapidly curing the disease and

preventing harm to the patient induced by the treatment.

Currently, due to the expense associated with drug testing and

the infeasibility of testing every possible dose experimentally,

treatments are very difficult or impossible to optimize with respect

to the balance between patient toxicity and pathogen killing.

Another factor to consider when balancing this trade-off is

mutation within the natural population, or specific drug induced

mutation. The emergence of drug resistant strains of pathogens,

including hepatitis B virus, methicillin resistant Staphylococcus aureus

(MRSA), and tuberculosis, have had a dramatic impact on world

health [1,2,3,4]. The CDC estimates that 94,360 cases of MRSA

occur each year in the U.S. alone resulting in 18,360 deaths [5].

The emergence of many drug resistant strains has been linked to

patient non-compliance, due to undesirable side-effects associated

with the treatment [6]. When the patient begins to feel better, they

stop taking the drug so that side-effects can be avoided. This will

allow the pathogen to recover and increase the potential for a drug

resistant strain to emerge. In order to determine a more thorough

approach to selecting the optimum dose, thus minimizing

excessive drug, machine learning techniques were used to develop

a framework for analyzing the trade-off between the drug dosage

and effective pathogen killing.

The proposed system works as follows. First, the drug dose and

cell population are discretized into distinct states. Then, the state

changes are analyzed over time. After a Probabilistic Suffix

Automaton (PSA) model makes sequential prediction of the drug-

cell dynamics based on current observations, the future drug-cell

dynamics are predicted given current observations of the drug

dose and pathogen population. The combined framework can

predict future drug-pathogen dynamics based on current obser-

vations and also determine the effectiveness of a drug delivery

method based on the experimental training data. The overall

framework was developed to meet the following criteria:

N Scalability – the system must be able to scale to multiple drugs

and pathogen interactions. Due to the difficulty in scaling

ordinary differential equations with multiple drugs [7],

machine learning algorithms were employed.

N Minimum human supervision – the system must be able to

learn and predict the drug-pathogen dynamics in an

unsupervised, autonomous fashion. This will represent an

improvement on other supervised, rule-based expert systems

[8].

N Adaptivity – the system must be able to adapt to a constantly

evolving pathogen population. As opposed to Hidden Markov

Models, which are fixed after the initial training [9], a data-

driven Variable Length Markov Model (VLMM) was used for

increased flexibility.

N Online learning – the system must be able to interpret dynamic

drug-pathogen sample points instead of dealing with a static

dataset. Since offline learning algorithms such as Bayesian

were not suitable [10], online learning algorithms were

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e31724



developed using a Fuzzy C-Mean (FCM) clustering technique

and VLMM.

To validate the proposed system, we have used Giardia lamblia

and metronidazole as a test case. Giardia is a protozoan parasite of

the intestinal tract of mammals, reptiles, and birds, and the

causative agent of giardiasis [11]. Currently, Giardia is responsible

for the largest number of waterborne outbreaks of diarrhea in the

United States and infects approximately 2% of adults and 6 to 8%

of children in developed countries [12,13]. The incidence of

infection greatly increases in countries with poor water treatment

facilities, and can lead to death in children in poverty stricken

areas. Since the late 1950s, metronidazole and other nitroimida-

zoles have been used for treatment of giardiasis [14,15]. However,

drug resistance to metronidazole has been observed in humans,

resulting in a failure of treatment [16]. As described earlier, the

emergence of metronidazole resistant Giardia strains has been

linked to the severity of side-effects, often lead to patients

discontinuing the treatment after feeling better [17]. Since the

mechanism leading to drug resistance in Giardia is patient non-

compliance due to harsh side-effects, this serves as an ideal test

case to validate the framework.

The goal of this research was to develop a methodology for an in

silico approach to test multiple dosing options with a limited set of

experimental data. Using Giardia as an in vitro test case, the cell

count after various doses of metronidazole was used to generate

both the training and testing data sets. Based on these data sets, a

system was developed to classify the drug dosage and cell

population into distinct classes, and predict the future states from

current observations and effectiveness of treatment. While this

study has focused only on in vitro applications, the method

developed herein, has the potential to be extended to a clinical

setting, to help doctors, with limited data, to predict if a current

dosing method was effective or ineffective. This paper represents

an important first step in the incorporation of machine learning

technique to address the complex problem of pathogen drug

resistance and effective therapy.

Materials and Methods

1.1 System architecture
Figure 1 shows the architecture of the sequential drug delivery

prediction framework. The drug concentration and pathogen

population were used as a two-dimensional vector input. First the

input was clustered into categories using a FCM clustering

algorithm (described in Section 1.2). After categorization, the

temporal patterns of the drug-pathogen dynamics were analyzed

using a VLMM model that was implemented in the form of a PSA

(described in Section 1.3). The system was able to make two

kinds of predictions based on the PSA model: 1) the drug-pathogen

dynamics over time, based on current observations (Section 1.4),

and 2) the effectiveness of the drug using a likelihood-ratio detector

(Section 1.5). In this paper, online, unsupervised learning was

used since the pathogen was capable of evolving over time under

selective pressures. All learning algorithms used were data-driven

and adaptable.

1.2 Categorize drug-pathogen dynamics using an FCM
clustering technique

Typically in the medical and drug delivery fields, FCM

clustering algorithms have been used in analysis of medical

imaging, including PET, MRI, and CAT scans [18,19,20].

