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Abstract

The spatiotemporal behavior of human EEG oscillations is investigated. Traveling waves in the alpha and theta ranges are
found to be common in both prestimulus and poststimulus EEG activity. The dynamical properties of these waves, including
their speeds, directions, and durations, are systematically characterized for the first time, and the results show that there are
significant changes of prestimulus spontaneous waves in the presence of an external stimulus. Furthermore, the functional
relevance of these waves is examined by studying how they are correlated with reaction times on a single trial basis;
prestimulus alpha waves traveling in the frontal-to-occipital direction are found to be most correlated to reaction speeds.
These findings suggest that propagating waves of brain oscillations might be involved in mediating long-range interactions
between widely distributed parts of human cortex.
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Introduction

Since the discovery of neural alpha oscillations with typical

frequency of 8 to 12 Hz in normal adult human electroenceph-

alographic activity, neural oscillations with frequencies ranging

from 0.05 Hz to 500 Hz have been found to be ubiquitous in both

evoked and spontaneous activity [1]. An essential question of these

oscillations is how they are spatiotemporally organized, since such

organization is believed to be important for the brain, which is a

highly distributed system, to coordinate its parts dynamically to

give rise to coherent percepts, thoughts, and actions [2]. However,

studies of spatiotemporal behaviors of brain oscillations have

mostly been limited to their temporal aspects, particularly, their

zero-lag synchronization [1]. During the last decades, such

synchronization has been extensively studied, with efforts to reveal

its potential functional roles in feature binding, memory, and

attention [3].

Theoretical modeling studies, including classical studies [4,5,6],

and modern neural field studies [7–12,13], have suggested that the

spatiotemporal behaviors of brain oscillations can organize into

propagating waves. In experimental studies, wave patterns have

first been observed in electroencephalographic activity [14].

Recently, due to progress in experimental techniques including

high-density EEG, multiunit recording, optical imaging and other

advanced imaging techniques, a growing number of experimental

studies have been showing that propagating waves are widespread

in the brain. For instance, such patterns have been found in the

olfactory bulb [15], in the visual cortex of various species

[16,17,18,19], in the sensorimotor cortex of behaving mice [20],

and in the hippocampus [21]. While most of these studies have

focused on evoked activity, a few studies have demonstrated the

existence of propagating waves in prestimulus spontaneous activity

in the absence of external stimuli. Examples include spontaneous

wave patterns in visual cortex [17,22], sensorimotor cortex [23],

barrel cortex [24], and human EEG activity [10,25,26]. These

experimental findings are of particular interest, since they directly

demonstrate that instead of being noise, as is conventionally

thought, prestimulus spontaneous activity has spatiotemporal

structure. Furthermore, this empirical evidence raises several

interesting questions: what are quantitative properties of presti-

mulus spontaneous waves? How are these properties changed in

the presence of external stimuli? And more importantly, what are

their possible functional roles in brain information processing?

The paper aims to make a step toward answering these

questions by investigating the properties of both prestimulus

spontaneous waves and poststimulus waves in alpha and theta

frequency ranges of human EEG activity, including their speeds,

directions and durations. We show that prestimulus spontaneous

waves have significant changes in these properties when external

stimuli are present, therefore indicating that their collective

behaviors change to accommodate the stimuli. Furthermore,

based on single-trial analysis of EEG data, we show that the trial-

by-trial fluctuations of reaction speeds were significantly correlated

to those of prestimulus alpha waves, illustrating that the

prestimulus waves have a significant influence on how fast the

stimulus is received and processed.

