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ABSTRACT Contrary to classical population genetics theory, experiments demonstrate that fluctuating selection can protect a haploid
polymorphism in the absence of frequency dependent effects on fitness. Using forward simulations with the Moran model, we confirm
our analytical results showing that a fluctuating selection regime, with a mean selection coefficient of zero, promotes polymorphism.
We find that increases in heterozygosity over neutral expectations are especially pronounced when fluctuations are rapid, mutation is
weak, the population size is large, and the variance in selection is big. Lowering the frequency of fluctuations makes selection more
directional, and so heterozygosity declines. We also show that fluctuating selection raises dn/ds ratios for polymorphism, not only by
sweeping selected alleles into the population, but also by purging the neutral variants of selected alleles as they undergo repeated
bottlenecks. Our analysis shows that randomly fluctuating selection increases the rate of evolution by increasing the probability of
fixation. The impact is especially noticeable when the selection is strong and mutation is weak. Simulations show the increase in the
rate of evolution declines as the rate of new mutations entering the population increases, an effect attributable to clonal interference.
Intriguingly, fluctuating selection increases the dn/ds ratios for divergence more than for polymorphism, a pattern commonly seen in
comparative genomics. Our model, which extends the classical neutral model of molecular evolution by incorporating random
fluctuations in selection, accommodates a wide variety of observations, both neutral and selected, with economy.
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ALL environments vary. Yet molecular sequence analyses
interpret patterns of polymorphism and divergence, as-

suming that selection is constant and directional. We extend
the classic neutral model of molecular evolution to incorpo-
rate fluctuating selection. Contrary to classical selection the-
ory, fluctuating selection can promote polymorphism in
haploids in the absence of frequency-dependent fitness ef-
fects. The conditions for neutralfixationare broadened so that
alleles temporarily subject to directional selectionmight fix as
if neutral. Fluctuating selection raises the dn/ds ratio for di-
vergence more than for polymorphism, a pattern commonly
seen in genomic comparisons.

Available field evidence suggests selection fluctuates in
direction over time (Dobzhansky 1943; Fisher and Ford 1947;
Lynch 1987; Cain et al. 1990; Cook and Jones 1996; Saccheri

et al. 2008). However, the importance of fluctuating selection
in patterning polymorphisms, probabilities of fixation, and
evolutionary divergence remains poorly understood. Clas-
sical population genetics theory suggests that fluctuating
selection promotes polymorphism whenever the geometric
mean fitness of the heterozygote is greater than both ho-
mozygotes (Kimura 1954; Dempster 1955; Haldane and
Jayakar 1963; Gillespie 1972, 1973; Jensen 1973; Karlin
and Levikson 1974; Karlin and Liberman 1975; Felsenstein
1976; Maynard Smith 1998; Bell 2008). Fluctuating selec-
tion alone cannot promote polymorphisms in haploids sim-
ply because the clone with the largest geometric mean
fitness inevitably wins the competition. Only if fitness
is frequency dependent (Felsenstein 1976; Bell 2008, 2010),
as in the lottery model (Chesson and Warner 1981), or if re-
combination between selected loci occurs (Kirzhner et al.
1994), can selection promote polymorphism in haploids.

In contrast to classical theory, experiments demonstrate
that fluctuating selection can maintain a haploid/clonal
polymorphism in theabsenceof frequency-dependent effects
on fitness (Yi and Dean 2013). Key is in recognizing two
sources of variability when using the growth rates rA and ra
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over a period t to define the absolute fitnessesWA ¼ erAt and
Wa ¼ erat� One (well-recognized) is variability in the
relative growth rate, rA=ra ¼ LogeWA=LogeWa� The other
(previously overlooked) is variability in the time available
for growth, t.

Consider a serial transfer experiment. Following Yi and
Dean (2013), let p and q= 12 p be the frequencies of A and
a immediately following dilution in fresh medium, and let
eD.i be the fold increase in population density after growth to
carrying capacity in environment i. Then the growth of
the mixed culture at carrying capacity is described by
perA:iti þ qera:iti ¼ eDi . This model [experimentally verified
for strains of Escherichia coli competing for limiting glucose
(Yi and Dean 2013)] describes exponential growth that
ceases abruptly once the carrying capacity is reached. When
A is rare the time taken to reach carrying capacity is
t*i ¼ Di=ra:i. When a is rare the time taken is t**i ¼ Di=rA:i.
Placing a bound on population size (i.e., restricting the
fold-increase to eDi) means that the time spent growing to
carrying capacity is a dependent variable, one that varies
with allele frequency.

This frequency-dependent slippage in “time-for-growth”
promotes diversity (Figure 1). Alleles experience more dou-
blings when the least fit is most common. This favors the rare,
fitter allele. Alleles experience fewer doublings when the
fittest is most common. This mitigates selection against the
rare, less fit allele. Fluctuating selection is passively biased in
favor of rare alleles.

Motivated by the experimental results in Figure 1, we
re-examined the impact of randomly fluctuating selection
on polymorphism and evolution using two continuous time
overlapping generation models. The first, of an infinite
(though bounded) population, sets the stage for the second,
of a finite population undergoing continuous mutation and
allelic fixations. Results show that fluctuating selection in-
deed promotes polymorphism, increases rates of evolution,
and raises the ratio of nonsynonymous-to-synonymous sub-
stitutions more for divergence than for polymorphism. Kimu-
ra’s neutral model of molecular evolution is the limiting case
where selection is zeroed.

Methods

Infinite populations

Basic model: The conditions needed for fluctuating selection
to promote polymorphism in a population growing continu-
ously at carrying capacity are identical to those in serial
transfer (Dean 2005; Yi and Dean 2013). Consider two clonal
(i.e., nonrecombining) populations (densities NA and Na)
competing in a succession of n arbitrary environments (each
of time interval ti) for a continuously replenished growth-
limiting nutrient (concentration Ri). Death rates are fixed
and birth rates vary with resource availability. To make mat-
ters more concrete, and without loss of generality, let the
populations inhabit a chemostat, a continuous culture device.

The differential equations describing the competition are
during interval i are:

dNA

dt
¼ ðrA:i2 diÞNA; (1)

dNa

dt
¼ ðra:i 2 diÞNa; (2)

dRi

dt
¼ diðRi:0 2RiÞ2 rA:i

Y
NA 2

ra:i
Y

Na; (3)

where the per capita growth rates rA.i= fA(Ri) and ra.i= fa(Ri)
are increasingmonotonic functions of Ri, the concentration of
resource in the growth chamber. Ri.0 is the concentration of
the limiting nutrient in the freshmedium entering the growth
chamber. di is the chemostat dilution rate (the fractional rate
at which fresh medium enters the growth chamber and spent
medium and cells are washed out of it). Y is the yield co-
efficient (the number of organisms produced per amount of
limiting resource consumed).

