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Abstract

Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor
combinatorial patterns (or the ‘‘chromatin codes’’) remains a fundamental challenge in chromatin biology. Here we
developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the
macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure
learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of
chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and
chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and
interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known
experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help
guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin
profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help
understand less-studied cell type or conditions.
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Introduction
Genome-wide large-scale chromatin profiling projects such as

modENCODE/ENCODE [1,2] have provided unprecedented

measurements of chromatin factor combinatorial patterns, en-

abling a holistic view for understanding chromatin. Chromatin

factors, including histone-modifications and non-histone chroma-

tin proteins, are direct contributors to the diverse repertoire of

chromatin regulation to gene expression. Although we have gained

much knowledge on functions of individual chromatin factors,

understanding the collective code of chromatin factor patterns and

their underlying mechanism has remained a key challenge.

Understanding the collective behavior and function of chromatin

factors is challenging as the establishment and maintenance of

chromatin factor patterns are usually orchestrated by complex

molecular events involving multiple chromatin components, and

chromatin factors can affect the functional interpretation of each

other [3].

Despite the increasing availability of large-scale chromatin data,

no model has been capable of quantitatively explaining frequen-

cies of observed multi-dimensional chromatin factor patterns,

answering the important questions such as: Can we build a

predictive model of collective chromatin factor pattern frequencies

based on the interactions between chromatin factors? And can we

deduce the interaction strengths that best explain the observed

chromatin factor patterns? Such a quantitative model would have

a clear criterion for validation (accuracy in predicting pattern

frequencies), would give interpretable estimation of quantitative

dependency strengths between chromatin factors, and could

provide quantitative inference of unmeasured chromatin factor

profile based on partial data. To date, no such quantitative model

has been established for chromatin factor patterns and interac-

tions. Some previous studies have focused on inferring the

conditional dependency structure between chromatin factors

through Bayesian network structure learning [4–6], but Bayesian

network models rely on strong assumptions of directed and acyclic

dependency structure. While some interactions can be directed

and better modeled by Bayesian network, this assumption will not

hold in general as many physical binding interactions between

chromatin factors are undirected. In addition, these studies have

been limited to inferring an ensemble of candidate dependency

structures with heuristic search, and have not been able to

establish a parameterized probabilistic model of chromatin factor

patterns based on dependencies among chromatin factors. A

recent study proposed sparse partial correlation for detecting

interactions between histone modifications [7]. Partial correlation

matrix represents conditional independency structure between

variables when the distribution is multivariate Gaussian. However,

the distributions of ChIP-chip chromatin factor binding signals

highly deviate from multivariate Gaussian distribution (Figure S4,

Text S1). Probabilistic models including hidden Markov model

and dynamic Bayesian network methods have been applied to

chromatin data to segment the genome into functional states using
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probabilistic models, and these models have offered insights into

association between chromatin states and function [8–11]. But

these models either ignore dependencies between chromatin

factors or use a highly simplified model of such dependency.

In order to improve quantification of chromatin-factor interac-

tions and establish a probabilistic model that enables data-driven

inference of chromatin factor profiles, here we developed a

quantitative maximum-entropy-based framework for global inte-

grative chromatin profile analysis that is capable of learning and

leveraging interaction strengths between chromatin factors from

large-scale chromatin data (Figure 1). We utilized this quantitative

model to provide new insights into chromatin function on a range

of scales. Our approach simultaneously estimates both the

dependency strengths between chromatin factors and the chro-

matin ‘codebook’ – frequency distribution of each chromatin

factor combinatorial binding pattern, or chromatin code, observed

at each bin of genomic location. We found that due to the nature

of high dimensionality of chromatin code and enormous number

of possible combinatorial patterns, modeling the pattern distribu-

tion requires capturing the correlation structure with compact

representation of dependency, and we achieved this by explaining

the correlation structure by estimated pairwise and triplet

interactions between chromatin factors. Our maximum entropy

approach is based on the chromatin profiles for Drosophila

melanogaster S2-DRSC cell produced by the modENCODE project

for estimating statistical dependency strengths between 73

chromatin factors. Our approach is, to our knowledge, the first

that is capable of capturing higher-order chromatin factor

interactions through group L1-regularization-based structure

learning, which improves parameter estimation in high dimen-

sional space. The resulting model accurately reproduced the

observed chromatin code frequencies, and the dependency

strengths of chromatin factors estimated by the model accurately

predicted experimentally determined interactions. Furthermore,

the interaction model can serve as a context-based chromatin

factor profile inference engine. Given data for a subset of

chromatin factors, the model can provide accurate inference for

chromatin factor profiles based on interaction information and the

known profiles. Interestingly, comparable estimation accuracy can

be achieved for most chromatin factors even when using the model

to make predictions for a different cell type, the BG3 cell,

suggesting the potential for leveraging data from highly charac-

terized cell type to help understand less-characterized cell types.

