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Abstract: Magnetic resonance fingerprinting (MRF) based on echo-planar imaging (EPI) enables
whole-brain imaging to rapidly obtain T1 and T2* relaxation time maps. Reconstructing parametric
maps from the MRF scanned baselines by the inner-product method is computationally expensive.
We aimed to accelerate the reconstruction of parametric maps for MRF-EPI by using a deep learning
model. The proposed approach uses a two-stage model that first eliminates noise and then regresses
the parametric maps. Parametric maps obtained by dictionary matching were used as a reference and
compared with the prediction results of the two-stage model. MRF-EPI scans were collected from
32 subjects. The signal-to-noise ratio increased significantly after the noise removal by the denoising
model. For prediction with scans in the testing dataset, the mean absolute percentage errors between
the standard and the final two-stage model were 3.1%, 3.2%, and 1.9% for T1, and 2.6%, 2.3%, and
2.8% for T2* in gray matter, white matter, and lesion locations, respectively. Our proposed two-stage
deep learning model can effectively remove noise and accurately reconstruct MRF-EPI parametric
maps, increasing the speed of reconstruction and reducing the storage space required by dictionaries.

Keywords: magnetic resonance fingerprinting; echo-planar imaging; T1 and T2* relaxation times;
denoising convolutional neural network; self-attention; feature pyramid network

1. Introduction

Quantitative magnetic resonance (MR) relaxometry can quantify the relaxation time
(e.g., T1, T2, T2* relaxation time) to clarify the physical and pathological properties of
human tissues [1]. Quantitative MR relaxometry was reported to increase accuracy and
precision compared with conventional weighted magnetic resonance imaging (MRI) in
detecting lesions, and it can even synthesize traditional weighted images [2,3]. However,
clinical applications of quantitative MR relaxometry are limited by the length of the imaging
procedure required to estimate the tissue relaxation time; moreover, motion artifacts can
interfere with the results, and the procedure does not meet the needs for clinical scheduling
efficiency. Magnetic resonance fingerprinting (MRF) is an approach for designing the rapid
quantitative sequence [4]. MRF has the advantage of providing quantitative images of
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multiple types of relaxation times simultaneously in a relatively short imaging time (several
minutes). However, because MRF image reconstruction requires comparison with a vast
computer simulation database (dictionary matching), the extended image reconstruction
time has become a considerable challenge in the development of MRF [5].

The dictionary matching process is computationally expensive and requires storage
space for the simulation database, which hinders clinical applications of MRF. Thus, opti-
mizing the MRF signal matching process is crucial. Toward this aim, dimension reduction
algorithms, such as singular value decomposition, were the first to be used. Studies have
used singular value decomposition to project the database into low-dimensional space,
speeding up the MRF signal matching process by 3.4–4.8 times that of using only the
inner-product method [6,7]. Compared with approaches reducing the dimensionality of
the database, a model trained by deep learning can eliminate the storage usage of the MRF
simulation database and achieve near real-time reconstructions. Recent studies on the use
of deep learning to accelerate the MRF reconstruction process have included the use of a
one-dimensional (1D) neural network, a convolutional neural network (CNN), and a recur-
rent neural network (RNN) to train models for learning the simulated information [8–10].
Studies have also modeled the reconstructed images in a two-dimensional (2D) fashion by
using the data after matching the dictionary with the scanned images [11–13]. Moreover,
deep learning models can combine multiple tasks, including the reconstruction of MRF
parametric maps, preprocessing, and tissue segmentation, thus reducing computation times
from hours to seconds [13]. Deep learning is therefore an efficient method for MRF image
reconstruction. In addition to deep learning studies of MRF reconstruction, one study used
generative adversarial networks to speed up the generation of simulation data [14]. As the
graphics hardware and deep learning algorithms mature, MRI imaging techniques can be
optimized with deep learning to improve computational performance and thus increase
the feasibility of clinical applications [2].