During growth at quasi-steady state, dRi/dt� 0 and so the
mean population growth rate equals the dilution rate, prA.i +
qra.i = di. The growth rates vary with allele frequency; when
A is rare, r*A:i 6¼ r*a:i ¼ di and when a is rare, r**a:i 6¼ r**A:i ¼ di.
These changes are driven by changes in the quasi-steady state

Figure 1 This serial transfer experiment with fluctuating selection shows
two Escherichia coli strains (one resistant to chloramphenicol, Clmr.T5R,
and the other resistant to tetracycline, Tetr.T5S) coexisting in a stable oscil-
lation. Selection is not frequency dependent because the selection coeffi-
cients (the slopes) are constant and the lines are either parallel up or parallel
down. On reaching carrying capacity (at the peaks and in the valleys), the
culture is immediately diluted into fresh medium and the direction of selec-
tion switched. Coexistence is possible because the time spent growing in
each antibiotic (horizontal bars) is frequency dependent. It takes longer to
reach carrying capacity in tetracycline when Clmr.T5R is common near the
start of the experiment than in the stable oscillation at the end. Similarly, it
takes less time to reach carrying capacity in chloramphenicol when Clmr.T5R
is common near the start of the experiment than in the stable oscillation at
the end. Coexistence is not possible in the alternative transfer regime where
the culture is diluted at a fixed time interval before carrying capacity is
reached. Adapted from Yi and Dean (2013).
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concentration of the limiting nutrient, Ri. The total popu-
lation density remains constant because Ri ,, Ri0.0 and so
NA.i + Na.i � YRi.0 (Dean 2005).

Conditions for coexistence: For a rare competitor to invade a
resident population at equilibrium with its environment re-
quires that

Pn
i¼1r

*
rare:iti .

Pn
i¼1r

*
resident:iti ¼

Pn
i¼1diti. Hence,

mutual invasion, and thus polymorphism, is ensured when-
ever the weighted arithmetic mean relative growth rates of A
and a (respectively) are both greater than one:

Xn
i¼1

ditiPn
j¼1djtj

 
r*A:i
r*a:i

!
.1; (4a)

Xn
i¼1

ditiPn
j¼1djtj

 
r**a:i
r**A:i

!
.1: (4b)

The weights, diti, are proportional to the number of popu-
lation doublings, ditiLog2e, needed to maintain population
density (equivalent to the DiLog2e population doublings
needed to reach carrying capacity in the serial transfer ex-
periment). The weights vary with changes in the chemostat
dilution rate and in the time spent in each environment (the
fold-dilution and/or the carrying capacity in serial transfer
experiments).

Taking reciprocals reveals that selective sweeps by
common alleles are prevented when their weighted har-
monic mean relative growth rates are ,1. For A and a
(respectively):

1

,Xn
i¼1

ditiPn
j¼1djtj

 
r**a:i
r**A:i

!
, 1; (5a)

1

,Xn
i¼1

ditiPn
j¼1djtj

 
r*A:i
r*a:i

!
, 1: (5b)

Hence, polymorphism is ensured whenever an allele’s
weighted arithmetic mean relative growth rate is .1 and
its weighted harmonic mean relative growth rate is ,1
(Dean 2005; Yi and Dean 2013).

Relative fitness in discrete and continuous time: Popula-
tion geneticists often define relative fitness in discrete time
as WA:i=Wa:i ¼ eðrA:i2ra:iÞ and relative fitness in continuous
time as LogeðWA:i=Wa:iÞ ¼ ðrA:i 2 ra:iÞ. However, the sugges-
tion that our model of selection is inherently frequency-
dependent because rA.i and ra.i vary with allele frequency is
wrong. Halving the growth rate of a necessarily doubles its
generation time. A better way to write relative fitness is
LogeðWA:i=Wa:iÞ ¼ ðrA:i=ra:i 2 1Þra:ita:i; where ra.ita.i = Loge2
corresponds to one a generation (doubling), and ta.i is the
time needed to complete it. When quasi-steady-state
growth rates are proportional to the concentration of the
limiting resource, rA.i = aA.iRi and ra.i = aa.iRi, and both

relative growth rate rA.i/ra.i = aA.i/aa.i and relative fitness
(aA.i/aa.i 2 1)Loge2 are unaffected by the changes in allele
frequency. The conditions for a protected polymorphism
simplify to

Xn
i¼1

ditiPn
j¼1djtj

�
aA:i

aa:i

�
. 1; (6a)

1

,Xn
i¼1

ditiPn
j¼1djtj

�
aa:i

aA:i

�
, 1: (6b)

Temporalfluctuations infitness canprotectapolymorphism in
the absence of frequency dependent effects on relative fitness
(Figure 1).

It is the number of allelic doublings (i.e., generations)
per environment that varies in a frequency-dependent
manner. To invade, A must grow faster than the resident
a growing at equilibrium with the chemostat dilution rate,
r*A:i . r*a:i ¼ di. As A approaches fixation, its growth rate
must slow to the dilution rate while a is washed out of
the growth chamber, r**A:i ¼ di . r**a:i. Hence, the number of
doublings experienced by A is frequency dependent; A
experiences r*A:iti Log2e. r*a:iti Log2e ¼ diti Log2e doublings
when rare but only r**A:iti Log2e ¼ diti Log2e. r**a:iti Log2e
doublings when common. Both alleles experience more
doublings in environments where the least fit allele is
most common.

Nonoverlapping generations: Although we shall focus on
continuous time overlapping generation models in this
paper, it is worth pausing for a moment to consider the
discrete time nonoverlapping generation version of our
serial transfer model. The exponential growth of two
competitors, perA:iti þ qera:iti ¼ eDi ; can be rewritten as
pWgi

A:i þ qWgi
a:i ¼ eDi ; where WA.i and Wa.i are the absolute fit-

nesses and gi is the frequency-dependent number of genera-
tions to carrying capacity during period i. This reformulation
admits two geometric progressions (say 1, 2, 4, 8, 16. . . and
1, 3, 9, 27, 81. . .). Adults need not survive from generation to
generation. Overlapping generations are not needed for co-
existence. This contrasts with the lottery model of Chesson
and Warner (1981), where overlapping generations are es-
sential to coexistence.