Results

To quantitatively model not just the structure, but also strength

of interactions among chromatin factors, including higher-order

relationships, we developed a maximum-entropy-based chromatin

code modeling framework. Using this framework, we constructed

the quantitative model of chromatin factor patterns for Drosophila

S2-DRSC cell in normal culture condition. This dataset, produced

by the modENCODE project, is one of the most extensively

profiled chromatin datasets with a wide coverage of 73 non-

histone chromatin proteins, histone modifications, and histone

variants/subunits. Our model can predict both strength and sign

(positive versus negative) of interactions between chromatin factors

incorporating both pair-wise and higher-order interactions, and

can accurately predict experimentally determined chromatin

factor relationships. The strengths of interactions captured by

the model enable us to quantitatively describe crosstalk among

chromatin factors. Furthermore, the quantitative model allows

inference of unmeasured chromatin profiles based on partial

measurements, even in different cell types and conditions, and thus

can help understand chromatin in diverse less explored cell types

or conditions.

A quantitative maximum-entropy model of chromatin
factor interactions

Maximum Entropy modeling provides a flexible framework that

allows building models that discount indirect or transitive

relationships, with minimal assumptions. Intuitively, maximum

entropy modeling works by choosing the most uniform/least

structured, or maximum entropy, probability distribution while

ensuring consistency with a chosen set of observed statistics. For

modeling chromatin codes, natural choices for these statistics are

frequencies of individual chromatin factors and pairs of factors,

both of which can be reliably measured (Methods). On the

technical level, the model can be viewed as determining the

probability of observing a multivariate pattern by exponential of

the ‘‘energy function’’ of the pattern, such as
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where x represents a chromatin factor pattern by a binary

vector representing chromatin factors observed at a genomic

location, and energy parameters Hi, Jijand Jijk tune the

occurrence frequency of single factors, interaction strength

between two factors, and triplet interaction strength respectively.

Z represents the normalization factor or partition function that

ensures that the sum of probability of all possible patterns equals 1.

The energy of a chromatin factor pattern is the sum of the self-

energies of all presented chromatin factor and interaction energies

of all existing interactions. Maximum entropy modeling has been

successfully used to learn pair-wise interaction models for a wide

range of other complex biological systems, including modeling

correlation structure of neuron firings from multiple neurons[12],

Author Summary

Chromatin, like many other molecular biological systems,
is composed of multiple interacting factors. Our knowl-
edge about chromatin factors is mostly qualitative, and
such qualitative knowledge can be insufficient for predict-
ing collective behaviors. It’s also extremely challenging to
study collective behaviors involving multiple interacting
factors through genetic and biochemical experiments. An
alternative approach is to leverage large-scale genome-
wide chromatin profiles and statistical modeling to create
predictive models and infer underlying interaction mech-
anisms based on these observed high-throughput data. In
this study, we developed a novel maximum entropy-based
modeling approach to quantitatively capture interactions
between chromatin factors at the same genomic location,
which we see as a step toward quantitative understanding
of chromatin organization that involves a system of
multiple interacting factors. We applied this quantitative
model to successfully infer functional properties of
chromatin including interactions between chromatin
factors. Furthermore, the model predicts unmeasured
chromatin profiles with high accuracy based on its inferred
dependencies with other factors within and across cell-
types. Thus our modeling approach effectively ultilizes
large-scale chromatin profiles to dissect chromatin factor
interactions and to make data-driven inferences about
chromatin regulation.

Modeling Chromatin Factor Interactions
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capturing physical interactions between amino acids in protein

sequences through identifying direct evolutionary coupling [13–

15], and modeling co-evolved mutation pattern in virus protein

[16].

An additional advantage of our modeling framework is that it

can be readily extended to prediction of higher-order interactions.

Many complex interactions cannot be accurately captured by pair-

wise interactions, such as cooperative multivalent binding or

inhibition of binding between histone mark and reader protein by

other marks [3,17]. Such higher-order relationships are very

challenging to study without specific hypotheses to guide

experiments. To allow the maximum entropy framework to

incorporate higher-order interactions without overfitting, we

extended our framework to introduce L1-regularization to enable

accurate estimation of the free parameters by selecting for an

optimized subset of non-zero interactions. More specially, we

applied a group L1-regularization method to select for structure of

the model [18], and then estimated the model parameters with

maximum likelihood to get an unbiased maximum entropy model.

We evaluated the model performance by calculating coherence

score of the model and comparing predictions of multi-chromatin

factor pattern frequencies by the model with observed frequencies

(Figure 2). Both evaluations were calculated on hold-out test

set data, which were withheld from all training procedures.

Coherence scores were measured by exponential of mean log-

likelihood of each observed pattern in the test data given the

model. We trained and tested performances of several maximum

entropy models, and normalized the coherence score to the best

model score (Table 1). Maximum entropy models including up to

3rd-order interaction with regularization significantly improved

over pair-wise maximum entropy models with or without

regularization. Maximum entropy model incorporating sparse

3rd order interactions trained with group L1-regularization and

maximum likelihood fine-tuning gave the best performance, and it

demonstrated remarkable consistency with observed multi-chro-

matin factor pattern frequencies, even though only low-order

statistics (chromatin factor frequencies and frequencies of pairs /

triplets of factors) were used for parameter estimation (Figure 2).