Materials and Methods

Experimental paradigm and EEG recordings
The experiment performed by all participants was a typical Go/

NoGo paradigm. The subjects sat on a chair and faced a blank

black computer screen. The Go stimulus was the presentation of

the word PRESS in green on the computer screen while the NoGo
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stimulus was the presentation of the word PRESS in red. In

response to the Go stimuli the subjects were instructed to press a

button with their finger, while for the NoGo stimuli the subjects

were instructed not to press the button. The entire task comprised

many individual PRESS stimuli that were grouped into sequences

of 6 such that each event in each sequence was the same condition;

i.e., either a Go or a NoGo. A set of 20 Go and 5 NoGo sequences

were presented in pseudorandom order (a total of 120 Go trials

and 30 NoGo trials); we analyzed the Go trials in the study. All

PRESS commands were sustained for 500 ms and the speed and

accuracy of response were equally stressed in the instructional

period before the recordings. The interval between stimulus onsets

was 1500 ms. The Go conditions were matched with the

corresponding button presses, and the trials where a button was

missed were removed.

Data collection was done by Brain Resource Ltd (Ultimo, NSW,

Australia; www.brainresource.com) and results were made avail-

able through the Brain Resource International Database (BRID).

Recordings were made at 26 electrode sites from an extension to

the International 10–20 System, following previously published

methods for acquisition and artifact removal [27]. The layout of

the electrodes is shown in Fig. 1. EEG data were recorded at a

500 Hz sampling rate and an A/D precision of 0.06 mV through a

NuAmps (Neuroscan) amplifier using an averaged mastoid

reference and low-pass third order Butterworth filter with a

26 dB point at 50 Hz. Note that while the main results obtained

here were based on the averaged mastoid reference, we have also

compared with an average reference, which was obtained by

calculating the spatial average of EEG signals at each time

moment and subtracting it from all channels, to verify that the

results obtained here don’t sensitively depend on the reference

channel.

Twenty-two subjects participated in the experiments. Prior to

the experiment, all had given their written informed consent, and

the University of Sydney Human Research Ethics Committee had

approved this study. Preprocessing was done as follows: Using a

semiautomatic artifact rejection procedure, among the 120 Go

trials of each subject we excluded the ‘‘bad’’ trials, in which the

absolute voltage difference exceeded 50 mV between 2 neighbor-

ing sampling points or the amplitude was outside +100 or

2100 mV. The entire recording was rejected if more than 16% of

trials were rejected. Six subjects were excluded because of such

bad recordings. The remaining subjects (10 males, 6 females,

mean age: 32, range: 18 to 56) were healthy, and reported no

history of brain injury, disease, or other medical conditions that

could influence the normality of the EEG. Also, it is worthwhile to

note that, for this age range (18 to 56), EEG characteristics are

largely mature and stable; this range avoids both the develop-

mental changes in childhood and the changes due to old age

[28,29,30]. For the remaining 16 subjects, we found that the

number of bad trials varied between the different subjects, ranging

from 5 to 19 trials. For inter-subject consistency in our analysis, we

therefore used 100 clean trials from each subject’s dataset.

Data analysis
The time-frequency information and phases of the EEG data

were computed using the continuous wavelet transform with

complex Morlet wavelet. In contrast to standard FFT analysis

using fixed time windows, the wavelet analysis uses longer time

windows for lower frequencies than for higher ones. Suppose that

xn is the sampled signal from one channel, then its wavelet

transform is

Wn sð Þ~
XN{1

n0~0
xn01

� n0{nð Þdt

s

� �
, ð1Þ

where n is the time index, asterisk indicates the complex conjugate,

dt is the sampling time interval of the signal xn,1 is the wavelet

function with s being the scale of the function. The wavelet

function 1 tð Þ is

1 tð Þ~p{1=4eiw0te{t2=2, ð2Þ

Where w0 is the nondimensional frequency, here taken w0 = 6 to

satisfy the admissibility condition of wavelet [31]. Since Wn (S) is a

complex number, it can be represented as An sð ÞeiQn(s), in which An

is the amplitude and Qn is the phase, with

Qn sð Þ~tan{1 ImfWn sð Þg
RefWn sð Þg

� �
, ð3Þ

Where ImfWn sð Þg is the imaginary part of Wn sð Þ and

RefWn sð Þg is its real part. Equations (1)–(3) enable each voltage

time series to be transformed into time series of phase (modulo 2p).