Frequency-dependent selection: Classical negative
frequency-dependent selection, with r*A:i=r

*
a:i . 1 and

r**A:i=r
**
a:i , 1, increases the likelihood of invasion by rare alleles

and reduces the likelihood of fixation by common alleles.
Positive frequency-dependent selection, with r*A:i=r

*
a:i , 1

and r**A:i=r
**
a:i . 1, opposes the intrinsic bias in favor of rare

alleles and can prevent a polymorphism arising. In all that
follows, we assume relative growth rates are not frequency
dependent (i.e., r*A:i=r

*
a:i ¼ r**A:i=r

**
a:i ¼ aA:i=aa:i), which is com-

mon during starvation competition for a single limiting
resource.
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Probability of a polymorphism: Many environments vary
cyclically and dramatically: tides, diurnal cycles, the seasons,
etc. Imagine an infinite population with two alleles subject to
fluctuating selection in an environment that repeatedly cy-
cles through an arbitrary number of seasons equal in length.
Simulations (Figure 2) show that the variability in growth
parameters aA.i and aa.i needed to protect a polymorphism
becomes progressively smaller, and the correlation between
them becomes progressively less important, as the number of
periods per cycle is increased. At 10 periods per cycle, co-
existence is likely only when aA.i and aa.i are highly variable
and negatively correlated (Figure 2, n= 10). Conversely, the
more similar the responses to environmental change, the less
likely the two alleles can coexist. Nevertheless, a protected
polymorphism is still possible with correlation coefficients as
high as 0.9, given aA.i and aa.i are sufficiently variable. By 104

seasons per cycle, a protected polymorphism is very likely,
unless aA.i and aa.i vary little and are tightly correlated (Fig-
ure 2, n = 10,000).

Random environments: Environmental variables can vary
erraticallywithout cycling. Let theaA.i andaa.i for each period
i be drawn randomly from a bivariate distribution, with
means EaA 6¼ Eaa, SDs Var(aA) 6¼ Var(aa), and a correlation
coefficient 21 , ra , 1. The expected relative growth rates

of A and awhen each is rare are, approximately (Kendall and
Stuart 1979),

EðaA=aaÞ ¼ EaA

Eaa

"
1þ VarðaaÞ

E2aa
2

CovðaA;aaÞ
EaAEaa

#
(7a)

Eðaa=aAÞ ¼ Eaa

EaA

"
1þ VarðaAÞ

E2aA
2

CovðaA;aaÞ
EaAEaa

#
; (7b)

assuming that the doublings in each period (DiLog2e in a serial
transfer experiment and ditiLog2e in a chemostat) are uncor-
related with the growth parameters aA.i and aa.i. The model
suggests a rare less fit allele can still increase in frequency if
the superior competitor’s growth rate is sufficiently variable.
For example, Awill increase in frequency when EaA/Eaa , 1
if a’s variance is sufficiently large to make E(aA/aa) . 1.
Displacing a is not possible, however, because Eaa/EaA . 1;
any variability in A’s growth rate further inflates E(aa/aA).
The result is a balanced polymorphism in which the high
fitness of a is offset by its increased sensitivity to environmen-
tal variability. Coexistence is not possible when the difference
between the scaled variance and covariance [Var(aa)/E2aa2
Cov(aA, aa)/EaAEaa] is less than the difference in the relative
growth rates (Eaa/EaA 2 1). Polymorphism is possible only

Figure 2 The probability that a polymorphism is
protected in an infinite population increases
with the number of seasons per cycle from
n = 10 to n = 10,000, and as the growth pa-
rameters become more variable (SD sa) and as
trade-offs become more severe (correlation co-
efficient ra , 0). Simulations were implemented
in Mathematica. For each season i, pairs of
growth rates (aAi and aai) were drawn randomly
from a bivariate normal distribution, with means
mA = ma = 1, a common SD (0 # sa # 0.35 and
the distribution truncated at zero), and a given
correlation coefficient (21 # ra # 1). The prob-
ability of a protected polymorphism was deter-
mined as the proportion of 104 replicates in
which both arithmetic mean relative growth
rates were .1.
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when a considerable overlap in the fitness distributions
exists.

If the expected growth parameters are equal (EaA=Eaa=
1) and identically [Var(aA) = Var(aa)] though perhaps not
independently [Cov(aA, aa) 6¼ 0] distributed, then

EðaA=aaÞ ¼ 1þ s2
að12 raÞ; (8a)

Eðaa=aAÞ ¼ 1þ s2
að12 raÞ: (8b)

The slightest variability in clonal growth rates (s2
a . 0) guar-

antees a protected polymorphism except when they are per-
fectly positively correlated (ra = 1). This result stands in
marked contrast to all analyses from classical population ge-
netics, which predict that clonal polymorphisms cannot be
protected by fluctuating selection (Kimura 1954; Dempster
1955; Haldane and Jayakar 1963; Gillespie 1972, 1973;
Jensen 1973; Karlin and Levikson 1974; Karlin and Liberman
1975; Felsenstein 1976; Chesson andWarner 1981;Maynard
Smith 1998; Bell 2008, 2010).

Finite populations without mutation

Polymorphismscannotbeprotected infinitepopulationsbecause
rare alleles risk stochastic loss. Instead, fluctuating selection
promotes polymorphism by retarding, rather than preventing,
thelossofalleles.Weakselectionfails toretardthelossofallelesto
drift. Strong selection combined with infrequent environmental
fluctuations drives the directional loss of genetic diversity. The
capacity for fluctuating selection to promote polymorphism
therefore depends on the interaction between drift, selection,
and the frequency of environmental changes.

The Moran model: We explored the interaction between
drift, selection, and the frequency of environmental changes
with a Moran model (Moran 1962) that we embedded in a
resource, thereby forming an obvious stochastic analog to
competition in chemostats. In both, reproduction and death
are continuous and the population finite and fixed in size (N).
The probability of a birth is proportional to the resource con-
centration. The probability of a death is determined by a fixed
density independent death rate, di, which is equivalent to the
chemostat dilution rate, di.

In theMoranmodel, each birth is coupled to a death and so
the population size remains constant. The transition state
probabilities for A, frequency j/N, are

pk; j ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

rA:ij
rA:ijþra:iðN2 jÞ

N2 j
N

for  k ¼ jþ 1

ra:iðN2 jÞ
rA:ijþ ðN2 jÞ

j
N

for  k ¼ j2 1

12
�

rA:i þ ra:i
rA:ijþ ra:iðN2 jÞ

�
jðN2 jÞ

N
for  k ¼ j

0 otherwise

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

i ¼ 1; 2:::;

(9a)

where the growth rates rA.i and ra.i fluctuate over periods i=
1, 2. . . The density independent death rate does not appear in
Equation 9a because it always cancels [e.g., dij/(diN) = j/N].