As most chromatin profiles are clearly highly correlated

(Figure 3A), it is not surprising that the multivariate Bernoulli

distribution model assuming independence between chromatin

factors gave very low coherence score. Therefore, we decided to

use maximum entropy model with 3rd order interactions as our

best probabilistic model for chromatin factor patterns. In this

model, 7.6% of pairwise interaction energies and 71.9% of triplet

interaction energies are set to zero by L1-regularization. To

our knowledge, this model is the first quantitative model of

chromatin factor pattern frequencies considering chromatin factor

Figure 1. Schematic overview of chromatin factor interaction maximum entropy model. Chromatin factor patterns were extracted from
ChIP data by binning and thresholding algorithms (Methods). We then learned a maximum entropy model that estimates the distribution of
chromatin factor patterns by low-order (pairwise or pairwise & triplet) interactions. The model was then applied to prediction of chromatin factor
interactions and performing context-based prediction of chromatin profiles.
doi:10.1371/journal.pcbi.1003525.g001
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interactions and the first one capable of predicting higher-order

interactions.

Maximum entropy model accurately predicts known
chromatin factor interactions

Interactions between chromatin factors are critical for organi-

zation and regulatory function of chromatin, and are challenging

for large-scale experimental analysis, yet our chromatin model

provides de novo estimation for chromatin factor interactions. The

model can capture interactions between chromatin factors

quantitatively through their tendency to co-occur or not to co-

occur in chromatin profiles, including interactions resulting from

direct physical interaction, enzyme-substrate relationship, or co-

binding to the same DNA sequence or unidentified factors.

Specifically, for pair-wise interactions, we used the interaction

energy score Jij from regularized pair-wise interaction model (log

fold change in pattern frequency attributed to this interaction) as

the metric for interactions strength (Table 2, Table S1, Figure 3,

4). Importantly, interaction energy score in the maximum entropy

model estimates interaction between two factors conditioned on all

other factors in the model, meaning that it discounts indirect or

‘transitive’ correlations that are measured by pair-wise statistics

such as correlation (Figure 3A, S1B). The property of dissecting

out indirect interactions is critical to understanding the cross-talk

among chromatin factors, as otherwise indirect correlations

prevent the identification of individual direct interactions by

indiscriminately connecting large groups of chromatin factors

(Figure 3A). Note that increasing the coverage of interacting

factors in the data enables our model to dissect more direct versus

indirect interactions, thus the model benefits from the large-scale

collaborative efforts in chromatin profiling like modENCODE and

ENCODE projects [1,19], and is expected to improve further as

the coverage of chromatin factors in such projects grows.

Figure 2. Maximum entropy model accurately predicts high-order chromatin factor pattern frequencies in the data. For evaluation we
predicted frequencies of chromatin factor combinatorial binding patterns each involving either randomly selected 10 chromatin factors (A) or all 73
chromatin factors (B) from model, and compared against observed frequencies in test set data. Red dots represent estimations from maximum
entropy model with up to 3rd order interactions learned with regularization and fine-tuning; gray dots show estimations from independent Bernoulli
model. Independent Bernoulli model assumes independence between occurrences of different chromatin factors. The diagonal line is the identity
line.
doi:10.1371/journal.pcbi.1003525.g002

Table 1. Comparison of different models on hold-out data.

Model Coherence score (Normalized) Number of Parameters

3rd-order interaction model (Regularization+Fine-tuning) 1.00 19975 (73+2429+17473)

3rd-order interaction model (Regularization) 0.97 19975 (73+2429+17473)

Pairwise interaction model (No regularization) 0.65 2701 (73+2628)

Pairwise interaction model (Regularization+Fine-tuning) 0.63 2512 (73+2439)

Pairwise interaction model (Regularization) 0.51 2512 (73+2439)

Independent Bernoulli model 0.0001 73

Coherence score was calculated as exponential of the mean log-likelihood of each chromatin code in the hold-out test data, and was normalized by the best model
coherence score (hence the 3rd order interaction model with regularization and fine tuning has normalized coherence score of 1). Numbers of non-zero parameters for
self-energy, pairwise interaction and third-order interactions are shown in parenthesis, in that order.
doi:10.1371/journal.pcbi.1003525.t001
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Many strong interactions identified by our model have been

verified by experiments in previous studies. Among the top ten

predicted interactions, several are direct physical interactions

between proteins that are part of larger complexes (Table 2),

including the dosage-compensation complex (DCC) components

MOF - MSL1 [20], PhoRC complex components Pho – dSFMBT

[21], Polycomb-repressed chromatin mark and binding protein Pc

- H3K27me3 [22], heterochromatin mark and binding protein

H3K9me3 - HP1 [23], gypsy insulator complex components

CP190 - mod(mdg4) [24], and heterochromatin mark and writer

H3K9me3 - Su(var)3-9 [25]. As expected, indirect interactions

mediated by factors not included in the model can also be

captured: for example MSL1 and MLE were estimated to

positively interact, and their interaction with each other is likely

indirect and mediated by roX RNAs[26], which of course are not

part of this dataset. Communities of histone marks and chromatin

proteins connected by positive interactions are also consistent with

current knowledge (Figure 4).