However, in this study, an FCM clustering algorithm was used

to categorize the drug concentration and the pathogen population

into distinct categories. A major advantage of the FCM clustering

technique is its fuzziness, in which a single data pattern may

belong to several clusters, having different membership values in

each cluster. This property could be advantageous when dealing

with noisy or incomplete data, common in typical drug delivery

applications. In this paper, an FCM clustering algorithm was

developed similar to Dunn’s [21], which was improved upon by

Bezdek [22]. The algorithm is described as follows.

Given a set of N data observations, i.e., X~fx1,:::,xNg, and a

number of desired clusters C. The FCM clustering algorithm

minimizes the following objective function:

Jm~
XN

i~1

XC

j~1

um
ij xi{cj

�� ��2
, ð1Þ

where uij is the degree of membership of xi in the cluster j. xi is the

i-th D-dimensional input vector, cj is the prototype of the center of

cluster j, m is a weighting exponent on each fuzzy membership

such that 2ƒmƒ?, and xi{cj

�� ��2
is a distance measurement

between the data xi and cluster center cj . The objective function

Jm is minimized via an iterative process. The update function for

the cluster centers uij is defined as follows:

Figure 1. Diagram of the proposed machine learning procedure. The top part of the diagram shows the training procedure, which contains
the clustering module and temporal analysis module. The bottom part shows the testing procedure.
doi:10.1371/journal.pone.0031724.g001
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uij~
1

PC
k~1

( xi{cj

�� ��� xi{ckk k)
2

m{1

: ð2Þ

The update function for the cluster center prototype cj is defined

as follows:

cj~

PN
i~1

um
ij xi

PN
i~1

um
ij

, ð3Þ

where Viuij satisfies: uij[½0,1�, and 0v

Pn
j~1 uijvN . Iteration will

stop, when maxijf u
(qz1)
ij {u

(q)
ij

��� ���gvr, where r is a termination

criterion between 0 and 1, whereas q is the iteration step. This

procedure converges to a local minimum or a saddle point of Jm.

In terms of the drug delivery system, xi represents the

combination of the cell population and drug concentration at

each observation point for N number of observations. For

example, if there are 24 trials in the training dataset, with 10

observation points in each trial, then N is equal to 240. From these

240 points, natural clusters, groups of similar observations, were

identified. The total number of observations is then classified into

individual states, cj , from 1 to C, where C is the total number of

desired states. The value of C can be selected in collaboration with

experimental researchers to yield a set of states that have biological

meaning. For example, if the goal was to evaluate effective and

non-effective only, then C would equal 2. However, for

applications that require diverse analysis, C could be set to a

higher value. The Fuzzy function was used to increase the

robustness of the clustering procedure due to potentially noisy

experimental data. This function allows for partial membership in

multiple clusters, instead of forcing membership to only one

cluster. After the training procedure, the state prototypes are

obtained, and the prototypes are used to analyze the testing data.

Note that the FCM technique allows the model to scale to multiple

drugs by increase the dimensionality of X . By incorporating

multiple drug concentrations with pathogen populations into

clustering models, each cluster can then represent the multi-drug

effects on pathogen population change.

In the testing procedure, the drug-pathogen observations, O, are

categorized during the prediction phase, described as follows:

given C distinct category/state prototypes, denoted by

C~fc1,:::,cjg, learned during the training phase, and a series of

Tobservations O~fo1:::ot:::oT : t[Tg made over time, where t

denotes the time index, the system finds the closest match of the

current observation otto a state prototype in cj . The formulation is

defined as follows,

ot[ci if i~arg maxkP(ckjot), ð4Þ

where P(ckjot)vr, which means that the difference between

otand the closest match P(ckjot)is less than a vigilance parameter

r. If this is the case, then the drug-pathogen observation ot is

categorized as i. If the difference is larger than r, then a new drug-

pathogen dynamic state will be generated. If we let st denote the

state label learned from observation ot, at time t, then there is a

one-to-one mapping from observations to state labels. Thus, a

sequence of observations O, becomes a sequence of states

S~fs1:::st:::sT : st[C,t[Tg.

Using the methods described above, it was possible to categorize

the observations of the cell-drug interactions into clearly defined

states. These states contain information about the cell population

and drug concentration at each observation point, but contain no

temporal information. To analyze the temporal pattern associated

with the changes between states, it was necessary to use another

technique to obtain this information.

1.3 Analyze temporal pattern using VLMM model
As described above, FCM categorizes the data into state

sequences, which are often temporally correlated. To analyze

these temporal dependencies, a Markov chain model was used.

Since Markov models have difficulty in capturing higher level

dependencies in the sequence data, we chose to use a high order

(memory) Markov model. For a large set of time-correlated

sequential data, statistical correlations decrease rapidly with

increasing distance between symbols in the sequence. If the

statistical correlations are indeed decreasing, then there exists a

memory length L such that the empirical probability changes very

little if conditioned on subsequences longer than L. In other

words, the memory length depends on the context and is not fixed.

In this study, a VLMM model [23] was used to preserve the

minimal subsequences (of variable lengths) that are necessary for

precise modeling of the given statistical source. This results in a

more flexible and efficient sequence representation.

In addition, a symbolic predictive PSA model was constructed

in this work to interpret and predict data based on the drug/

pathogen dynamics. In the PSA model, the continuous time

observations were first abstracted to a discrete space, analogous to

a set of finite states. Symbolic modeling and processing have

several advantages over continuous measurements and models in

drug-pathogen dynamics, including: 1) discrete states have clear

physical meaning and are easy for humans to interpret, e.g., drug

effective state; and 2) are less impacted from noise, while still

preserving the essential underlying pattern or dependencies that

govern the behavior in the observed domain. These advantages of

the PSA model make it more suitable to model temporal sequences

in drug-pathogen dynamics, compared to other models.