Just as in chemostats, the absolute growth rates vary with
allele frequency. When A is rare, ra:i ¼ aa:iR*

i ¼ di (as before,
R*
i is the resource abundance needed to maintain a pure pop-

ulation of a at its equilibrium density), and when a is rare,
rA:i ¼ aA:iR**

i ¼ di (R**
i is the resource abundance needed to

maintain pure population of A at its equilibrium density).
Again, proportional changes in growth rates render the rela-
tive growth rates, rA.i/ra.i = aA.i/aa.i, independent of allele
frequency. Equation 9a can be rewritten as

pk; j ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ðaA:i=aa:iÞj
ðaA:i=aa:iÞjþ ðN2 jÞ

N2 j
N

for  k ¼ jþ1

ðN2 jÞ
ðaA:i=aa:iÞjþ ðN2 jÞN for  k ¼ j2 1

12
� ðaA:i=aa:iÞ þ 1
ðaA:i=aa:iÞjþ ðN2 jÞ

�
jðN2 jÞ

N
for  k ¼ j

0 otherwise

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

i ¼ 1; 2:::;

(9b)

which shows that the probability that the next event, either the
birth or the death of an A allele, is unaffected by changes in

Figure 3 The capacity of fluctuating selection to pro-
mote polymorphism in a finite population depends not
only on population size, but also on the frequency of
environmental change. In the symmetric fitness model
(aA0.1/aa0.1 = aa0.2/aA0.2 6¼ 1), fluctuations in every gen-
eration (t = 1) shepherd alleles close to the nodal fre-
quency of 0.5, thereby retarding the loss to drift. As
fluctuations become less frequent (every 10 or 20 gen-
erations) the amplitude of the oscillations in allele fre-
quency increases and, consequently, the risk to loss by
drift increases. The extreme limit is directional selection
where polymorphism is no longer promoted. Simula-
tions were implemented in Mathematica.

Fluctuating Selection in the Moran 1275



resource abundance. In both chemostats and the Moran
model, the numbers of births per hr are determined by the
death rates (with the allelic growth rates forced to vary
proportionally to the allele frequencies). The time taken
to produce N births is tg.i = Loge2/di hrs in chemostats and
tg.i = Loge2/di in the Moran model. In consequence, an envi-
ronment that changes every xtg.i hrs also changes every xN
birth–death events.

The distribution of A alleles (vj.t + 1 = 0 to N) following
each birth–death event is given by the vector vt + 1, = Mivt
(i = 1, 2 . . .) where Mi is the square (N + 1) tridiagonal
transitionmatrix for period i [with probabilities of: no change
in number (k = j) on the diagonal, unitary increases above
(k= j+1), and unitary decreases below (k= j2 1)] and vt is
the vector of frequencies at time t (measured in birth-death
events). In a cyclical environment with two alternating pe-
riods the mean number of generations, �G, until loss of one or
other allele is �G¼PN

t¼1ðp0;1:iv1:t þ pN;N21:ivN21:tÞt=N (i = 1,
2), where t = N is one generation.

Simulationswere implemented inMathematica. Themean
time to fixation (the loss of either allele), for a haploid
population of N = 50 individuals, initially with j = 25 A
alleles and assuming evolution by random genetic drift alone
(aA.i=aa.i), is �G=34,164 generations. This estimate is close to
the expected time to fixation of G= N(12 p)/p Loge(12 p) =
50 Loge2= 34,657 generations.We attribute the small discrep-
ancy to the theory assuming amuch larger population size than
50 (Moran 1962).

Symmetrically fluctuating fecundities

Median time to fixation: What effect does fluctuating selec-
tion have on the rate of loss of polymorphism in a finite
population?Wecomputed themedian time tofixation starting
with equal allele frequencies ( j/N=0.5) and with symmetric
relative fitnesses (aA0.1/aa0.1 = aa0.2/aA0.2 6¼ 1), which
would guarantee a protected polymorphism if the population
were infinite. Rapid switches in the direction of selection
(every generation, ts = 1) retard the loss of polymorphism
(Figure 3).

Switches every t= 10 generations produce more nuanced
results. Weak selection does little to promote polymorphism
because it fails to shepherd allele frequencies close to the
nodal frequency of 0.5. Strong selection accelerates the sto-
chastic loss of alleles by driving their frequencies close to the
boundaries of 0 and 1 at the end of each period. With t = 10,
the loss of diversity is slowest in large populations with in-
termediate selection intensities (s � 0.65 in Figure 3).
Switches every t = 20 generations further reduce both the
time to fixation and the range in fitness that promotes
polymorphism.

How does variability in the frequency of switching affect
the rate of loss of polymorphism? Variability in the frequency
of switching has little impact on the rate of loss of polymor-
phism when selection is moderate in populations with N .
100 (compare switching every one and 10 generations for
s , 0.1 in Figure 3). A single period .20 generations is

sufficient to purge polymorphism in populations with N ,
103 when selection is strong (s. 0.5). Rare extended periods
of environmental stasis purge variation, especially when se-
lection is strong.

Probabilities of fixation: What effect does fluctuating selec-
tion have on an allele’s probability of ultimate fixation?When
the selection coefficient s = |aA/aa 2 1| , 1/N, alleles be-
have as selectively neutral (Moran 1962) regardless of
whether selection fluctuates. With strong symmetric fluctu-
ating selection (aA0.1/aa0.1 = aa0.2/aA0.2 .. 1) the rare
currently beneficial allele will be driven back down in fre-
quency when the selection reverses. However, it is not
expected to return to its starting frequency because more
doublings occur on the way up, when the least fit allele is
most common, and fewer doublings occur on the way down,
when the fittest allele is most common. This bias ensures that
rare alleles are more likely to fix than if selectively neutral
(Figure 4).