The model has been shown to be a precise probability model of

hold-out data with high coherence score, but a separate evaluation

is required for benchmarking the model’s ability to identify direct

interactions, which also depends on the coverage of chromatin

factors included in the dataset. To quantitatively evaluate

performance of interaction energy scores in rediscovering known

interactions, we collected a set of experimentally supported

positive interactions including physical interaction, histone-mod-

ification – chromatin protein binding, and enzyme-substrate

interaction based on public curated databases and our manual

curation (Table S2). L1-regularized pair-wise interaction Maxi-

mum entropy model demonstrated a remarkably high precision in

capturing known interactions, with 10/15 top predictions being

experimentally verified interactions (46 fold of background

precision of 1.45%), suggesting its potential in predicting unknown

interactions (Figure 3B). This performance far surpassed common

‘local’ pair-wise measures including correlation and mutual

information, which have below 10% precision using any threshold

Figure 3. Model provided accurate predictor for experimentally validated chromatin factor interactions. (A) Heatmap visualization of
maximum entropy model pair-wise interaction energy scores (upper right) compared with correlation z-scores (lower left); The heatmap is ordered to
position positive interactions close to diagonal so positively interacting factors tend to be adjacent to each other. H3K23ac-, H1-, H3-, H4- represent
the depletion of these factors respectively. For comparison with interaction scores, correlations were transformed to z-scores by Fisher transformation
and rescaled to make standard deviation equal to the standard deviation of pair-wise interaction energy scores. In figure legend, the corresponding
correlation (left) and interaction energy score (right) at each z-score level is shown. The interaction energy score prediction is robust to changing bin
size in data processing (Figure S2). (B) Precision-recall curves for predicting known interactions. Precision-recall curve shows the performance of using
interaction energy score to classify interaction at all thresholds. Precision-recall curve of L1-regularized pair-wise interaction maximum entropy model
interaction energy scores (red, solid) is compared to unregularized pair-wise interaction maximum entropy model interaction energy scores (black,
solid), Bayesian network bootstrap score (black, dashed), Pearson correlation coefficients (grey, dashed), Partial correlation (grey, solid), and mutual
information (grey, dot). Maximum entropy models, Bayesian network model and mutual information are computed on discretized data, while
correlation and partial correlation were computed on continuous data without discretization.
doi:10.1371/journal.pcbi.1003525.g003

Table 2. Top 20 predicted positive pairwise interactions based on pairwise interaction model with regularization.

Chromatin factors Interaction energy score

H4K16ac MSL1 5.10

MOF MSL1 4.56

H3K9me2 H3K9me3 4.53

HP1b HP1c 4.21

dSFMBT Pho 3.76

H3K27me3 Pc 3.52

dRING Pc 3.50

H3K9me3 HP1a 3.21

CP190 mod(mdg4) 3.10

H3K9me3 Su(var)3–9 3.05

JIL1 MSL1 2.64

CP190 Su(Hw) 2.64

HP1a HP4 2.58

H3K36me3 JIL1 2.56

mod(mdg4) Su(Hw) 2.49

H2Bubi H3K79me2 2.45

E(z) Pc 2.43

HP1a HP2 2.42

GAF MOF 2.40

H3K23ac- H3- 2.29

Bold pairs are in evaluation standards (experimentally validated).
doi:10.1371/journal.pcbi.1003525.t002
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(Figure 3B). Partial correlation gives better performance than

correlation but the performance is much lower than the maximum

entropy model (Figure 3B), and this is likely because the

distribution of chromatin factor pattern is not multivariate

Gaussian, violating the assumptions required for interpreting

partial correlation as conditional independence structure (Figure

S4, Text S1). We also applied the Bayesian network bootstrap

score approach [4,5], and it underperforms the L1-regularized

maximum entropy model (Figure 3B). It is further important to

emphasize that in contrast to our maximum entropy model, the

strength and sign of interaction are not explicitly learned by the

Bayesian network method (Figure S1A).

Given the high performance on hold-out data and the high

enrichment of known interactions among the top predicted

interacting pairs, our model is promising for predicting novel

interactions (Tables 2, S1). Analysis of top predictions identified

additional experimentally supported interactions not included in

our standards, as well as promising novel predictions. Other than

the interaction between MSL1 and MLE mentioned above,

CP190-CTCF was also reported to be co-immunoprecipitated

[27]. Another interesting prediction is the GAF-MOF positive

interaction. A few lines of evidence support potential association

between them: The GAF binding motif is enriched in poised MSL

complex entry sites, and MOF is a component of MSL complex

[28]. Moreover, GAF has been shown to affect at least one specific

MSL complex entry site on X-chromosome [29]. Some other

predictions are supported by motif or domain in protein

sequences. For example, HP1b-RPD3 is predicted to be a positive

interaction, and shadow domain of HP1b is predicted to bind

PXVXL motif [30] while we found RPD3 has a very close PXVXI

sequence motif supporting potential interactions. Several novel

predictions show potential connection between different chroma-

tin-based processes, for example, histone chaperone SPT16 is

predicted to strongly interact with topoisomerase II. SPT16 and

topoisomerase II have been co-purified in a complex in human

HeLa cell line[31], and SPT16 is a component of FACT complex

which is involved in chromatin remodeling during elongation.

This indicates that chromatin remodeling complex and DNA

topoisomerase may function together in coordinating chromatin

structure.

Maximum entropy model predicts higher-order

interactions. Higher-order interactions involving more than

two chromatin components have not been well studied except for a

few examples [3,17]. This limits a systematic evaluation of these

higher-order predictions, although our finding that third order

interactions improved maximum entropy model coherence score

performance likely indicates third order interactions well captured

chromatin factor cross-talk represented in the data. These triplet

interactions were estimated from group L1-regularized 3rd order

interaction models and capture effects not explained by pair-wise

Figure 4. Pair-wise interaction network organization structure of chromatin factors. Each node represents a chromatin factor and each
edge represents a pair-wise interaction. Edge color indicates sign and strength of interaction energy score (red indicates positive interaction while
blue indicates negative interaction). Only interactions with interaction energy score Jij

�� ��w0:80 are shown.
doi:10.1371/journal.pcbi.1003525.g004
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interactions (Table S3). Positive or negative triplet interactions

indicate positive or negative cooperatively of co-occurrence.