In general, each state in a PSA is labeled by a string of state

sequences over a finite alphabet S. The transition function

between the states is defined based on these state sequence labels.

Given a state sequence s, the algorithm traverses the underlying

graph of the PSA, and ends in a state labeled by a suffix of the

sequence. When a PSA generates a state sequence, the probability

distribution of the next symbol generated is defined given the

previously generated subsequence of length, at most, L. Therefore,

the probability distributions these automata generate can be

equivalently generated by Markov chains of order L. However,

since the size of order-L Markov chains is exponential in L, their

estimation requires a data length and time exponential in L.

For any drug delivery trial, the state at each observation point is

combined to form the state sequence. s~s1:::sl , si[S, the longest

suffix of s can be denoted as suffix(s)~fsi:::sl j1ƒiƒlg|feg.
The PSA l is a 5-tuple, (Q,S,d,c,p), consisting of

N a finite set of states Q (e.g., natural states of drug-pathogen

interactions),

N a finite alphabet S, in this scenario, the number associated

with each state (e.g., 1,2,3,…)

N a transition function d : Q|S?Q, which describes the

transition from one state to another. For example the

transition from a high drug, high pathogen state to a low

drug, low pathogen state.

N the next symbol probability function c : Q|S?½0,1�,

Data-Driven Predictive Approach for Drug Delivery
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N and an initial probability distribution over the starting states

p : Q?½0,1�.

Note that the function c and p must satisfy the following

conditions for every q[Q,Ss[Sc(q,s)~1 and Sq[Qp(q)~1. These

equations maintain that the probability of transitioning between all

possible states is 1, as graphically represented in Figure 2. This

means that there is a 100% probability that some transition will

occur.

For any given L§0, L-PSA is a Markov chain of order L. It is a

process satisfying P(stz1js1,:::,st)~P(stz1jst{L,:::,st), where

twL. We define the empirical probability of a sub-sequence s,

over the given sample set, as the number of times that the

subsequence was observed in the sample set divided by the

maximal number of (possibly overlapping) occurrences of a pattern

of the same length. The conditional empirical probability of

observing a state st right after a given sub-state sequence is defined

as the number of times that the state symbol appears after the

given subsequence divided by the total number of times that the

sub-sequence has appeared, followed by any state symbol.

Specifically, the frequencies f (si:::sj)of a sub-state sequence

si:::sj in the state sequences S~fsg is given by

f (si:::sj)~
P

(si:::sj), where si:::sj is a sub-sequence of S. The

conditional empirical probability of observing the state st right

after the state sequence si:::st{1 is defined by P(stjsi:::st{1), which

can be estimated using sub-state sequence frequencies as follows:

P(stjsi:::st{1)~
f (si:::st)

f (si:::st{1)
: ð5Þ

Note that this leads to a natural definition of a probability

distribution over all state sequences of length L since

Ss[SL P(s)~1.

As an example, consider a drug-pathogen state sequence

s~f1,2,3,1,2,3,2,1,3g with a three letter alphabet S~f1,2,3g.
Figure 2 shows the second-order PSA learned from the sequence.

The example PSA has eight possible states, namely, ‘‘Start’’, ‘‘1’’,

‘‘2’’, ‘‘3’’, ‘‘1_2’’, ‘‘2_1’’, ‘‘3_1’’, and ‘‘3_2’’. Note that ‘‘Start’’,

‘‘1’’, and ‘‘2’’ are transient states; ‘‘3’’, ‘‘1_2’’, ‘‘2_1’’, ‘‘3_1’’, and

‘‘3_2’’ are recurrent states. Detailed information on PSA

construction and inference procedures can be found in [23].

To model the normal behavior using the Maximum

Likelihood criterion, a model was developed that maximizes

the probability of a given sequence of observations. Specifically,

we let s~fst : t[Tg denote a temporal sequence of size T ,

where t denotes the discrete sampling time. Given a PSA l, the

total likelihood of the observations can be expressed mathe-

matically as P(sjl). Matching the drug concentration and

pathogen population states against a suffix automaton yields the

cumulative probability of the given state sequence being

generated by the PSA. To match a sequence against a PSA,

the algorithm starts with the first state symbol and finds its

corresponding state in the automaton. Next the model traverses

the sequence appending the next state symbol onto the previous

one. The algorithm then finds the current state based on the

newly created state label. If the node exists, the probability of

transitioning from the previous state to the current state is

noted, and the algorithm continues appending state symbols. If

the node does not exist, however, one symbol at a time is

removed from the front of the state label until a node is

encountered that does exist in the automaton. In the worst case,

the program will have to backtrack to a transient node, since it

should contain the next-symbol probability, in order to proceed

with the matching algorithm. In general terms, the PSA

searches the string of states for observations that have occurred

previously. If a state has previously occurred, then a new state is

not created, however, if the PSA searches the string and finds no

instances of the current state in the previous states, then a new

state is created.

The system can use the learned PSA model to predict the drug-

pathogen dynamics based on the current state st. The details of

the prediction are discussed in Section 1.4. If the probability of

the observation sequence given the model is below a threshold h,

obtained from the Receiver Operating Characteristic (ROC)

curve as described in detail in Section 2.4, then the drug

delivery method is categorized as ineffective. A likelihood-ratio

verification scheme has been created and is addressed in detail in

Section 1.5.