EEG records potentials on the scalp, and it has low pass filter

effect on brain signal; this effect prevents the detection of high

temporal frequency waves with low wavelengths. In other words,

EEG signals are more suitable to ‘‘see’’ global waves with the

longest wavelength. In the present study, such large-scale global

waves traveling either in the frontal-to-occipital (F-to-O) or

occipital-to-frontal (O-to-F) direction were mainly studied, because

the electrodes available to us were sparser in other directions.

Nevertheless, it is worth noting that other studies have argued that

the global waves propagating in the two directions are more

prevalent than in other directions, since corticocortical fibers are

significantly more than commissural and thalamocortical ones

[10]. Our analysis focused on large-scale waves traveling parallel

to the midline along the three chains shown in Fig. 1. To detect

the traveling waves, we investigated how the phases of oscillations

were organized over the selected electrodes. Relative phases, as a

function of time, were calculated for each of the electrodes in the

three chains shown in Fig. 1. Specifically, a phase difference at

sampling instant n and frequency scale s was calculated using

DQn,k(s)~Qn,k(s){Qn,f (s), ð4Þ

where k denotes an electrode in a given chain and f denotes the

frontmost electrode of the chain (F4 for the right chain, Fz for the

midline, and F3 for the left one). The calculations were performed

for each electrode in the chain and in the order of their occurrence

starting from the front and moving to the back. The existence of

waves was then analyzed by investigating these phase differences.

If they increased or decreased progressively as the distance to the

reference channel increased, the activity pattern was regarded as

propagation of a traveling wave. For instance, Fig. 2 illustrates

such a case with a progressive phase shift along the right chain

shown in Fig. 1 at time t = 121.83 s. As indicated in this figure, as

the distance to the reference channel F4 increased, the phase

difference with respect to that channel progressively increased.

The black line shown in Fig. 2 is the linear best fit to the phase

differences.

To test whether the slope of the linear fit is significantly different

from zero, phase values along the chain were randomly shuffled,

and then a linear fit was applied to them to get a slope value. This
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randomization procedure was repeated for 1000 times to yield a

distribution for the significant test; the original slope was counted

to be significantly different from zero, if it exceeded the 95th

percentile of the distribution. When the slope was significantly

different from zero, its sign was then used to determine the wave’s

direction: a positive slope value indicates a wave traveling in the F-

to-O direction, while a negative one indicates a wave traveling in

the opposite direction. The large-scale traveling waves parallel to

the midline were detected by matching the phase shifts from the

three chains of electrodes; that is, if each of the regions had a

progressive shift in phases and it progressed in the same direction,

then this constituted such a large scale wave.

The large-scale waves along the electrode chains may continue

for some time intervals, meaning that during these intervals the

phase difference DQn,k(s) kept nearly constant. In other words,

during these intervals, the waves are manifest in phase locking

activity over the electrode chains. In order to obtain these

intervals, we used the single-trial phase locking value measured

across successive time steps [31,32],ck(n,s), which is defined below

ck n,sð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ck n,sð Þ2zSk n,sð Þ2

q
, ð5Þ

where

Ck(n,s)~
1

2mz1

Xm

i~{m
cos½DQnzi,k sð Þ�, ð6Þ

Sk(n,s)~
1

2mz1

Xm

i~{m
sin½DQnzi,k sð Þ�, ð7Þ

where n is time index, and s is the frequency scale,

m~Dt=Dt0,Dt~100ms as used in [25,33], and Dt0~2ms (the

sampling interval of the EEG signal). We then got the average

value of the phase locking values:

Figure 1. Schematic view of the electrodes placed in accordance with the 10–20 International Systems showing the 26 electrodes.
The three chains approximately parallel to the midline are the chains along which we did our traveling wave analysis.
doi:10.1371/journal.pone.0038392.g001

Figure 2. An illustration of gradual phase shift along the chain
of electrodes from F4 to O2 for one typical subject. The dots for
phase difference values and the solid line for a linear fit to them.
doi:10.1371/journal.pone.0038392.g002
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c(n,s)~
1

Nc

XNC

i~1
ci(n,s), ð8Þ

Where NC is the number of electrode pairs (the pairs used in Eq.