Experiments on synthetic dataset have shown that this group

L1-regularization algorithm is capable of recovering true high-

order interactions [18]. An interesting example of the predicted

higher-order interactions is the negative triplet interaction among

CP190, CTCF, and Su(HW) (Table S3). CP190 and Su(Hw) are

known to interact and both showed co-localization with CTCF

[32], and indeed our model captured strong positive pair-wise

interactions CP190-CTCF and CP190-Su(Hw). We hypothesize

that this negative triplet interaction indicates direct or indirect

‘competition’ between CTCF and Su(Hw) over co-binding with

CP190 – binding of one protein may ‘suppress’ the binding of

the other to CP190. This observation supports a model where

CP190 forms different insulator complexes with different groups of

proteins, possibly directed by different DNA sequence motifs. Our

predicted higher-order interactions provide hypotheses that can

guide future experimental studies in this complex and large search

space.

Maximum entropy model enables accurate chromatin
profile inference within and across cell types

Strong interactions estimated among chromatin factors suggest

that we may use profile information from a subset of chromatin

factors to infer other profiles based on the model. As a generative

probabilistic model, the chromatin model can in principle give

probability of occurrence of any chromatin factor(s) conditioned

on the context of known binding profile of other chromatin

factors. Furthermore, here we investigate whether such inference

can be performed across cell types.

Prediction of chromatin profile based on partial

chromatin data. We first evaluated the predictability of

chromatin profiles. Applying the 3rd order maximum entropy

model to the hold-out test set data, we predicted each chromatin

factor profile from the remaining profiles and evaluated the

prediction with measured data. Most chromatin factor profiles can

be well predicted given the model and the rest chromatin profiles.

66/73 (90%) chromatin factor profiles were predicted with an

AUC (area under the Receiver Operating Curve) larger than 0.90

(Figure 5A, Table S4). AUC can be interpreted as the probability

that the prediction score of a randomly chosen positive genomic

bin is larger than the prediction score of a randomly chosen

negative genomic bin.

Chromatin profile predictions across cell types. Most

current large-scale epigenome mapping projects take the strategy

of characterizing a large number of chromatin factors for only a

few cell types while characterizing a much smaller subset for other

cell types [2,33], and it is costly to perform extensive chromatin

profiling in new cell types or under new conditions. Therefore, we

investigated whether it is possible to leverage the dependency

information captured in the model trained on the data from a

relatively comprehensively profiled cell line to help predict

unmeasured chromatin profiles in less-characterized cell lines.

Conservation of chromatin factor interactions is critical for the

feasibility of cross cell type prediction. Therefore we learned

regularized pairwise interaction maximum entropy models for

each of S2 cell and BG3 cell on a set of 47 chromatin factors

shared between datasets of the two cell lines, and then compared

the resulting models. Comparison of the two models shows high

correlation of interactions energy scores (0.77) (Figure S3), despite

relatively low correlation between chromatin profiles for the same

chromatin factor in the two cell types (mean = 0.43, standard

deviation = 0.17). Therefore it appears promising to attempt

predicting chromatin profiles across cell types based on conditional

probability estimators.

To demonstrate feasibility of cross cell type prediction, we

trained 3rd-order maximum entropy models using data from either

S2 cell or BG3 cell separately, and then we tested each model on

predicting test set chromatin profile from both the same and the

other cell type. The results showed that chromatin profile

prediction using the model trained on data of another cell type

achieves similar performance as the model trained with data from

the same cell type (2.8% decrease predicting BG3 cell profile,

3.2% decrease for predicting S2 cell profile; Figure 5C–D). An

example of such prediction is shown in Figure 5B. These results

confirmed the potential of leveraging our models to estimate

unmeasured chromatin profiles in less-characterized cell types,

enabling improved understanding to chromatin in diverse cell-

types and conditions and planning of future chromatin profiling

experiments by prioritizing chromatin factors potentially involved

in the research question of interest based on the model predictions

or chromatin factors that are less-predictable from known

chromatin profiles.

Discussion

We developed a global modeling framework for chromatin

profiles based on a generative model of chromatin codes that, to

our knowledge, is the first probabilistic model that captures both

pairwise and higher-order interactions among chromatin factors.

Applying this method to the large-scale chromatin profiles, we get

a high accuracy, data-driven estimator of interactions that underlie

the formation of chromatin factor patterns. Moreover, our

methods provided effective tools to make data-driven prediction

of unknown chromatin profiles based on context, and showed

feasibility of prediction across cell types.

Our model is also extendable to include more information or

interaction types. To demonstrate this, we applied the model to

predict actively transcribed genomic regions. We discretized

transcription level to high and low classes by fitting a mixture

model [34], and included transcription level at each genomic bin

in chromatin factor patterns for learning the maximum entropy

model. Prediction for transcription was then performed by

conditional probability estimation given all other chromatin factor

profiles. While previous research has demonstrated high predict-

ability of gene expression from chromatin profiles [1,35,36], here

we showed that transcription can be accurately predicted based on

the chromatin profiles even without any prior knowledge about

gene structure in test data (Figure 6), and as a generative model

this model allows more diverse types of inference than simply

predicting expression, such as inferring chromatin marks profiles

while conditioning on expression level. The model can also be

potentially extended to model both discrete and continuous

variables [37].