Before considering what happens with fluctuating selec-
tion, let us first remind ourselves of fixation by a new allele
subject to directional selection. The probability of ultimate
fixation of a new allele, frequency 1/N with constant relative
fitness 1 + s, is Up0 � s for Ns . 1 (Moran 1962). Most
beneficial alleles are lost when rare. Any beneficial allele that
reaches an appreciable frequency will march, almost deter-
ministically, toward fixation. For example, U0.05 = 0.99 for
s= 0.01 and N= 10,000. In effect, Up0 � s is the probability

Figure 4 Probability of ultimate fixation (Up0) of an allele, initial frequency
p0, subject to symmetric fluctuating selection (aA0.1/aa0.1 = aa0.2/aA0.2 =
1 + s) in a population (N = 103) with selection fluctuating each generation
(t = 1). Rare alleles are more likely to fix than neutral alleles (for p0 , 0.5, as
the surface steepens relative to the neutral edge at s = 0 as s increases). The
probability that a rare allele reaches fixation is far lower when selection
fluctuates than when selection is directional. Simulations were imple-
mented in Mathematica.
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that a beneficial allele, though still rare, attains sufficient
numbers (�p0Ns . 4.6 for Up0 = 0.99) to have escaped loss
to drift.

Now consider a new allele (p0 = 1/N) with symmetric
fitnesses (aA0.1/aa0.1 = aa0.2/aA0.2 = 1 + s 6¼ 1) in a finite
population (size N) with rapid switches in the direction of
selection (ts , 1). Under these circumstances the mean se-
lection coefficient of a rare allele is �s¼ 1

2 ½1þ sþð1þ sÞ21�2
1 � s2/2. Hence, the probability that the allele attains a fre-
quency sufficient to escape initial loss to drift is �s2/2. The
allele now enters a “zone of attraction,” where the impact of
drift is sufficiently minimal that selection trains the allele to a
stable oscillation around the nodal frequency of 0.5. This is
reflected in Figure 4 as the inflection in the Up0 surface at
p0= 0.5when selection is very strong (s=0.25). Escape from
the oscillation is random and does not depend on the initial
allele frequency, hence the inflection. The probability of fix-
ation from the stable oscillation is 1/2 and so the probability
of ultimate fixation of a new allele with symmetric fecundities
[1 + s and (1 + s)21] is Up0 � 1/2 s2/2. When s2/4 , 1/N,
the allele will fix as if selectively neutral.

Simulations (Figure 5A) confirm that for sufficiently strong
selection, the probability of ultimate fixation is proportional
to the square of the selection coefficient, Up0� s2/4. Alleles fix
as if selectively neutral (or nearly so) forNs2, 4 (found graph-
ically as the intersection of lines Up0 = 1/N and Up0 = s2/4
on the log-log plots in Figure 5A). These results contrast with
the classic analytical result for fluctuating selection in the
Fisher–Wright model. There, ts , 1, rather than Ns2 , 4,
dictates that alleles fix as if selectively neutral (Takahata
et al. 1975).

Howdoes theprobabilityofultimatefixationdependonthe
frequency of environmental switching? Infrequent switching
imposes directional selection for many generations. A new
allele either fixes with probability s if it is sufficiently benefi-
cial (probability 0.5), or is purged with probability 1 if it is
deleterious (probability 0.5). The chance that a new mutant
allele ultimately sweeps through a population inhabiting an
infrequently switching environment is therefore Up0 = s/2
and the boundary for effective neutrality isNs, 2 (confirmed

in simulations as the intersection of lines Up0 = 1/N and
Up0 = s/2 on the log-log plots in Figure 5A).

We explored the impact of t on the probability of ultimate
fixation in a population sized N = 103. Probabilities of ulti-
mate fixation rise steeply between t = 10 and t = 100 gen-
erations for s . 0.04 (Figure 6A) and more gradually
between t = 100 and t = 103 generations for s # 0.02.
Weakly selected alleles (s, 0.04) fix as if selectively neutral
in rapidly changing environments but can become exposed to
selection as t is increased. Strongly selected alleles (s. 0.02
in these simulations) aremore likely to fix in rapidly changing
environments (ts , 1) than in the Fisher–Wright model
(Takahata et al. 1975). Simulations show Up0 � 0.01 .
1/N = 1/103 with s = 0.2 and t = 0.1 even though ts =
0.02 ,, 1 (Figure 6A). Variations in switching rates above
t = 103 and below t = 10 have little effect on fixation prob-
abilities in these simulations.

Randomly fluctuating fecundities

We explored the balance between drift and selection for a
biallelic Moran model using computer simulations with the
following loop encoded in C:

1. Randomly choose an allele destined to die (based on allele
frequency alone).

2. Randomly choose an allele destined to reproduce (based
on allele frequency weighted by growth rate).

3. Increase the “birth” allele frequency by one.
4. Reduce the “death” allele by one.
5. Return to step 1.

At each environmental change, new allelic growth rates
were drawn randomly from a normal distribution, N(1, sa),
truncated at zero and with 0 # sa # 0.25. In this model,
there is no recombination and the current growth rates are
independent of the previous growth rates.

Probability of fixation: The fitness SD in our model plays a
role similar to the selection coefficient in the symmetric fitness
model.With rapid changes (ts# 1), themean fitness of a rare
allele is EðrA=raÞ � 1þ s2

að12 raÞ (Equation 8, a and b),

Figure 5 Forward simulations of the impact of ran-
dom genetic drift, fluctuating selection, and the fre-
quency of environmental change on the probability
of ultimate fixation of a new allele, p0 = 1/N, (A)
with symmetric fitnesses (aA0.1/aa0.1 = aa0.2/aA0.2 =
1 + s 6¼ 1) and (B) with random growth parameters
(aA.i and aa.i) drawn from a normal distribution
N(1, sa). Infrequent environmental changes (solid
lines, t = 105) impose directional selection with the
probability of fixation for a selected allele effectively
halved. Rapidly fluctuating selection (dashed lines,
t = 1) expands the region where alleles fix as if se-
lectively neutral. Simulations were implemented in C.
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making the probability of ultimate fixation of a new allele
Up0 � s2

að12 raÞ=2. New alleles fix as if neutral when
Ns2

að12 raÞ, 2. Forward simulations with ra = 0 confirm
that lines Up0 = 1/N and Up0 = sa

2/2 intersect at
sa ¼ ffiffiffiffiffiffiffiffiffi

2=N
p

on the log-log plot in Figure 5B.
In an infrequently switching environment selection is ef-

fectively directional and so the probability that a new allele
reaches fixation is Up0¼ 12aa:i=aA:i � aA:i 2aa:i with weak
selection. The selection coefficient, s = aA.i 2 aa.i, is distrib-
uted as N½0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2
að12 raÞ

p � (Kendall and Stuart 1979). A
new allele is purged with probability 1 if s , 0 (probability
0.5). The probability of ultimate fixation when s . 0 is
therefore approximately half the mean of the folded dis-
tribution N½0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2
að12 raÞ

p � (Kendall and Stuart 1979),

Up0 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
að12 raÞ=p

p
. Simulations with ra= 0 confirm that

lines Up0 = 1/N and Up0 ¼ sa=
ffiffiffiffi
p

p
intersect at approxi-

mately sa¼ ffiffiffiffi
p

p
=N on the log-log plot in Figure 5B. Variabil-

ity in the frequency of environmental shifts outside the range
0.1, ts, 102 has little impact on the probabilities of fixation
(corresponding to the range 1 , t , 103 in Figure 6B).