Figure 2. Example of second order PSA built from the state sequence, s~f1,2,3,1,2,3,2,1,3g. This state transition diagram shows the
probability of transitioning between states. The sum of all possible states transitions equals one, indicating that a state transition must occur.
doi:10.1371/journal.pone.0031724.g002
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1.4. Predict drug-pathogen dynamic using VLMM model
Given the drug-pathogen interaction state sequence, s its

prediction by a PSA model l can be conducted state by state,

where the cumulative probability in the sequence is calculated by

transitioning from one state to another, in a chainlike manner.

The problem can be formulated as follows: given a history, i.e., the

si:::st{1 sequence of t{1{i : iƒt{1 drug-pathogen interaction

states in the past, the method predicts the next drug-pathogen

dynamic state. The approach achieves the goal by finding the state

sm that maximizes the posterior probability of state sk. Formally it

is defined as follows,

st~sm if m~arg maxk P(skjsi:::st{1)~
f (si:::sk)

f (si:::st{1)
: ð6Þ

It is desirable to predict several consecutive drug-pathogen

dynamic states in a set window. A prediction window, of length L,

is defined as the prediction of a drug-pathogen state sequence

ststz1:::stzL{1 knowing its history s1s2:::st{1. The system can

achieve this by interactively predicting the next state and

appending the existing state sequence up to length L based on

past history.

Through the above approach, it will be possible to predict the

outcome of doses based on past sequence information. It will also

be possible to predict doses that have not been experimentally

tested as described in Section 2.2.

1.5 Predict drug delivery effectiveness using likelihood
ratio-based verification

To predict the effectiveness of a drug delivery strategy, a

likelihood-ratio based prediction method is used. In this example,

we assume that there is a training period, consisting of different

drug delivery methods in the training dataset. The effective drug

delivery methods are used to build a normal model, whereas

variations from the effective model are treated as an ineffective

drug delivery method. In this case we let s~fs’,s’’g denote the

entire drug delivery dataset, and s’ denote the normal training

drug delivery state sequences, while s’’ denotes the target testing

drug delivery state sequence. Given a sequence(s) of normal

training drug delivery trial(s) s’, and a sequence of testing drug

delivery states s’’, the task of verifying the effectiveness of a drug

delivery method can be formulated to determine if s’is the same as

s’’. Note that if the effective drug delivery methods are not

available, the random variable s’can represent an ineffective drug

delivery method, and an effective drug delivery method can be

detected when s’ matches s’’. The drug delivery verification

problem is formulated in the same manner. The task can be

restated as a hypothesis test between:

H0 : s’ is effective drug delivery

H1 : s’ is ineffective drug delivery

�
: ð7Þ

The likelihood-ratio test to decide between these two hypotheses is

given by:

p(s’jH0)

p(s’jH1)
§h accept H0

p(s’jH0)

p(s’jH1)
vh reject H0

8>><
>>:

, ð8Þ

where p(s’jHi), i~f0,1g, is the probability density function for the

hypothesis Hi evaluated for the observed sequence s’, also referred

to as the likelihood of the hypothesis Hi given the sequence. The

decision threshold for accepting or rejecting H0 is h. For our drug

delivery verification, the null and alternative hypothesis use PSA

models li. Hence, we denote the PSA model for the null hypothesis

as p(s’jH0; l0) and for the alternative hypothesis as p(s’jH1; l1).
The likelihood-ratio sequential verification process is given by

p(s’jH0; l0)=p(s’jH1; l1). Typically, the logarithm of this statistic is

used giving the log-likelihood ratio ‘,

‘~log p(s’jH0; l0){log p(s’jH1; l1): ð9Þ

During the training period, various drug delivery trials were

encountered that were effective, ineffective and/or undetermined. The

model for H0 was estimated using an effective event sequence.

However, the model for H1 was less well defined since it must represent

every ineffective drug delivery method. Since it is too expensive to run

every ineffective drug trial, it is not possible to train H1 with every

ineffective drug delivery method. Therefore, all hypothesized sequenc-

es of events, was a more suitable way to define H1.

1.6 System evaluation, sensitivity and specificity analysis
The following performance metrics were used to evaluate the

drug delivery verification system: True Positive Rate (TPR), True

Negative Rate (TNR), False Positive Rate (FPR), and False

Negative Rate (FNR). These performance metrics can be visualized

using a matrix. The matrix is often referred to as confusion matrix

(shown in Table 1). Ideally, the values of sensitivity and specificity

are at 100%; the values of false alarm rate and miss rate are at 0%.

The sensitivity and specificity of a diagnostic test depends on

more than just the ‘‘quality’’ of the test – they also depend on the

definition of what constitutes an abnormal test. In practice, we

choose a threshold h above which we consider the test to be

abnormal and below which we consider the test to be normal. The

position of the threshold will determine the number of true

positive, true negatives, false positives and false negatives. Different

thresholds can be used for different clinical situations if the goal is

to minimize one of the erroneous types of test results. A Receiver

Operating Characteristic curve was used to a guideline to balance

the tradeoff between sensitivity and specificity.

1.7 Experimental setup
Giardia lamblia trophozoites were obtained from the American

Type Culture Collection, strain designation 30957. Trophozoites

were grown and maintained anaerobically in modified Keister’s

media at pH 7.0, limiting cyst formation [24]. Eight doses, 0 mg/

ml, 1.9 mg/ml, 6.19 mg/ml, 10.95 mg/ml, 16.67 mg/ml, 20.4 mg/

ml, 32 mg/ml, and 50 mg/ml, were tested to provide a range of

Table 1. Performance metrics.