To fully leverage the power of large-scale chromatin profiles,

using a global statistical model like the maximum entropy model

allows one to focus on direct interactions even when transitive and

indirect interaction signals are prevalent in chromatin profiling

data. However, it is important to note that such models will detect

interactions that are indirect when the factor that mediates this

indirect interaction is not included in the model. Furthermore,

maximum entropy modeling is especially suited for many

biological systems as it makes minimal assumptions. This is im-

portant in this problem because we have little prior knowledge

about quantitative nature of interaction. Over-parameterization

can be a limitation for models involving too many potential

interactions, which is common when a model includes a large
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number of factors or when higher order interactions are

considered as in our case. We demonstrated that regularization

helps learning better biological interactions from data and

selecting features for building higher-order models.

Histone modifications are known to facilitate or repress each

other through crosstalk [3], and our modeling approach provides a

systematic way to analyze crosstalk patterns. Interestingly, we found

that interactions between di-methylation and tri-methylation marks

are often positive, for example interactions of H3K9me2 and

H3K9me3 or of H3K4me2 and H3K4me3; while mono-

methylation and tri-methylation, such as H3K36me1 and

H3K36me3 or H3K4me1 and H3K4me3 often have negative

interactions. Known examples of histone crosstalk were also

captured by the model. For example, H2Bub is reported to

stimulate methylation of H3K79me by Dot1L [38]. While

Dot1L is not included in the dataset, H2Bub is expected to be

Figure 5. Context-based intra- and inter-cell type chromatin factor profile predictions achieve high overall performance. (A)
Prediction performances on hold-out chromatin factor profiles based on partial data and chromatin model. Chromatin factor profile predictions are
compared with observed chromatin profiles using receiver operating characteristics (ROC) that shows true positive rate (y-axis) and false positive rate
(x-axis) at full range of prediction thresholds. The diagonal line (dashed) shows expected performance of random classifier. The histogram shows
frequency distribution of area under ROC curves (AUC). (B) Comparison of predicted and observed S2 cell H3K18ac chromatin profile. ChIP profile is
visualized as the space-filling Hilbert curve as in [11], therefore adjacent genomic locations are also close to each other in this 2D representation.
Predicted profile based on BG3 cell model is colored yellow, with darker color showing higher probability; Observed binarized profile is colored blue;
Overlap between predicted and observed profile is therefore green. H3K18ac is an example chromatin factor which cannot be accurately inferred
from any other single chromatin profile (the highest correlation coefficient with H3K18ac is 0.37). (C, D) Comparison of inter-cell type versus intra-cell
type chromatin profile prediction performances. Performance is measured by AUC. ‘-.’ indicates which cell lines the model is trained for and tested
on, e.g. S2-.BG3 represents predicting BG3 cell data with model trained on S2 data.
doi:10.1371/journal.pcbi.1003525.g005
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positively interacting with H3K79me. Indeed, H2Bub-

H3K79me1/2 was predicted to be positively interacting

(Figure 3A).

Increase of chromatin profiling capability is expected to provide

us access to larger sets of multi-factor chromatin profiles and

consequently more powerful models. Our modeling framework is

readily applicable to those large-scale chromatin datasets, and it is

flexible to be extended it to include different types of features.

Although currently only a few cell types have been extensively

profiled, we envision that our modeling framework will be widely

applicable to new large-scale chromatin data, and our models can

also help generate hypothesis and drive experiments in less

characterized conditions or cell types by transferring dependencies

learned from well-characterized cell types. We are optimistic that

as more genome-scale chromatin profiling data become available,

quantitative modeling of chromatin organization will enable

understanding and modeling how chromatin works in different

contexts as a system of multiple interacting factors.

Methods

Maximum entropy model formulation
The principle of maximum entropy allows us to construct data-

based models with minimal assumptions [39]. While constraining

the model to be consistent with observation data on expectation of

feature values, the principle of maximum entropy suggests that the

optimal distribution is the one with the maximum entropy, or

smallest Kullback-Leibler divergence from uniform distribution.

Applying the principle of maximum entropy with con-

straintsSfm(x)TP~Sfm(x)Tobs using Lagrange multiplier, where x

is the quantity to be modeled and fm(x) is a feature of x, we get a

model with the exponential family distributions form:

P(x)~
1

Z
exp

X
m

lmfm(x))

 !
ð2Þ

ls are free parameters to be estimated from data.

The formulation of model is determined by choice of

constraints. For the chromatin model, if we set the features that

we expect model to match to be occurrence frequency of each

chromatin factor and co-occurrence frequency of each pairs of

chromatin factors that we can reliably measure. Thus the model

can be written as

P(x)~
1

Z
exp

X
i

Hixiz
X
ivj

Jijxixj

 !
ð3Þ

If we also add triplet frequency constraints, the model becomes

equation(1).

Self-energy and pairwise interaction energy parameters Hi and

Jij tune the occurrence frequency of single factor and interaction

strength between two factors respectively, and triplet interaction

energy parameter Jijk tunes triplet interaction strength. Note that

the number of parameters increases exponentially for high-order

interactions, if we consider all possible interactions. Z represents

the normalization factor or partition function in physics which

ensures that the sum of probability of all possible patterns equals 1.