4), Nc~15 in our current study. For c n,sð Þ defined above, its

values range from 0 to 1, with 1 indicating the strongest phase

locking. If time n is within the range n1ƒnƒn2,, during which

1§c n,sð Þ§c0 (with c0 close to 1.0), Dt~(n2{n1)Dt0 then is the

duration of the global propagating waves propagating either in the

F-to-O or the O-to-F direction. c0~0:95 was used in the current

study. We, however, found that the use of other values close to 1.0

would not change the durations of waves significantly; this is

similar to other studies [25].

The large scale waves may arise from some trivial causes such as

the layout of electrodes, or methodological processes, such as the

wavelet based calculation of phases. To test the null hypothesis

that the existence of large-scale waves is due to such trivial effects,

we also repeated the analysis on surrogate data that was

constructed by Fourier-based randomization of the original EEG

data [34], which were generated by preserving the mean power

spectrum of the original data while randomizing the phase of the

various frequency components. Two hundred such surrogate

datasets were computed for each trial and then the same

procedure was repeated on them to get Dt, as for the original

EEG data, therefore resulting in a null distribution of durations.

The statistically significant durations of waves in the original EEG

data were those durations that exceeded the 95th percentile of the

null distribution of Dt, and these waves were regarded as

statistically significant wave events, which were used for our

further analysis.

We considered the 500 ms preceding stimulus onset and the

500 ms time epoch after that. For each 500 ms epoch, we

calculated the total wave duration in the whole trial,

DTi~
Xni

j~1
Dti

j , ð9Þ

where i denotes the ith trial of a subject, and Dti
j ,j~1, . . . ,ni is the

duration of the jth significant traveling wave event (as defined

above), and ni denotes the total number of such wave events in the

trial. If among the total ni significant wave events during 500 ms

time interval before the stimulus onset, there are nfo such events

traveling in the frontal-to-occipital direction, then its percentage is

nfo=ni: Also, we calculated the distributions of waves in occipital-

to-frontal direction nof =ni: The speed of each statistically

significant wave event was then calculated by averaging the slopes

of the linear fit lines of the phase shifts along the three chains

(Fig. 1), and the speed of the waves of a whole trial was obtained

by averaging the speeds of the wave events occurring in the trial.

To evaluate whether there were significant changes in the

properties of waves such as their directions and durations for

prestimulus and poststimulus 500 ms epochs, a randomization test

[35], based on 5000 permutation runs over the epochs, was carried

out. If the p-value of this randomization test was below 0.05, then

wave properties were regarded to have a significant difference

between the two epochs.

Correlation between waves and reaction rate
To test for a potential functional role of traveling waves, we

studied how their properties would be correlated with subject

performance such as reaction speeds. The reaction time of each of

the 100 Go trials was measured from the stimulus onset to the time

point when the subjects pressed the button. Regarding the

corresponding EEG data, we calculated DTi (Eq.9) for 500 ms

epoch before and after stimulus onset. The fraction within each

500 ms epoch is defined to be mi~DTi=500ms, which was

calculated for all 100 trials for individual subjects. For each

subject, we obtained its maximal fraction mmax. To make the

fractional values comparable over different trials of individual

subject, they were rescaled to a number between 0 and 1 by

dividing them by mmax. Hence, this established a wave index WIi

for the ith trial

WIi~
mi

mmax
, ð10Þ

where i = 1,…,100 are the trials. A wave index value close to 0

indicates waves with relatively small duration, while a value close

to 1 indicates the existence of waves with relatively large duration

for a particular subject.