CONDITION (GOLD STANDARD)

POSITIVE NEGATIVE

Prediction
outcome

Positive True Positive False Positive

Negative False Negative True Negative

Sensitivity = TP/(TP+FN) Specificity = TN/(FP+TN)

Typical performance metrics table that reports the number of True Negatives,
False Positives, False Negatives, True Positives, Sensitivity and Specificity.
doi:10.1371/journal.pone.0031724.t001

Data-Driven Predictive Approach for Drug Delivery
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killing curves. Prior to the addition of drug, 105 cells/ml were

added to 2 ml glass screw cap tubes and incubated for 30 minutes

in a 37uC incubator. After this adjustment period, the drug was

added at time point 0 to the tubes and the cells were placed back

in the incubator. At 0, 4, 10, and 18 hours the cell number was

counted using a hemocytometer to determine the number of cells/

ml. This is a typical in vitro method used to determine the

effectiveness of drugs on G. lamblia, and has previously been

validated for determination of metronidazole activity specifically

[25,26,27,28,29]. All experiments were conducted in triplicate.

The half-life of metronidazole was estimated based on previous

pharmacokinetic data [30,31,32].

Results and Discussion

2.1 Experimental results
Killing curves were generated from the averaging of the three

replicates from each dose, examples of which are shown in

Figure 3 with the numerical data displayed in Table 2. In

addition to these curves, the data from each trial was plotted and

the points connected to illustrate the trend from each set of doses

(Figure S1). From this data, it was determined that the ineffective

doses were doses where the population at 18 hours was greater

than the starting population. In these curves, the cell population

Figure 3. Representative Giardia killing curves. Killing curves generated from the average of three replicates per dose. The cell counts were
compared to the control, which is typical of killing curves. Note that the general trend is towards an exponential decrease over the time interval of
the study, 18 hours. In the lowest dose tested, 1.9 mg/ml, an obvious plateau is reached at 18 hours indicating an ineffective dosing, while at the
other doses, the trend indicates a decline.
doi:10.1371/journal.pone.0031724.g003

Table 2. Cell number over time for each dose prior to pre-
processing.

Time interval (hours)

Dose (mg/ml) 1 4 10 18

0 16105 6.46104 4.16105 56105

1.9 16105 5.16104 1.26105 1.36105

6.19 8.56104 3.96104 1.66105 7.26104

10.95 1.26105 6.26104 1.56105 3.96104

16.67 1.16105 3.26104 1.16105 6.26104

20.4 8.96104 4.16104 7.16104 4.56104

32 96104 5.16104 1.26105 3.96104

50 8.16104 5.36104 8.66104 3.96104

The average cell count for each time interval and dose is displayed in the chart
above in cells/ml. As indicated in the methods, the starting cell concentration
was 16105 cells, however, variations always arise when making counts with a
hemocytometer. This data was used to generate the dose curves shown in
Figure 3.
doi:10.1371/journal.pone.0031724.t002
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was normalized to the starting population, i.e., starting cell

number/current cell number. Using this normalization, increases

in the cell number over time will have values greater than 100%,

whereas decreasing populations will have numbers less than 100%.

In terms of the biological implication of this normalization, if the

replication of trophozoites occurs every 8–12 hours [33], then if

the cell population is at the 100% threshold after 18 hours, when

the drug has significantly decayed, the population will continue to

increase and eventually reach a maximum population level. At the

initial time points, between 0 and 4 hours, all trials, including the

controls, exhibited a decline of similar proportions. This decline

was most likely due to a temperature effect that resulted in a

sampling error. Similarly, all trials displayed an increase in

population from 4 to 10 hours, although the degree of growth

varied. Since the effect of the drug is not immediate, and the cell

cycle was not synchronized, it was not surprising that a delay in

killing was observed in this study. An advantage of the system

developed in this study is that the system acts only to compare the

trends observed, allowing analysis of potentially misleading data at

the early stages. After acquiring the data from the experimental

studies, the data were preprocessed for incorporation into the

system for analysis and prediction.

2.2 Preprocessing
As described above, four sampling points were collected for

each drug trial and a killing curve was generated for each trial.

From each curve, data points were extrapolated for 2, 6, 8, 12, 14,

and 16 hours. In addition, the drug concentrations were

normalized based on the highest dose of 50 mg/ml administered.

The drug concentrations at each sampling point were estimated

using a 6 hour half-life for metronidazole [30,31]. The drug-

pathogen dynamics were classified into C~4 states. Hence, the

state sequence s had an alphabet size of jSj~4. The physical

meaning of the 4 states are defined as follows:

N current pathogen population (48,100%) with high

(24,50 mg/ml) drug concentration,

N current pathogen population (13,171%) with a medium

(7.65,20.4 mg/ml) drug concentration,

N current pathogen population (28,229%) with low

(0,6.84 mg/ml) drug concentration,

N and current pathogen population (267,702%) with low

(0,3.42 mg/ml) drug concentration.

Note that depending on the application, the user can choose the

desired number of states by setting the parameter C in the FCM

clustering algorithm.