A nice feature of maximum entropy model is that the globally

optimal estimation can be uniquely determined since the entropy

function is concave, which is not true for Bayesian network for

which a complex search space of model structure has to be

explored with heuristic methods. It can be shown that the

maximum likelihood estimator of parameters in maximum

entropy model gives the same unique solution as constrained

maximization of entropy. Therefore we can learn the model by an

unconstrained optimization for likelihood.

Model learning
For learning the model, we first performed structure learning

using group L1-regularization. L1-Regularization shrinks param-

eters weakly supported by data to zero. Therefore it reduces the

parameter space and allows estimating higher-order interactions.

Moreover, we constrained the model structure to be hierarchical: a

triplet interaction involving i, j, k will only be non-zero when all

Figure 6. Extended chromatin model well predicts actively transcribed genomic regions. Predictions are compared with precision-recall
curve (A) and receiver-operating characteristics (ROC) curve (B) at full range of prediction thresholds.
doi:10.1371/journal.pcbi.1003525.g006
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three pair-wise interactions i-j, j-k and i-k are non-zero, using

algorithms described in [18]. To describe briefly, the model

learning objective is written as:

min
H, J

{
X

i

log p(xiDH,J)zl
X
ivj

J�ij

��� ���
2
z2l

X
ivjvk

Jijk

��� ���
2
ð4Þ

J�ij represents the group of parameters including pair-wise

interaction J�ijand all third-order interaction parameters that

involves both i and j. These constraints enforce hierarchical

structure of the model [18]. To speed up computation for structure

learning, we replaced likelihood with pseudo-likelihood approxi-

mation [18,40,41]. Pseudo-likelihood is defined as product of all

conditional probability of single variable given the others:

p(xDH,J)~Pi p(xi Dx{i,J,H) ð5Þ

The negative log pseudo-likelihood is also a convex objective

function but it can be exactly optimized much more efficiently. We

selected the regularization parameterl that gives the lowest

pseudo-likelihood on validation data.

After structure learning, the non-zero parameters were chosen

to be included in the final model and we initialized the model

parameters with pseudo-likelihood-based estimation. We found

parameters estimated in structure learning step to be sufficient for

predicting chromatin factor interactions, but the corresponding

probabilistic distribution is not well calibrated. We thus fine-tuned

the parameters via the maximum likelihood estimation algorithm.

Gradient of model likelihood with respect to lm is

Sfm(x)Tobs{Sfm(x)TP. Exact computation of Sfm(x)TP is intracta-

ble when number of factors is much larger than 20 as it requires

enumerating all possible configurations of X, but it can be well

approximated by Monte Carlo Markov Chain (MCMC) sampling.

Thus we performed Gibbs sampling to estimate the gradient and

performed fixed step-size gradient descent update; the progression

of fitting was monitored by Pearson correlation between observed

and model-predicted statistics (i.e.Sfm(x)TobsandSfm(x)TP). Our

implementation of learning procedures utilized Mark Schmidt’s

Undirected Graphical Model toolbox [42] and code for hierar-

chical log-linear model [18], with modifications to speed up

computation for binary state models we are using.

For computation of chromatin factor pair-wise interaction

energy scores, we trained a pseudo-likelihood based L1-regular-

ized 2nd-order maximum entropy model. A 3rd –order maximum

entropy model trained by structure learning and fine tuning steps

were used as our best probabilistic model for chromatin codes and

used for estimating 3rd order interactions.

Validation of chromatin factor interaction estimation
We curated experimentally supported physical interactions and

enzyme-substrate interactions between chromatin proteins from

BioGRID protein-protein interaction database [43] and litera-

tures. Only interaction evidences from small-scale studies were

used. Evaluation standards curation was independent from

interaction prediction results. An interaction was included in the

evaluation standard if an experimental assay supports direct

physical interaction or enzymatic interaction. To stabilize the

estimation of precision recall curve, we performed resampling with

replacement from evaluation standards for 2000 rounds. Precision

recall curves were calculated for each resampled standard, and

then all resampled precisions at each recall level were averaged.

Data sets and processing
Chromatin binding profiles of histones and chromatin proteins

were measured by the modENCODE project [1]. ChIP-tilling

array probe signals were first standardized using Model-based

Analysis of Tilling-array (MAT) algorithm [44,45]. Probes that are

mapped more than once within 1 kb were removed before any

analysis. Probe t-values from multiple experimental replicates were

averaged, and input control experiments mean t-values (in log

scale) were subtracted from ChIP experiments mean t-values to

calculate standardized probe signal. Standardized probe signals

were binned by 200 bp windows and averaged within each bin.

Bins with lower probe coverage than 50% were withheld from

further analysis.

After inspecting the distribution of data and applied statistical

test for multivariate normality of data (Text S1), we decided it is

inappropriate to take the multivariate Gaussian assumption, as

enrichment or depletion signal only appear to locate at one tail of

the distribution. Instead we applied a signal extraction algorithm

to decide statistically optimal decision threshold of signal and noise

and discretized the data. We fit a nonparametric mixture model to

estimate background distribution and signal distribution assuming

only symmetry of the background distribution and that the signal

distribution lie on one side of background distribution peak while

having negligible probability density on the other side (Figure S4).