Similarly, a reaction speed index, RSI, was established to scale

the reaction speed in each trial to a number between 0 and 1. This

was done by first taking the reciprocal of each trial’s response time

(r) to give a response speed n = 1/r, such that the larger the value n,

the faster the response. The reaction speed index of each subject

was then calculated by dividing all speeds by the largest speed

across all 100 trials of the subject,

RSIi~
ni

nmax
, ð11Þ

Where nmax is the maximal speed among the 100 trials for a given

subject. This established the reaction speed index, where a value

close to 0 indicates a relatively slow response and a value close to 1

indicates a relatively fast response.

We then calculated the Pearson correlation coefficient between

the trial-by-trial variations in the response speeds and those in the

wave:

r~

P
WIi{�xxð Þ(RSIi{�yy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(WIi{�xx)2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(RSIi{�yy)2
q , ð12Þ

Where WIi and RSIi are the wave and reaction speed indices of

the ith trial, and �xx and �yy are their corresponding mean values over

the 100 trials. We used a permutation test method [35] to test the

significance of the correlation. In our study, this procedure

involved randomly exchanging the wave indices across trials, and

it was repeated 5000 times for each subject to yield a distribution

for a significance test. For each subject, an original correlation was

counted as significant if it exceeded the 95th percentile of the

distribution of permuted values.

Results

Time-frequency analysis
To detect the main oscillatory frequency bands of EEG activity,

on which more fine-grained analyses were performed, we first

carried out a time-frequency analysis for the EEG signals. We

studied power spectrum from 0.5 to 80 Hz, and found that the

signals showed very little power above 26 Hz compared to that of

lower frequencies. Thus, 26 Hz was established as the upper cut

off frequency for further investigation. We also closely inspected

the delta range (0.5–4 Hz) oscillations and found that the Go and

NoGo conditions had indistuiguishable characteristics, indicating

that the delta oscillations could be neglected in the comparison

between the two conditions. Therefore, 4 Hz was established as

Human Cortical Traveling Waves
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the lower cut off frequency in our study. A wavelet transform from

4–26 Hz was then performed on the entire time series of each

subject. To better present the dominant frequencies of EEG

activity, for each subject the wavelet power spectrum was averaged

over all 100 Go trials and then averaged over all electrodes. We

found that most of the subjects had strong alpha oscillations (8–

12 Hz) before the stimulus onset, and strong theta oscillations (4–

8 Hz) after the stimulus onset; representative results from a subject

are shown in Fig. 3, from which we can see that such alpha

oscillations peaking at 10.6 Hz and theta oscillations peaking at

5.8 Hz.

Traveling waves
To calculate phases for the prominent alpha and theta

oscillations, we adjusted the scale of the wavelet to make it

centered at the peaks of these oscillations accordingly, which were

determined individually on the basis of the above time-frequency

analysis. After obtaining the phases of these oscillations, we then

calculated phase differences for the electrodes along each of the

three chains shown in Fig. 1. We found that there were significant

time intervals during which there were progressive phase shifts

along these chains. Figure 4 shows such a typical example for

electrodes along the F4 to O2 chain with phase shifts in F-to-O

direction, and Fig. 5 for phase shifts in O-to-F direction. The

phase shift over the electrodes was then fitted to get a straight line.

Figure 3. Wavelet power spectrum of a typical subject averaged over all trials and electrodes in normalized power units. The
stimulus onset time is at 0 ms.
doi:10.1371/journal.pone.0038392.g003

      

      

      

      

      

Figure 4. Phase differences along the chain of electrodes, including F4, FC4, C4, CP4, P4, and O2, at different times with step size of
6 ms.
doi:10.1371/journal.pone.0038392.g004
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First, the direction of traveling waves was investigated. Figure 6

shows the percentage of alpha waves in each direction, which was

calculated by averaging nfo=ni and nof =ni (see Methods) across

trials and subjects. Similarly, the distribution of waves during post-

stimulus 500 epochs was calculated. As shown in the figure, during

the 500 ms time interval before the stimulus onset, the frontal-to-

occipital and occipital-to-frontal propagation directions of the

spontaneous waves were roughly evenly divided at 50.362.2%

and 49.761.8%, and there was no significant difference between

them (permutation test, p.0.05). However, after the stimulus onset

the occipital-to-frontal waves became more common (56.061.9%

compared with the frontal-to-occipital direction at 44.062.0%).