Finite populations with mutation

We explored the balance between mutation, drift, and selec-
tion for a multiallelic Moran model using by modifying the
computer simulation loop:

1. Randomly choose an allele destined to die (based on allele
frequency alone).

2. Randomly choose an allele destined to reproduce (based
on allele frequency weighted by growth rate).

3. Choose a random number to determine if a mutation
occurs.

4. If no mutation occurs, increase the “birth” allele frequency
by one else create a new allele with a new randomly cho-
sen growth rate.

5. Reduce the “death” allele by one.
6. Return to step 1.

As before, new allelic growth rates were drawn randomly
from a normal distribution, N(1, sa), at each environmental
change. There is no recombination, current growth rates are

independent of previous growth rates, and the growth rates
of the mutants and their parents are uncorrelated.

Randomlyfluctuating selection, like symmetricfluctuating
selection, ensures that rare alleles are more likely to fix than
if selectively neutral. This increases the rate of evolution
(Figure 7). The coalescent is also affected. Unlike a typical
neutral coalescent, many mutations exist only in descen-
dants, the original alleles on which the mutations first arose
having gone extinct. Genealogies can appear as ancient bal-
anced polymorphisms, even though they are relatively young
(Figure 7).

Allelic heterozygosity: Simulations show that rapid random
fluctuations in selection (ts, 1) elevate polymorphism. The
impact is especially dramatic, with allelic heterozygosity
(H = 1 2

P
pi2) raised $1000-fold above neutral expecta-

tions, when the number of newmutant alleles produced each
generation (Nu) is low and the selection (Nsa

2) is strong

Figure 6 Forward simulations of the impact of ran-
dom genetic drift, fluctuating selection, and period
length (t) on the probability of ultimate fixation of a
new allele, p0 = 1/N in a population sized N = 103.
(A) Simulations with symmetric fitnesses (aA0.1/aa0.1 =
aa0.2/aA0.2 = 1 + s 6¼ 1). (B) Simulations used random
fitnesses drawn from a normal distribution, N(1, sa).
Simulations were implemented in C.

Figure 7 Examples of genealogies for alleles that are selectively neutral
[a � N(1, 0), top] and subject to fluctuating selection [a � N(1, 0.25),
bottom] each generation (t = 1) in a population sized N = 104 with
mutation rate u = 1024. With random fluctuating selection, the geneal-
ogy has many more mutations per branch (dots), giving it the appearance
of an ancient balanced polymorphism.
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(Figure 8A). Random fluctuations in growth rates have little
impact on heterozygosity when Nsa

2 , 1. The ability of ran-
domly fluctuating selection to increase the absolute number
of alleles in the population is relatively modest (Figure 8B).
The curvature of the surface suggests that many more alleles
might accumulate in larger populations (N . 104). Simulat-
ing such large populations is impractical, even on supercom-
puters, as each individual birth and death must be counted in
Moran models. Heterozygosities are raised by flattening the
Ewens (1972) sampling distribution (Figure 9) in small and
moderately sized populations (N , 104).

Mixed model: selection and neutrality: We modified our
multiallelic Moran simulation to include neutral mutations
as follows:

1. Randomly choose an allele destined to die (based on allele
frequency alone).

2. Randomly choose an allele destined to reproduce (based
on allele frequency weighted by growth rate).

3. Choose a random number to determine if a mutation
occurs.

4. If no mutation occurs, increase the “birth” allele frequency
by one else create a new allele and choose a random num-
ber to determine if the mutation is neutral or confers a
new randomly chosen growth rate.

5. Reduce the “death” allele by one.
6. Return to step 1.

As before, new allelic growth rates were drawn randomly
from a normal distribution, N(1, sa), at each environmental
change. There is no recombination and current growth rates
are independent of previous growth rates. New alleles carry-
ing neutral mutations are assigned the parental fitness in all
environments. The growth rates of new alleles with select-
able mutations are uncorrelated with those of their parents.

A minority of mutations subject to randomly fluctuating
selection can increase the rate of evolution dramaticallywhen
the supply of newmutants is limited (small Nu) and selection

is strong (large Ns2
a). Under these circumstances populations

rarely havemore than two alleles segregating at a time and so
the rate of evolution is simply the product of the number of
new alleles appearing each generation, Nu, multiplied by the
probability of ultimate fixation (1/N for neutral alleles and
sa

2/2 for selected alleles). The rate of evolution relative to
neutral expectations (with r mutations selected and 1 2 x
neutral) is �[(dn + ds)/u] = (xNus2

a/2 + (1 2 x)u)/u =
xNs2

a/2+ 12 x. Increases in the rate of evolution are entirely
attributable to random fluctuations in selection.

The relative rate of evolution [(dn+ ds)/u] declines as the
supply of newmutants (Nu) increases (Figure 10A), an effect
attributable to the tendency of clonal interference to slow

Figure 8 The impact of fluctuating selection
on polymorphism. (A) Heterozygosity as a
function of population size (N), variance in
growth rate (sa

2), and mutation rate (u)
with fitnesses drawn from a normal distribu-
tion [N(1, sa)] each generation (t = 1). The
broad red line denotes the neutral expecta-
tion. Heterozygosities appear unaffected by
fluctuating selection in populations to the right
of the thin red line denoting N sa

2 = 1. (B)
The number of alleles is less affected by
fluctuating selection than is heterozygosity
in both small (N = 100, red) and moderately
large (N = 10,000, tan) populations. The
curvature of the surface suggests that large
populations (N . 10,000 require huge
amounts of CPU time and so were not sim-
ulated) may be able to accumulate many
more alleles. Parameters were varied as fol-
lows: 102 # N $ 104, 1028 # u $ 1021,
1023 # Nu $ 1, t = 1.