Figure 4 displays an effective drug delivery method. The drug

concentration and cell population were categorized by the Fuzzy

C-Mean clustering algorithm as indicated by the colored boxes in

Figure 4. As illustrated in the figure, this trial started with a high

drug concentration and cell population of 100%, and transitioned

to a state with medium drug concentration and cell population

between 12,171%, and finally transitioned to the effective dosing

end state of low drug concentration and cell population from 28–

229%. Since the effective dosing all terminated in the same state, a

PSA was constructed for effective dosing using all effective trials,

Figure 5. In contrast, the ineffective dosing showed various

transitions between the states, and did not always terminate in the

same state. For this reason the PSAs for ineffective dosing (1.9 mg/

ml, 6.19 mg/ml and 10.95 mg/ml) were created by combining all

three trials of that dose. As an example, a PSA was constructed

based on the training data and an ineffective drug delivery method

combining all three trials at 1.9 mg/ml, shown in Figure 6. It

should be noted that the PSAs were built autonomously using the

developed system, and that the ‘‘start’’ and ‘‘end’’ states were

added for illustrative purposes only. As illustrated in Figure 5 and

Figure 6, the effective and ineffective drug delivery methods show

different temporal patterns. Based on analysis of the data, 15 trials

with effective dosing and 9 trials with ineffective dosing were

identified. Since, the overall goal of the study was to use the

learned PSA models to predict the drug-pathogen dynamics and

predict the effectiveness of an unknown drug delivery method; the

following experiments were conducted to demonstrate this

application and validate the developed model for realistic drug

delivery data.

2.3 Drug-pathogen dynamics prediction
In order to predict the drug-pathogen dynamics, the system uses

the Partial Prediction Matching (PPM) procedure, equation (6), on

the PSA model and the partial test sequence. To verify the ability

of the system to predict future drug-pathogen states, a 3-fold cross-

validation method was used on the available drug trials. As stated

in the experimental setup, three drug trials were conducted for

each dosing method, resulting in 24 individual trials. For each

round of cross validation, the 24 trials were partitioned into two

groups: training set and testing set. The training set contained

eight trials with one trial from each of the eight doses. The testing

set contained the other sixteen trials. To reduce variability,

multiple rounds of cross-validation were performed using different

partitions and the validation results were averaged over the

rounds. Table 3 shows the averaged prediction accuracies of 3-

fold cross validation for different partial matching sequence

lengths. The 3-fold cross validation for all trials was averaged to

determine the accuracy of the prediction at each observed

sequence length. As the observation sequence grew, the prediction

became more accurate, e.g., when the system received one

observation, the prediction accuracy was 53.33%; while when the

system received nine observations, the prediction accuracy

increased to 97.5%. Based on the available drug delivery trials,

the system had an accuracy greater than 73.33% when the

observation length was $4. It should be noted that the more data

points that are generated, the greater prediction efficiency over

time. The results from a Student’s T-test, assuming normal

distribution, comparing the accuracy of all observation lengths, i.e.

observation length 1 vs. 2, 1 vs. 3, etc., confirmed that the

difference in results were statistically significant (99.5% confidence

interval).

Table 4 shows the average prediction accuracies of 3-fold

cross-validation of drug delivery trials for each dosing method with

different partial matching sequence lengths. The average accuracy

for each observed sequence length was obtained from the average

of 3-fold partitions of drug delivery trials. The prediction

accuracies for each dosing method followed the same trend – as

the observation lengths grew, the system was able to predict more

accurately. This experiment also showed that some dosing

methods were easier to predict then others, e.g., a drug dose of

1.9 mg/ml had a prediction accuracy of 10% when only one

observation was available, while dose 6.29 mg/ml had a prediction

accuracy of 100% when only one observation was available. This

phenomenon was related to the complexity of the trend. Trends

with distinct features were easier to predict than ones that were not

as distinct.

The previous experiments demonstrate the system scalability

when all dosing methods are available. In practice, however, it is

not possible to test all drug dosing schemes. In a second

experiment, the training data contained five drug delivery methods

(control, 6.19 mg/ml, 16.67 mg/ml, 32 mg/ml, 50 mg/ml): two
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ineffective dosing methods (control, 6.19 mg/ml) and three

effective drug delivery methods (16.67 mg/ml, 32 mg/ml, 50 mg/

ml). After completion of the training phase, three doses (1.9 mg/

ml, 10.95 mg/ml, and 20.4 mg/ml), were evaluated. It should be

noted that the only data available to the model was the initial dose

and starting cell population, the sequences generated from the

experimental data were not available, and only used for

subsequent validation. For example in testing dose one (1.9 mg/

ml), the only state given to the model was the initial state

(s1:::::::::). The PSA then predicted the other 9 states based on this

initial state (s1). Next, the model was given two states (s1s2) from

the experimental data (s1s2::::::::)and the other 8 states were

predicted by the PSA. These iterations continued until all 10 states

from the experimental system were input into the model. To

evaluate the accuracy of the prediction of the PSA given variable

state lengths, the predicted state sequence was compared to the

experimental state sequence. Table 5 shows the prediction

accuracy based on the starting number of states given to the

Figure 4. An example of 50 mg/ml trial and its states. The separated boxes indicate different clusters/states. The width of the boxes indicates
the time duration of each state. The dotted curve represents the drug concentration over time, while the solid curve represents the percent change
of the pathogen over time.
doi:10.1371/journal.pone.0031724.g004

Figure 5. The Markov model state transition diagram built from the 15 effective drug delivery trials. The ‘‘start’’ and ‘‘end’’ states are
added for illustrative purposes. In the effective delivery strategy, it is possible to transition between three states. From the high drug state it is only
possible to remain in that state, or transition to the medium drug state. Similarly, once in the medium drug state it is not possible to transition back
to the high drug state, it is only possible to remain in that state or transition to the low drug state. Once in the low drug state, the system will remain
in the state for various iterations before finally ending.
doi:10.1371/journal.pone.0031724.g005
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model. As the observed sequence length increased, our system was

able to make more accurate predictions. It was determined that

the system needed at least four observations to have an accuracy of

,74%, based on the training dataset and partial observations. The

prediction accuracy of the system was 53% when only one

observation was given and 98% when eight observations were

given. Results from a student’s T-test again found that all results

were significant with a confidence level of 99.5%. The strong

significance of data with both analysis techniques indicates that the

system is able to accurately predict the future drug-pathogen

states, given an adequate sequence length.