The change in the propagation direction was significant

(p,0.005), based on the permutation test (see Methods). This

indicates that the external stimuli evoke more waves traveling in

the O-to-F direction than the F-to-O direction.

The histograms of the durations of the alpha waves before and

after the stimuli onset are shown in Figs. 7(a) and 7(b). The average

of durations and that of speeds across trials and subjects are

summarized in Table 1. The average duration of the prestimulus

spontaneous waves was 73 ms (SD = 15 ms) while that of

poststimulus waves was 62 ms (SD = 11 ms) (Table 1), which was

a reduction of 13% (permutation test, p,0.01). Thus, it appears

that the average duration of alpha waves also experienced a

collective change due to stimuli. Figures 7 (c) and 7(d) show

histograms of the speeds, which were mostly concentrated between

2 m/s and 15 m/s. The average speed of the prestimulus alpha

waves was 6.5 m/s (SD = 0.9 m/s), and that of the poststimulus

alpha waves was 6.2 m/s (SD = 0.9 m/s) (as summarized in

Table 1); there were no significant changes in the speeds of alpha

waves due to stimuli (permutation test, p.0.05).

A similar analysis was then performed for the theta waves.

Figure 8 shows histograms of the average durations and speeds of

the theta waves for all trials and subjects during the epochs,

500 ms before and 500 ms after stimulus onset. As summarized in

Table 1, the average durations of the prestimulus and poststimulus

theta waves across trials and subjects were 84 ms (SD = 12 ms) and

112 ms (SD = 18 ms) respectively, and the difference between the

two intervals was significant (permutation test, p,0.001). The

theta waves significantly increased in average duration, unlike the

alpha waves, whose duration decreased. Similarly, the histograms

of the calculated speeds are shown in Figs. 8 (c) and (d). The

average speeds for the spontaneous and poststimulus theta waves

were 4.0 m/s (SD = 0.6 m/s) and 4.0 m/s (SD = 0.8 m/s) respec-

tively, lower than the alpha speeds. There were no significant

changes in the speed during the two intervals (permutation test,

p.0.05).

Correlation between waves and reaction rate
Figure 9 shows the typical wave index of the prestimulus alpha

waves and reaction speed index of one subject, as defined above,

over trials. It is well known that reaction time fluctuates

significantly over trials even when external stimuli are identical.

For all subjects in our recordings, one can clearly see such

variations. As shown in Fig. 9, there were great trial-by-trial

fluctuations in both indices. However, the two indices appear to

Figure 5. Phase differences along the chain of electrodes, including F4, FC4, C4, CP4, P4, and O2, at different times with step size of
6 ms. Red circles are the calculated phases for EEG signals with the average mastoid reference, black ones for EEG signals with an average reference;
this result indicates that these phase differences do not sensitively depend on the reference channel.
doi:10.1371/journal.pone.0038392.g005

Figure 6. Distribution of alpha waves between the two
directions (frontal-to-occipital direction and occipital-to-fron-
tal direction) before and after stimulus onset. The blue bars
indicate the prestimulus waves measured in the 500 ms interval before
stimulus onset and the red bars indicate the poststimulus waves
measured in the 500 ms interval after stimulus onset.
doi:10.1371/journal.pone.0038392.g006
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follow a similar fluctuating trend; larger wave occurrences have

larger response speeds (i.e., subjects reacted faster), and smaller

wave occurrences have smaller response speeds (i.e., subjects

responded slower). This, therefore, demonstrates a potential

correlation between the two indices. To directly quantify this

and to test whether the trial-by-trial fluctuations of the waves can

predict the response speeds, we calculated the Pearson correlation

coefficient of the two indices (see Methods) for the 16 subjects. The

results for the alpha waves during 500 ms preceding stimulus

onset, including correlation values and the corresponding p values

obtained from permutation tests (see Methods), are summarized in

Table 2; the results indicate that prestimulus alpha waves had

significant correlations with reaction speeds (r = 0.58, p = 0.001).