Most deep learning studies for the MRF image reconstruction have developed their
models based on the original MRF protocol by Ma et al., which has a signal with long
time steps (a thousand-time points) [4]. Therefore, most models are designed to reduce
the time dimension. For instance, Fang et al. used a two-stage deep learning strategy
that entailed first extracting features through a fully connected neural network and then
training the U-Net-based model to learn the spatial distribution of the brain tissue [12]. The
feature extraction step is a process of reducing high-dimensional data to low-dimensional
data. Longer time steps can compensate for the effects of noise, but for MRFs with shorter
time steps, such as those used in this study (35-time points), the effects of noise cannot be
underestimated. Cohen et al. demonstrated the extent to which noise affected the accuracy
of their model, but they did not specifically design the model for noise reduction [8]. In
addition, the selection of training and testing data is another critical point for training
MRF models. Cohen et al. trained their model by simulation dictionary and tested using a
digital brain phantom [8]. Hoppe et al. developed their CNN-based model by simulation
dictionary and tested using a quantitative phantom. Chen et al. also devised a CNN-based
model and tested their model by using the human scan data from another quantitative
MRI method [15]. For the study using the same MRF protocol as this study, they only used
scan data and did not include the simulation dictionary for training [13]. Their model
performance had a between 5% and 10% error. Ideally, the deep learning model should
be trained with the simulation dictionary, and the performance of the dictionary learning
model is tested with human scan data. A dictionary learning model ensures that the model
has learned all the possible situations, and models tested with human scan data are more
convincing. Therefore, we designed and trained our model for noise reduction and used
the dictionary learning model to predict human scan data to verify the performance of the
proposed model.

MRF image reconstruction is a regression task for deep learning models, and the pres-
ence of noise affects the model performance [16]. A denoising CNN model (DnCNN) was
proposed for image denoising; it is highly effective in general image denoising tasks [17].
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Furthermore, the model can complete denoising tasks with an unknown noise level. Be-
cause dictionary matching is performed using the 1D approach, we modified the DnCNN
for 1D signal denoising for the first stage of the proposed model. For the second stage of
the model, which was aimed at learning the Bloch equation simulation [18], we designed
a pyramidal model to extract features of the MRF signal evolution. A pyramid CNN
exhibited promising performance in object detection tasks [19], and the advantage of the
pyramid architecture is that it can extract and combine features from various scales. In
addition, the self-attention mechanism has been used in natural language processing and
can achieve state-of-the-art performance [20]. A CNN with self-attention can associate
each pixel in a 2D image to generate a global reference between pixels [21]. We thus
added the self-attention layer to the model for focusing on the connection between features
extracted by the CNN. The weight of important features can be enhanced through the
self-attention mechanism.

This study aimed to develop a deep learning model to replace the computationally
expensive inner-product method for MRF reconstruction. We investigated how precisely the
proposed model learned the Bloch equation simulation [18] and the relationship between
the noise and model performance with scanned data. In the present study, MRF-echo-
planar imaging (MRF-EPI) was used to scan the whole brains of 32 subjects to obtain T1 and
T2* parametric maps [22–24]. Herein, we propose a two-stage model that first reduces MRF
signal noise and then reconstructs parametric maps of MRF by a dictionary-learning model.

2. Materials and Methods
2.1. Population

The relevant institutional review board (2019-711N) approved this study, and the
subjects provided informed consent before undergoing scanning. The MRF scan was imple-
mented using a 3T scanner (Magnetom Skyra, Siemens Healthineers, Erlangen, Germany)
with 14 healthy subjects and 18 subjects with multiple sclerosis (MS). The healthy group
comprised eleven men and three women (aged 22–33 years; mean: 26 years). The MS
group contained seven men and eleven women (aged 23–73 years; mean: 39 years). The
scans of 32 subjects were used to evaluate the proposed model and are referred to as the
“scanned data”.

2.2. Magnetic Resonance Fingerprinting Imaging and Dictionary Generation

The acquisition method used was a previously proposed and validated MRF-EPI imag-
ing sequence [13,22–24]. The imaging parameters of the MRF sequence were as follows:
in-plane spatial resolution = 1 × 1 mm2; slice thickness = 2 mm; bandwidth = 998 Hz/px;
GRAPPA factor = 3; partial Fourier = 5/8, variable flip angle (34◦–86◦), echo time
(21–81.5 milliseconds [ms]), repetition time (3530–6570 ms), and fat suppression. The
acquisition time was 4 min 23 s for 60 slices of the whole brain. In addition, using the same
spatial resolution, fluid-attenuated inversion recovery (FLAIR) was obtained for lesion
segmentation. The MRF dictionaries were generated for each slice, with 598,842 entries
based on the design of MRF-EPI using the Bloch equation simulation [18]. The ranges of T1
and T2* values were 100–4000 ms and 10–3000 ms (excluding those T1 smaller than T2*),
respectively, with a 2% spacing. The range of flip angle efficiency B1+ was 0.6–1.4 with a
0.05 spacing.

