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ABSTRACT Vibrio harveyi is a persistent pathogen responsible for disease outbreaks
in aquaculture. We have sequenced the genome of a jumbo Vibrio phage, vB_pir03,
isolated in Greece. Here, we present the complete genome of vB_pir03, which con-
sists of 286,284 bp and 336 open reading frames.

V ibrio harveyi is a persistent bacterial pathogen in aquaculture that causes vibriosis in
marine finfish, crustaceans, and mollusks (1–3). The emergence of antimicrobial re-

sistance in aquaculture has prompted the search for alternatives; one of the most promis-
ing is phage therapy, which is the use of bacterial viruses as therapeutics (4–9). Here, we
report the complete genome sequence of vB_pir03, which was isolated in Piraeus, Greece
(37°56949.70N, 23°38929.50E), against the Vibrio harveyi type strain DSM19623.

In brief, the phage was amplified using concentrated LB and host bacteria and was
plated on LB-top agar at 25°C. The phage was then purified through six successive sin-
gle-plaque isolations. The phage titer was amplified by liquid propagation until it
reached approximately 109 PFU/ml for DNA extraction. The DNA was extracted accord-
ing to the phenol-chloroform method described previously (10). Both library prepara-
tion for the BGISeq-500 sequencing system (11) and whole-genome sequencing using
the BGISeq-500 sequencing system (Beijing Genomics Institute [BGI], Shenzhen, China)
(12) were performed at the BGI in Hong Kong. The quality of the reads was assessed
using FastQC v0.11.9 (13). The reads were de novo assembled with Unicycler v0.4.8 (14)
using the Pathosystems Resource Integration Center (PATRIC) v3.6.5 Web server (15).
The reads were mapped back to the assembled genome using QUAST v4.6.3 (16) and
BBMap v38.88 (17). PhageTerm was used to predict phage termini (18) through the
Galaxy server (19). Predicted open reading frames (ORFs) were called using RASTtk
(20), Genemark.hmm v2.0 (21), and Glimmer (22). The genome was analyzed for tRNAs
using ARAGORN (23) and tRNAscan-SE (24). Predicted ORFs of vB_pir03 were searched
against the NCBI nonredundant database using BLAST (25). Default parameters were
used for all software unless otherwise specified.

Sequencing of vB_pir03 produced 41,500,540 clean reads with an average read length
of 150bp and a GC content of 43.6%. The per-base call scores produced a median score of
36, while the proportions of the four bases remained relatively constant throughout the
read length, with the percentage of A being equal to that of T and the percentage of G
being equal to that of C. The GC contents of all reads formed a normal distribution with
no deviation of the peak of the curve from the theoretical peak. Per-base N content results
showed that no N substitutions were made. Unicycler assembled the genome of vB_pir03
into a single contig with a minimum genome coverage of 5�. The total genome length of
vB_pir03 was 286,284bp, which indicated that it is a jumbo phage. A total of 99.91% of
the raw reads were mapped back to the assembled genome, resulting in an average cov-
erage depth of 21,669�. In addition, the vB_pir03 genome was predicted with PhageTerm
to be circularly permuted. A total of 336 ORFs were predicted in the genome of vB_pir03,
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with 68 ORFs showing the greatest similarity to another jumbo Vibrio phage, vB_BONAISHI
(GenBank accession number MH595538), which infects Vibrio coralliilyticus (26). No tRNA
genes were found in the genome of vB_pir03.

Data availability. The genome sequence of phage vB_pir03 is available in GenBank
under accession number MT811961. The associated BioProject, SRA, and BioSample
accession numbers are PRJNA665717, SRR12712979, and SAMN16261552, respectively.
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