We next tested whether the direction of the traveling alpha

waves could affect subjects’ responses. To do this, the prestimulus

waves traveling in the two directions (the F-to-O direction and the

O-to-F direction) were analyzed separately and were found to have

different relations with the response speeds. As shown in Table 2,

prestimulus F-to-O alpha waves had significant correlations with

reaction speeds (r = 0.55, p = 0.002), but there were no significant

correlations between O-to-F waves and reaction speeds. To

investigate whether the prestimulus and poststimulus alpha waves

related differently to response speeds, we did the same correlation

analysis for wave and reaction speed indices for the 500 ms epoch

after stimulus onset. We found that there were no significant

correlations between poststimulus alpha waves and reaction speeds

(Table 2). To determine whether the prestimulus and poststimulus

theta waves were related to subject’s performance, we therefore

repeated the above trial-by-trial correlation analysis to these wave

activities, but we found no significant correlations between them

and reaction speeds (Table 2).

Discussion

We have systematically quantified the directions, speeds, and

durations of traveling waves in both alpha and theta frequency

bands. Our results indicate that, on average, the alpha waves were

faster than the theta waves:6.560.9 m/s for the alpha waves and

4.060.9 m/s for the theta wave, with a ratio of 1.660.5 between

them. Our calculated speeds of alpha waves are similar to the

speeds measured with human EEG signals of 3.6–10.4 m/s [36],

7–11 m/s [16], or 3–8 m/s [37]; these data agree closely with the

estimated peak in the distribution of myelinated corticocortical

propagation speeds of roughly 6–9 m/sec [10,38]. Thus, our

results together with others [16,36,37] suggest that the important

properties of EEG large-scale wave dynamics appear to depend on

corticocortical fibers. This interpretation, however, does not rule

out the possibility that the thalamus may exert an important

influence on cortico-cortical propagation via thalamocortical

reentrant loops. As far as we are aware of, there are no other

published results about the speed of theta waves for human

Figure 7. Histogram of the durations and speeds of alpha traveling waves during 500 ms time intervals before and after external
stimulus onset, which were measured over all subjects. (a) Durations of prestimulus waves. (b) Durations of poststimulus waves. (c) Speeds of
prestimulus waves. (d) Speeds of the poststimulus waves.
doi:10.1371/journal.pone.0038392.g007

Table 1. Average durations and speeds of pre- and post stimulus alpha and theta oscillations.

wave types prestimulus alpha poststimulus alpha prestimulus theta poststimulus theta

duration (ms) 73615 62611 84612 112618

f 15% 12% 17% 22%

speed (m/s) 6.560.9 6.260.9 4.060.6 4.060.8

The fraction of time for traveling waves during the pre- and post-stimulus 500 ms is f ~duration=500 ms.
doi:10.1371/journal.pone.0038392.t001
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subjects. Hence, no comparison can be done at this stage. It is also

interesting to note that the propagating waves of higher frequency

are faster than those of smaller frequency, is generally consistent

with a modeling study [39], in which it has shown that cortical

wave speeds should increase as the frequency increases up until the

alpha peak. In addition, the ratio between alpha wave speed and

theta wave speed, which was 1.9 calculated based on one example

for typical model parameters [39], is within the range of 1.660.5

as found in the current study.