Figure 9 The impact of fluctuating selection on the site frequency spec-
trum in a sample of 100 alleles drawn from a population of N = 104 with
u = 1024, and sa = 0 (red line, Ewens distribution) and sa = 0.25.
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rates of fixation (it takes much longer to fix an allele when
multiple alleles of similar fitness compete). Increases in ei-
ther population size or the proportion of newmutants subject
to randomly fluctuating selection also increase [(dn+ ds)/u].
However, as both intensify clonal interference (both increase
the number of segregating alleles in the population), the
impact on [(dn + ds)/u] is smaller than with increases in
s2
a alone.
The nonsynonymous-to-synonymous substitution ratio for

divergence (dn/ds.div) follows a similar pattern, with clonal
interference reducing dn relative to ds as the supply of new
mutants (Nu) increases. Changes in the nonsynonymous-to-
synonymous ratio for polymorphism (dn/ds.poly) are less dra-
matic. In consequence, the dn/ds ratio for divergence is raised
relative to the dn/ds ratio for polymorphism (Figure 10B).

Very strongfluctuating selection reduces polymorphismby
driving alleles to fixation before the environment changes.
Weaker selection, sufficiently strong to maintain selected
alleles in a rapidly changing environment, also reduces poly-
morphism (Figure 11). The phenomenon arises because os-
cillations in frequency allowing drift to purge alleles of their
selectively equivalent variants. The net effect is for fluctuat-
ing selection to purge neutral variation.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results and Discussion

We explored two models of fluctuating selection in a haploid
species. The first, a continuous time model of an infinite
population with two alleles subject to periodic changes in
fitness, was explored analytically. The second, a probabilistic
model of a finite population subject to periodic changes in
selection, was explored analytically and by simulation using
theMoran framework. Both confirm that, contrary to classical
population genetics theory (Kimura 1954; Dempster 1955;
Haldane and Jayakar 1963; Gillespie 1972, 1973; Jensen
1973; Karlin and Levikson 1974; Karlin and Liberman
1975; Takahata et al. 1975; Felsenstein 1976; Maynard

Smith 1998; Bell 2008, Huerta-Sanchez et al. 2008; Uecker
and Hermisson 2011; Waxman 2011; Gossmann et al. 2014;
Cvijovic et al. 2015), fluctuating selection can promote poly-
morphism in haploids in the absence of frequency-dependent
effects on fitness.

The conditions for coexistence in a temporally variable
environment (Equations 4 and 5) are similar to those derived
by Levene (1953) for coexistence in a spatial model with
random dispersal of alleles into habitats at each generation.
A common criticism of the Levene model as a mechanism for
maintaining polymorphism is that it is robust only with large
fitness differences (Hoekstra et al. 1985). This criticism ap-
plies to our model when cycling between two habitats. How-
ever, the likelihood of coexistence increases with the number
of habitats (Figure 2) to the point that, in a randomly chang-
ing environment, a protected polymorphism is virtually guar-
anteed when the mean fitnesses are equal (Equation 8).

The capacity of fluctuating selection to promote polymor-
phism is huge. The time to fixation for either of two alleles,
with initial frequencies of 0.5 in a population sized N=5000,
is G = 5000 Loge2 = 34,657 generations if they are neutral,
and G = 1021 generations if their fitnesses alternate between
1.4 and 1.421 each generation (Figure 3),which is 2000 times
the age of the universe, assuming one generation per second.
While a cyclical environment with symmetric fitnesses repre-
sents an extreme, it illustrates the huge potential of fluctuat-
ing selection to maintain polymorphism.

Simulations (Figure 8) show that rapidly fluctuating se-
lection has the capacity to elevate polymorphism, especially
when selection is strong and mutation is weak. At least in
moderately sized populations, this is achieved by flattening
the Ewens sampling distribution rather than by increasing
the number of alleles in the population. Indeed, rapidly fluc-
tuating selection can purge neutral variants of selected alleles
through repeated bottlenecks (Figure 11). This suggests that
high frequency nonsynonymous substitutions flanked by di-
vergent regions depauperate in silent replacements might
reflect the action of fluctuating selection (Tiffen et al. 2004).

Fluctuating selection must be strong to maintain a bal-
anced polymorphism. The symmetric fluctuating selec-
tion model needs s.

ffiffiffiffiffiffiffiffiffi
2=N

p
and the random selection

model needs sa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ra

p
.

ffiffiffiffiffiffiffiffiffi
1=N

p
. Although the intensity

Figure 10 Simulations with 10% of new mutants
subject to selection. Impact of fluctuating selection
on (A) the rate of evolution and (B) the ratio of the
dn/ds ratios of divergence over polymorphism.
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of selection declines as the square root of the population size,
we still need s. 0:0014 or sa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ra

p
. 0:001 in a popula-

tion sized N=106. The fluctuations in selection must be even
larger if the alleles differ in their mean growth rates.

To what extent does fluctuating selection promote diver-
sity in natural populations and communities? Classic work on
Drosophila (Dobzhansky 1943), Panaxia dominula (Fisher
and Ford 1947; Cook and Jones 1996), Cepaea nemoralis
(Cain et al. 1990),Daphnia (Lynch 1987), and Bison betularia
(Saccheri et al. 2008) suggests that selection can be suffi-
ciently strong, sufficiently variable, and the fluctuations
sufficiently rapid to promote polymorphisms. A recent
genome-wide survey of a North American population of Dro-
sophilamelanogaster (Bergland et al. 2015) illustrates the huge
capacity of fluctuating selection to maintain polymorphisms
for many generations. This study identified hundreds of sea-
sonally oscillating single nucleotide polymorphisms, with esti-
mated selection coefficients lying between 0.05 and 0.5 per
generation. Some polymorphisms predate the�5 million year
old divergence with D. simulans. If these results are typical
thenmany polymorphismsmight bemaintained by fluctuating
selection.

What is the probability of establishing a balanced poly-
morphism in a seasonal environment? The probability is
simply the probability that a new allele escapes initial loss
to drift; Ppoly � s2=2 for the symmetric fluctuating selection

model and Ppoly � s2
að12 raÞ for the random selection

model. Assuming genic selection, the probability that a new
allele escapes drift to establish a balanced fluctuating poly-
morphism lies between 0.052/2 = 0.00125 and 0.52 = 0.25.
With a mutation rate of 1029 per site per generation, 1 out of
20 mutations being viable, an average gene with 103 bases,
and a genome with 23 104 genes, we might expect between
1.25 3 1026 N and 2.5 3 1024 N balanced fluctuating poly-
morphisms to arise per generation. That hundreds of single
nucleotide polymorphisms oscillate seasonally in a North
American population of D. melanogaster (Bergland et al.
2015) is by no means excessive, given an effective size of
Ne � 104.