The T1 and T2* maps of the scanned data were reconstructed by the inner-product
method based on the 2%-increment dictionary. Figure 1 displays the schematic process
of the MRF imaging. There were four steps in the MRF imaging process. The first was
the MRF-EPI scan, which had a total of 35 images for each slice in which each pixel can
be considered as a signal with 35 values (Figure 1a). Every pixel has its specific signal
evolution that depends on the T1 and T2* relaxation times for the tissue of that pixel. The
second was the dictionary generation, and the simulated dictionary was generated using
the Bloch equation [18], given a certain range of T1 and T2* values (Figure 1b). The third
was dictionary matching, where the MRF scanned signals were matched to the simulated
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dictionary signals one by one using the inner product (Figure 1c). When each pixel was
matched, the parametric images were obtained, as in step 4 (Figure 1d). The time required
for dictionary matching in the third step depends on the size of the dictionary in the second
step. The denser the dictionary is, the more signal entries there are, and the longer the
matching time is. This is where the challenge of MRF image reconstruction lies.
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Figure 1. Schematic of the reconstruction for T1 and T2* maps of the magnetic resonance fingerprint-
ing. (a) MRF baseline scan. (b) Dictionary generation process. (c) Dictionary matching by the inner
product. (d) Parametric maps after matching pixel by pixel. MRF = magnetic resonance fingerprinting;
AU = arbitrary unit; GM = gray matter; WM = white matter; CSF = cerebrospinal fluid.

2.3. Dictionaries and Image Preprocessing

We separated the dictionaries with the 2% increment in the simulation into training
and validation datasets using two divisions. The first division split the training and
validation datasets by the T1 and T2* value range. T1 and T2* values were 500–2500 ms and
50–1500 ms, respectively, for the training, and the other entries were used for the validation.
In this division, we aimed to test whether the deep learning model was able to learn Bloch
equation simulation [18] to predict relaxation times that were not in the training range.

In the second division, the training and validation datasets were divided according to
the incremental spacing of the T1 and T2* values (i.e., 4%, 6%, 8%, . . . , 20%). We sampled
the entries by different intervals in the 2%-increment dictionary (i.e., 2, 3, 4, . . . , 10) to
obtain dictionaries with the mentioned increment as a training dataset and the remaining
unsampled ones as a validation dataset. For instance, the 2%-increment dictionary had
T1 values of 100 ms, 102 ms, 104.04 ms, . . . , to the end, and T2* values of 10 ms, 10.2 ms,
10.404 ms, . . . , to the end. We sampled the T1 values of 100 ms, 104.04 ms, . . . , to the end,
and then sampled the T2* values 10 ms, 10.404 ms, . . . , to the end, obtaining a 4%-increment
dictionary for training. Other unsampled entries, T1 values 102 ms, . . . , to the end, and T2*
values 10.2 ms, . . . , to the end, were used as validation data. In this division, we aimed to
test how accurate the deep learning model was in predicting the relaxation times in the
training range.

To compare the reconstructed result between the standard dictionary matching and the
proposed model for different tissues, manual and automatic segmentation of different brain
tissues was performed. Lesion locations for the MS group were manually segmented on
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FLAIR images by an expert radiologist. We used the SPM12 [25] to automatically segment
the white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) from the T1 map
obtained through MRF. A threshold of 80% of the maximum value was applied to the
probability maps generated by SPM12 to create binary masks.

2.4. Noise Analysis and Denoising CNN

According to the inner product, the MRF scanned signals obtained from the subjects
were first matched to the 2%-increment dictionary, which was the densest in our experiment.
The matched signal from the simulated dictionary was considered as the noise-free signal.
The signal without noise was subtracted from the scanned signal to obtain the residual for
calculating the signal-to-noise ratio (SNR) as follows:

SNR = 10× log10
∑k

i=1 s2
i

∑k
i=1 n2

i

, (1)

where s and n are the matched signal from the simulated dictionary and the residual
gathered by the difference between the scanned and matched signal, respectively; k is the
length of the signal, which was 35 in our case. The SNR is in decibels (dB). We collected the
amplitudes of residuals from 21 subjects (3 healthy subjects and 18 patients), slice by slice,
and this collection was referred to as the “noise dataset” for training the denoising model.
The temporal order of each residual was useless and thus discarded. The scans of the other
11 subjects were used as the testing dataset for evaluating the denoising model. Figure 2a
displays a schematic of how the noise was obtained and collected.

Figure 2b displays the feedforward denoising CNN proposed for image denoising [17].
The denoising CNN was modified for noise reduction of 1D signals in this study. The
proposed model began with a convolution layer followed by a rectified linear unit (ReLU)
activation function and ended with a convolution layer. The model had 32 units of layers in
the middle, and each unit included a convolutional layer followed by batch normalization
and a ReLU. Each convolution layer had a kernel size of 3, padding of 1, and 64 channels
(one channel for the final output).