Although propagating waves have been found to be common in

both prestimulus spontaneous and poststimulus activity, there have

been very few studies that investigated the changes of spontaneous

traveling wave properties due to an external input. For instance,

there was a brief examination of the change of wave velocities for

wave activity with a frequency range of 0.5–4 Hz in anesthetized

rat visual cortex [17]. In contrast, we have done systemic studies

on such changes; our results clearly demonstrate that there were

several interesting changes for the spontaneous waves when

external stimuli were present. First, there were statistically

significant changes in the durations of both alpha and theta

waves; from the prestimulus 500 ms epoch to the poststimulus

500 ms epoch, the average durations changed from 73 ms to

62 ms, and from 84 ms to 112 ms, for the alpha wave and the

theta wave respectively. Another compelling finding was that of

the changes to the distributions between directions of the waves;

the alpha waves without the stimuli traveled almost equally in both

directions, but following the stimuli the waves became more

concentrated in the direction from the occipital to frontal areas.

These results suggest that when external stimuli were present,

propagating waves are modulated and triggered by external

stimulus [40]. Also, it is worthwhile to note that in our study the

stimulus-related changes differed for the two frequency ranges.

The dissimilarities between theta and alpha waves indicate that

they might have different roles at the different stages of brain

information processing; indeed, it has been shown that among a

range of its functional roles, alpha activity is more related to

internal cognitive expectation, and theta activity is more associated

with sensation and behavior monitoring [41]. Thus, the decrease

and increase of alpha and theta wave direction, respectively, might

indicate a reduction of cognitive expectation and an increase of

behavior monitoring after the external stimulus.

We also performed correlation analysis between traveling waves

and reaction speeds on a single trial basis, and both prestimulus

spontaneous and poststimulus waves were studied. By far the most

significant relationship with reaction speeds was found with the

prestimulus alpha waves. Furthermore, we found that the

prestimulus alpha waves propagating in the frontal-to-occipital

direction had a correlation with reaction speed, but the waves

propagating in the opposite direction didn’t have such correlation.

Our results accord well with a growing number of recent studies

that have shown that prestimulus brain oscillations are correlated

with various perceptual and cognitive functions, such as visual

perception performance [42,43,44], the speeds of responses [45],

and perception of ambiguous audiovisual stimulus [46]. However,

rather than examining the amplitude or the degree of synchro-

nization of prestimulus brain oscillations as in the previous studies,

the current study focuses on the functional relevance of these

oscillations on the basis of their spatiotemporal behavior in terms

of waves. This would, therefore, extend the current interest in

prestimulus brain oscillations.

Figure 8. Histograms of the durations and speeds of prestimulus and poststimulus theta waves measured for all subjects. (a)
Durations of prestimulus waves. (b) Durations of poststimulus waves. (c) Speeds of prestimulus waves. (d) Speeds of poststimulus waves.
doi:10.1371/journal.pone.0038392.g008

Figure 9. The reaction speed index (RSI) and wave index (WI)
over trials for a typical subject; solid line for RSI and dashed
line for WI. The wave index was calculated for the F-to-O alpha waves.
doi:10.1371/journal.pone.0038392.g009
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How could the properties of alpha and theta waves and their

changes be understood from the perspective of their possible roles

in brain functions? Certainly, normal brain functions require

dynamic interactions of functionally specialized but widely

distributed cortical regions. Propagating waves have been

proposed to coordinate these interactions by transferring or

communicating information between different parts of large-scale

neural networks and processing information based on their

interactions [47]. In line with this proposal, waves propagating

from frontal to occipital areas might be involved in signaling from

association areas to sensory areas, which would imply top-down

information flow. Likewise, waves propagating in an opposite

direction may indicate a bottom-up information transfer. Hence,

our analysis that prestimulus alpha waves traveling in the frontal to

occipital direction were significantly correlated with responses may

suggest the following scenario: the more top-down related

information, such as expectancy and attention, was transferred,

the faster subjects responded. This argument of the F-to-O alpha

traveling waves in mediating top-down process is also supported

by a previous animal study reporting that a phase shift of alpha

oscillations from the upper level to the lower level of cortical

hierarchy was related to a top-down-directed attention towards a

relevant stimulus [48]. Our results, therefore, suggest that

propagating waves play an important role for widely distributed

brain areas to communicate with each other.
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