In the context of the Giardia testing case that was used in this

paper, if experimental researchers were able to generate four

observations, the model would be able to accurately predict the

rest of the state sequences ,74% of the time. This means that with

the training data used (control, 6.19 mg/ml, 16.67 mg/ml, 32 mg/

ml, 50 mg/ml) it would be possible to predict the effectiveness of all

treatments within this range, given these four initial points. When

trying to determine the trade-off between the effectiveness of

treatment while reducing the concentration of drug, this would

provide a complete set of data for mitigating this balance.

Experimentally testing all of these doses would be impossible, but

can quickly be achieved in silico using the system developed in this

study.

2.4 Model validation for prediction performance
To predict the effectiveness of a drug delivery trial, a likelihood

ratio-based verification technique was used, as defined in Equation

(9). In order to verify the performance of the prediction procedure,

the following procedure was used: during the training period, five

drug trials (control, 10.95 mg/ml, 32 mg/ml, 50 mg/ml) to obtain

the alternative hypothesis p(sjH1; l1), and the three effective drug

delivery methods (10.95 mg/ml, 32 mg/ml, 50 mg/ml) to obtain

the null hypothesis p(sjH0; l0). The learned universal PSA model

l1 consists of 80 nodes and the learned drug effective PSA model

l0 consists of 60 nodes. Two effective drug trials (16.67 mg/ml,

20.4 mg/ml) and two ineffective trials (1.9 mg/ml, and 6.19 mg/ml)

were used for testing the proposed prediction system. Each drug

trial was completed over 18 hours, and the data were expanded to

include 10 observation points. For each drug delivery method, the

state sequence length was incrementally increased to the drug trial

length T , where T~10, e.g., s~fs1,s1s2,s1s2s3,:::g and the log

likelihood-ratios were obtained for the tested drug-pathogen state

sequences, i.e., P~fps1
,ps1s2

,ps1s2s3
,:::g.

In order to determine the verification threshold h, a Receiver

Operating Characteristic curve was used. The ROC curve plots

the TPR/sensitivity vs. the FPR/false alarm rate for a binary

verification (2-class) system as its verification threshold is varied.

Figure 7 shows the ROC curve constructed from the testing

trials. Note that each prediction result (or one instance of a

confusion matrix) represents one point in the ROC space. The

best possible prediction has no false negatives or false positives.

From Figure 7, it was observed that the optimal operating point

Figure 6. The Markov model state transition diagram built from an ineffective drug delivery. The ‘‘start’’ and ‘‘end’’ states are added for
illustrative purpose. In this example of ineffective delivery, the model has only two transition states. When the concentration of drug is low and the
current population is below the starting population, the system is more likely to remain in this state for several iterations. Eventually, however, a
transition out of this state will occur resulting in a low drug concentration and a larger current population. Once in this state it is impossible to leave
this state, and eventually an end state will be reached.
doi:10.1371/journal.pone.0031724.g006

Table 3. The prediction performance of 3-fold cross-
validation for all doses.

Observed
sequence
length 1 2 3 4 5 6 7 8 9

Accuracy (Mean) 53.33 60.83 67.08 73.33 79.58 85.0 90.0 93.75 97.50

Accuracy
(Variance)

8.91 8.25 7.1 6.44 4.72 3.1 2.0 1.79 0.08

The averaged prediction accuracies for variable sequence lengths for all dosing
methods. (control, 1.9 mg/ml, 6.19 mg/ml, 10.95 mg/ml, 16.67 mg/ml, 20.4 mg/ml,
32 mg/ml, and 50 mg/ml).
doi:10.1371/journal.pone.0031724.t003

Table 4. The average prediction accuracies of 3-fold cross-
validation for each dose.

Observed
sequence
length 1 2 3 4 5 6 7 8 9

Control 40.0 40.0 40.0 40.0 50.0 60.0 70.0 80.0 90.0

1.90 mg/ml 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

6.19 mg/ml 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10.95 mg/ml 86.7 96.7 96.7 96.7 100.0 100.0 100.0 100.0 100.0

16.67 mg/ml 70.0 80.0 90.0 100.0 100.0 100.0 100.0 100.0 100.0

20.40 mg/ml 60.0 70.0 80.0 90.0 100.0 100.0 100.0 100.0 100.0

32.00 mg/ml 40.0 50.0 60.0 70.0 80.0 90.0 100.0 100.0 100.0

50.00 mg/ml 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

The prediction accuracy based on sequence length shows a similar trend
observed when all of the curves were averaged. As the sequence length
increases for each does, the prediction accuracy increases. The only exception is
the dose of 6.19 mg/ml, where the accuracy is 100% because this dose does not
transition out of the initial state. In cases with more complex transitions, a larger
sequence length is needed for accurate predictions.
doi:10.1371/journal.pone.0031724.t004
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for the proposed verification system has a TPR of 80% and a FPR

of 20%. This optimal operating point (TPR = 80%, FPR = 20%)

was used as the reference to set the likelihood-ratio threshold h
value in Equation (8). Table 6 shows the sensitivities and

specificities obtained when adjusting the threshold parameter h.