Manymutations of small functional effect likely experience
fluctuating selection as fitness optimawobblewith changes in
the environment. For these alleles, the criterion to fix as if
selectively neutral is less stringent than if selection were
constant and directional (e.g., s,

ffiffiffiffiffiffiffiffiffi
4=N

p
rather than

s,1=N in the classic neutral model). A new allele subject
to a selection coefficient of s = 0.01 that changes direction
each generation in a population sized N = 103 has the same
probability of fixing as a neutral allele. This result holds true
even when switches in the direction of selection are as in-
frequent as one in 102 generations (Figure 6A). Now a selec-
tion coefficient of 0.01 is readily measured in a competition
experiment over a period far greater than 100 generations
(Lunzer et al. 2002). An allele, demonstrated to have
changed frequency by natural selection under current condi-
tions, may nevertheless fix as if selectively neutral, were the
selection to change direction from time to time. Conse-
quently, conclusions drawn from ecological genetics might
occasionally be in conflict with the conclusions drawn from
molecular evolution.

Huerta-Sanchez et al. (2008) and Gossmann et al. (2014)
explored the impact of fluctuating selection on molecular
evolution using the Fisher–Wright model. They concluded
that randomly fluctuating selection increases the probability
of ultimate fixation and raises the dn/ds ratio for divergence
over polymorphism in a manner similar to that expected un-
der positive directional selection. We confirmed their results
with ourMoran simulations (Figure 10). However, our model
extends their results in several ways. We relaxed the assump-
tion that selection is strong and mutation is weak to allow
many alleles to simultaneously cosegregate in the population.
We find that increasing the mutation rate (u) increases poly-
morphism and thereby intensifies clonal interference, caus-
ing the relative rates of fixation and evolution [(dn + ds)/u]
to slow and the dn/ds ratio for divergence to decline (Figure
10A). We assumed complete linkage so that the dn/ds ratio
for polymorphism receives a boost when Nu . 1 from the
large amplitudes experienced by selected alleles, which
causes them to lose their neutral variants to drift whenever
they become rare (Figure 11). Neither mechanism operates
in the models of Huerta-Sanchez et al. (2008) and Gossmann
et al. (2014) because: (1) clonal interference is not possible in
a two-allele model, (2) fluctuating selection cannot purge

Figure 11 Strong fluctuating selection can either increase or decrease
heterozygosity, depending on the number of new alleles (Nu) entering
the population each generation. When Nu is small, fluctuating selection
inflates heterozygosity by evening the distribution of selected alleles com-
pared to the neutral expectation. When Nu is large, oscillations in the
frequencies of selected alleles cause them to bottleneck each generation,
purging them of their neutral variants. Selection varied from sa = 0.1 to
0.25 with Nu varying between 0.1 and 10 using N = 100 (with u varied
between 1023 and 1021), N = 103 (with u varied between 1024 and 1022),
and N = 20,000 (with u varied between 1025 and 1023), with t = 1.
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neutral variation unlinked to selected sites, and (3) fluctuat-
ing selection reduces polymorphism in the Fisher–Wright
model.

In their analyses of fluctuating selection using the Fisher–
Wright model, Karlin and Levikson (1974), Takahata et al.
(1975), Gillespie (1991), and Cvijovic et al. (2015) showed
that the frequency of temporal fluctuations in fitness influ-
ences the outcome of selection. They found that a new allele
would fix as if selectively neutral for ts , 1. For example,
simulations show the probability of fixing a new allele in a
population sized N = 104 with s = 60.1 and t = 1, is Up0 �
0.0001 (i.e., a neutral outcome for ts , 1). In the Moran
model with rapidly fluctuating symmetric selection, these
exact same parameters produce Up0 � 0.12/4 = 0.0025
(i.e., a nonneutral outcome for ts , 1, Figure 6A).

Why do the models differ? Allele frequencies are expected
to return to their starting values at the end of each cycle in a
Fisher–Wright model with symmetric fitnesses (selection is
not biased in favor of either allele). Rapid fluctuations in
fitness produce such small displacements in allele frequen-
cies that alleles drift as if selectively neutral. Fluctuating se-
lection assumes a different architecture in our model. Rare
alleles are favored because both competitors experience
more generations when the least fit is most common (which
benefits the fitter rare allele) and fewer generations when the
most fit is most common (which mitigates selection against
the same rare allele when it is less fit). Selection is not
expected to return the allele frequencies to their starting
values at the end of each cycle even when the changes in
fitness are exactly symmetric. Instead, the rare allele is
expected to increase in frequency. Selection must be weak
(s,

ffiffiffiffiffiffiffiffiffi
4=N

p
) and environmental fluctuations rapid (ts , 1)

to overcome this intrinsic bias (Figure 5 and Figure 6).
In 1924, Haldane started his exploration of the genetic

basis of evolution using a discrete time nonoverlapping gen-
eration model (Haldane 1924). To accommodate sexual
reproduction in diploids, he abandoned certain key demo-
graphic and ecological processes (e.g., continuous reproduc-
tion in bounded populations). His simplificationwas brilliant,
and perfectly suited for his goal of studying genes in popula-
tions (Haldane 1932). There can be no greater praise for this
pioneering enzymologist (Haldane 1930) than to note that
his is the approach we all use to study evolutionary genetics
today. Yet, abandoning continuous reproduction in bounded
populations came with a hidden cost. Haldane’s simplifica-
tion, so ideal for studying directional selection in constant
environments, forces the generations to march in lock step
with seasonal changes. His model does not accommodate
frequency-dependent changes in the number of allelic dou-
blings (generations) per season. Both in our experiments
(Yi and Dean 2013) and in our models, this frequency-
dependent slippage in generations promotes diversity.

In our random selection model (equivalent to a diploid
model with genic selection) evolutionary outcomes are the
emergentproperties of three inescapableprocesses:mutation,
geometric growth, and resource depletion (to place a bound

on population size). The model brings selection and neu-
trality under the same umbrella to reveal a middle ground,
where weakly selected alleles contribute both to polymor-
phism and fix as if selectively neutral. Unlike the classical
population genetic models of fluctuating selection, our
model has direct empirical support (Figure 1 shows selec-
tion can protect a polymorphism in a haploid species) and
predicts the higher dn/ds ratios for divergence than for poly-
morphism commonly observed among closely related taxa
(Hughes 2008; Wagner 2008). We suggest that our random
selection model provides a realistic alternative to the
Fisher–Wright model for describing fluctuating selection in
finite populations.
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