Enrichment in ChIP experiments were detected for most

chromatin factors, except for H1, H3, H4, and H3K23ac for

which depletions were detected. We determined optimal decision

threshold as the bin signal value at which the likelihood of the

value coming from background and signal distribution equals

(Figure S4).

For purpose of an unbiased evaluation of model performance,

the data were divided into training (265560 bins), validation

(parameter selection, 84976 bins) and hold-out testing set (183859

bins). To minimize dependency between each set, instead of

randomly assigning bins we first divided genome to 50 approx-

imately equal-sized slices. 25 slices were assigned to training set.

The other 25 slices were further divided into validation set and

testing set. Training set was used for learning models; validation

set was for selecting tuning parameters like regularization

parameter in structure learning step; and test set was used only

for evaluating model performance.

Model coherence score calculation
Probability distribution was evaluated by coherence score,

which was calculated as exponential of mean log-likelihood of each

chromatin code in test data. Thus higher coherence score indicates

better model of data. For maximum entropy models, we first need

to estimate the normalization constant, or partition function Z. Z

was estimated by one divided by proportion of all-zero pattern in

samples drawn from the model. As all-zero pattern is the most

common pattern, this estimator can provide a reliable estimation

of Z. 1,000,000 samples were drawn with Gibbs sampling for

maximum entropy model (one sample per iteration of sequential

Gibbs sampling sweep). The probability for each pattern can then

be easily calculated. For independent Bernoulli model, probability

can be directly calculated by the product of empirical marginal

probability of each chromatin factor.

Context based prediction of chromatin profiles and
evaluation

Given ChIP profiles for a subset of chromatin factors, the

unknown chromatin factor profiles can be estimated by condi-

tional probability based on their interactions with profiled factors.

Modeling Chromatin Factor Interactions

PLOS Computational Biology | www.ploscompbiol.org 11 March 2014 | Volume 10 | Issue 3 | e1003525



The conditional probability formula for each chromatin factor

given the others can be easily derived given the maximum entropy

model:

P(xiDx-i)~
1

1zexp -Hixi{
P
j=i

Jijxixj{
P

j=i;k=i;jvk

Jijkxixjxk

 ! ð6Þ

To evaluate the accuracy of prediction with S2-DRSC cell

model, we calculated the conditional probability of each chroma-

tin factor at each genomic bin based on profiles of remaining

chromatin factor in test set data. The conditional probabilities for

each bin were then compared with observation, and we calculated

Area under Receiver Operating Characteristic curve (AUC) as the

evaluation metric. For cross-cell-type prediction evaluation, we

similarly trained 3rd-order maximum entropy models on the data

for the consensus set of 47 chromatin factors measured for S2-

DRSC or DmBG3 cell. Intra- and cross- cell type predictions were

computed and evaluated on the test set data as described above.

Prediction of actively transcribed regions and evaluation
For prediction of actively transcribed regions, we trained

maximum entropy models using both 73 chromatin factors and

RNA-seq data for S2-DRSC cells from [46]. RNA-seq data were

processed by the same thresholding algorithm as for processing

ChIP data with the difference that the discretization threshold is

decided for per-gene Reads per kilo base per million (RPKM)

measures.

Supporting Information

Figure S1 Comparison of pairwise interaction energy
scores with Bayesian network bootstrap scores and
correlations. (A) Pairs with both strong positive and negative

pairwise interaction energy scores tend to have higher Bayesian

network bootstrap scores. (B) Pairwise correlations show only weak

correlation with interaction energy scores.

(EPS)

Figure S2 Comparison of pairwise interaction Maxi-
mum entropy model interaction energy scores using
data preprocessed with different bin width. Pairwise

interaction model with regularization trained with data prepro-

cessed with 200 bp were compared with model trained with the

same procedure but using 500 bp bins in preprocessing. Model

interaction energy scores are not sensitive to the bin width

difference in data preprocessing.

(EPS)

Figure S3 Comparison between S2-DRSC cell and
DmBG3-c2 cell pairwise interaction maximum entropy
models with regularization. (A) and (B) show comparison of

maximum entropy model parameters. In (A) upper right triangle

and lower left triangle show interaction energy score Jijs of S2 cell

model and BG3 cell respectively. In (B), green dots shows

chromatin factor self-energy score His, while black dots show

interaction energy scores Jijs.

(EPS)

Figure S4 Examples of chromatin factor standardized
binned ChIP signal distribution and discretization
threshold. (A–F) Solid line represents the overall standardized

binned ChIP signal distribution for the chromatin factor, dashed

line represents estimated background and signal distribution.

Vertical solid line represents the optimal discretization threshold

determined by our thresholding algorithm.

(TIF)

Table S1 Interaction energy scores from the regular-
ized pairwise interaction maximum entropy model of
S2-DRSC cell based on modENCODE datasets.

(TXT)

Table S2 Curated experimentally supported direct
positive interactions for the evaluation of pairwise
interaction prediction.

(TXT)

Table S3 Top triplet interaction energy scores from the
3rd order interaction maximum entropy model of S2-
DRSC cell based on modENCODE datasets.

(TXT)

Table S4 Area under ROC (AUC) scores for evaluation
of predicting test set chromatin profiles by the S2-DRSC
cell 3rd-order maximum entropy model.

(TXT)

Text S1 Testing multivariate normality of the chroma-
tin profile data.

(DOCX)
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