The threshold value of h~0:8179 gives the optimal trade-off

between sensitivity and specificity in our drug delivery test

environment. As mentioned previously, depending on the

application, different threshold values can be used to meet the

user requirements. In the current test case, the AUC for the

generated ROC curve was found to be 85%. The current

experimental setup has validated that the developed system is able

to predict the effectiveness of unseen drug delivery methods with

good performance (accuracy ,85%). In addition, the system is

adaptable to multiple applications. For example, if the drug

delivery task requires high specificity (i.e., ,100%) with low

sensitivity (i.e., ,50%), the system can adjust the threshold to 1.25.

In this way the system is robust for a variety of applications, and

can be tuned by an operator.

In summary, the developed system is able to predict the future

drug-pathogen dynamics based on current observations. Our

experimental results have shown that the prediction performance

is able achieve 74% when four observations are made. In addition,

our developed system is able to predict the effectiveness of a drug

dosing method in silico based on the current observations of the

environment with high performances. Our experimental results

have shown that they system is able to obtain an overall accuracy

of 85%. In addition, the system is able to achieve 80% of true

positive rate and 20% of false positive rate for the optimal trade-off

point. Depends on the application, users can adjust the threshold

to achieve higher true positive rate or false positive rate. The

learning system is able to cluster the drug-pathogen dynamics into

discrete states and analysis the temporal dependencies among the

state in a fully autonomous fashion.

2.5 Conclusion
In this paper, we have developed a machine learning framework

that models the drug-pathogen dynamics. The framework can be

used to test the outcome of a variety of doses given a limited

number of experimental data. The proposed framework has been

validated in vitro through experimental study with Giardia lamblia.

Based on the framework, the system first learns to categorize the

drug-pathogen interactions into a discrete set of states using a

Fuzzy C-Mean clustering algorithm. It then uses a PSA to model

the temporal state sequences. The learned models can be used to

predict the drug-pathogen dynamics based on the past history. In

addition, a likelihood-ratio verification method was used to predict

the effectiveness of a given drug delivery method. Due to the

experimental limitations, the data collected is often noisy and

incomplete. Therefore, online, unsupervised, data-driven methods

were chosen. This proposed method was validated experimentally

for the drug/cell interaction between Giardia lamblia and

metronidazole. Using the method, it was possible to predict the

dynamic drug-cell states over time, and the effectiveness of the

treatment strategy. The accuracy of prediction increased from

73% with four data points to 97.5% with nine data points.

Performance evaluation of the system, when predicting the

effectiveness of the strategy, revealed an accuracy of 85%, using

an ROC method. This system can predict the effectiveness of

multiple dosing schemes, allowing for reduced experimental costs,

Figure 7. The ROC curve for determining prediction perfor-
mance. The ROC curve shows the tradeoff between sensitivity and
specificity (any increase in sensitivity will be accompanied by a decrease
in specificity). The closer the curve is to the minimum false alarm rate (x-
axis) and the maximum sensitivity (y-axis), the more accurate the test.
As the ROC curve approaches y = x, the less accurate the test becomes.
The intersection point of the ROC curve with the line y = 2x is defined
as the optimum operation point. In this ROC curve, the optimum
operation point had an 80% true positive rate, with a 20% false positive
rate.
doi:10.1371/journal.pone.0031724.g007

Table 6. Thresholds for different trade-offs.

Threshold h Sensitivity 1-Specificity

… … …

0.8179 0.8000 0.2000

0.8601 0.8000 0.3000

0.8864 0.8000 0.4000

0.9044 0.8000 0.5000

… … …

1.2462 0.5000 1.0000

… … …

Different sensitivities and specificities of the prediction system by adjusting
threshold values. For example, if a threshold of 0.8179 is selected, then the
sensitivity predicts performance would be 80% and the rate of getting the false
alarm rate is 20%.
doi:10.1371/journal.pone.0031724.t006

Table 5. The prediction performance for in silico dosing.

Observed
sequence
length 1 2 3 4 5 6 7 8 9

% Accuracy
(Mean)

52.5 60.0 67.5 73.8 80.0 85.0 90.0 93.8 97.5

% Accuracy
(Variance)

9.4 8.6 8.2 7.4 5.4 3.4 2.0 0.8 0.2

Average prediction accuracies based on the training data sets (control, 6.19 mg/
ml, 16.67 mg/ml, 32 mg/ml, 50 mg/ml) and the testing data sets (1.9 mg/ml,
10.95 mg/ml, and 20.4 mg/ml).
doi:10.1371/journal.pone.0031724.t005
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and an increased speed of prediction. This will allow researchers to

investigate more effective treatment options by evaluating a larger

pool of doses than possible with experiments. It will also be

possible for a user to adjust the treatment, if the current treatment

has been determined to be ineffective. In this way it will be possible

to monitor patient non-compliance by monitoring the drug dose

and pathogen population on a return visit to determine the

effectiveness of the treatment. Future work will use a Markov

Decision Process to separate the dose into discrete actions, based

on the observations of pathogen population and side effects, the

system will then decide to increase or decrease the dosage.

Throughout this process an optimum dosing strategy could be

learned, balancing the trade-off between side-effects, pathogen

population, and the dosage.

Supporting Information

Figure S1 Giardia killing trends from various doses of
metronidazole. The Giardia staring population was normalized

to 100%. The Giardia cells were counted at hours 0, 4, 10, and 18

and were normalized based on control. Eight doses were used,

0 mg/ml, 1.9 mg/ml, 6.19 mg/ml, 10.95 mg/ml, 16.67 mg/ml,

20.4 mg/ml, 32 mg/ml, and 50 mg/ml. Three drug delivery trials

were conducted for each dose.

(TIF)
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