The simulated dictionary signals plus randomly sampled noise from the noise dataset
served as the input to train the model, and the output was the residuals (i.e., noise). The
noise-free signals were obtained by subtracting the output of the model from the noisy
scanned data. Independent-samples t test was used to measure the difference between the
SNR of the training and testing datasets. Paired-samples t test was used to measure the
difference in the SNR before and after denoising.

2.5. Pyramid CNN with Self-Attention for MRF Parametric Image Reconstruction

Figure 2c displays the deep learning model, which was based on a 1D CNN with a
pyramidal structure. The dashed line extending from the green box indicates the detailed
structure inside each green box. The input for the pyramid model was a 1D signal, and the
outputs were T1 and T2* values. The backbone consisted of three convolutional layers with
kernel sizes of 17, 11, and 7, and the number of channels was 128, 256, and 512, respectively.
Each convolutional layer was followed by a ReLU activation function and then a dropout
layer with 0.2 probability as a convolution block.
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The output of T1 and T2* relaxation times had two paths. A multihead self-attention
layer [20] with eight heads was first connected after each convolution block of each pathway.
The expressions of the multihead self-attention are as follows:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO, (2)

headi = Attention(Qi, Ki, Vi) = softmax
(

QiKi
T

√
ds

)
Vi, . (3)

and

 Qi = XiW
Q
i

Ki = XiWK
i

Vi = XiWV
i

, and X = X1, . . . , Xh (4)

Equations (2)–(4) comprise the scaled dot-product self-attention with multihead.
Q, K, and V are the query, key, and value matrices. The corresponding matrices are,
X ∈ Rl×dch(l×h×ds), Xi ∈ Rl×ds , WQ

i ∈ Rds×ds , WK
i ∈ Rds×ds , WV

i ∈ Rds×ds , and
WO ∈ Rhds×dch , where l is the length of the signal after each convolution block; dch and h
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are the input channels and number of heads, respectively; ds is dch divided by h; dch is 128,
256, and 512 for each convolution block; and h is 8 in our implementation.

The output of the attention layer was weighted by a learnable parameter gamma and
added back to its input as the input to the next layer [26]. The next layer was a flatten layer
for connecting a fully connected layer with 128 output features, followed by a ReLU, and
then a fully connected layer with three output features. The final output layer was a fully
connected layer with one output feature, and its input was the sum of the outputs from the
different scales after being weighted by the learnable parameter gamma. The output after
the learnable parameter is given by:

Y = γXa + X (5)

and Y = ∑
m

i=1γiXi. (6)

Y in Equation (5) is the input to the flatten layer, whereas Xa is the output after the
attention layer. Y in Equation (6) is the input for the final fully connected layer. Because
three convolutional layers created separate scales, m was equal to three.

The proposed model was named the weighted pyramid dual-path CNN with attention
(WPDaCNN). Three other models were employed as comparisons for the proposed model.
The first was a model without the weighted parameter gamma and the self-attention
layer, denoted by PDCNN. The second was a model based on PDCNN but without the
pyramid structure, denoted by DCNN (only the output of the third convolutional layer
was considered). The final one was a model based on DCNN but with only a single path,
denoted by SCNN (the output feature for the final layer of the single path became two).

2.6. Experimental Setup and Two-Stage CNN Framework

Figure 2d was the flowchart of the successive process of our model. The MRF signals
with noise were first inputted to the stage I model to predict the noise. The denoised MRF
signals were obtained by subtracting the predictive noise from the MRF signals with noise.
Then, the denoised signals were inputted to the stage II model for outputting the T1 and
T2* values.

The experiment was performed on a computer with an Intel Xeon W-2102 CPU and an
NVIDIA Quadro P6000 24 gigabyte GPU. The deep learning models were built based on the
PyTorch package (version 1.7.1+cu110) using Python 3.8.5, and the data preprocessing for
dictionary generation and matching was performed by programming platform MATLAB
R2020a (MathWorks; Natick, MA, USA). Statistical analysis was performed using SPSS
Statistics 24 (IBM; Armonk, NY, USA).

The L2 loss multiplied by 10,000 was applied to train the first stage DnCNN models.
For the second-stage pyramid models, the L1 loss and mean absolute percentage error
(MAPE) were employed and added for training. The loss functions are as follows:

LossstageI = 10000×
∑N

i=1

(
yiresidual − yp

i residual

)2

N
, (7)

LossstageII =
∑N

i=1

∣∣∣yi − yp
i

∣∣∣
N

+
100×∑N

i=1

∣∣∣yi − yp
i

∣∣∣ /yi

N
. (8)

Equation (7) is the loss function for the first stage model, and Equation (8) is that for
the second stage. We referred to the denoising study using the L2 loss for training the first
stage [17], and the constant 10,000 was set empirically. The L1 loss for training the second
stage was referenced to the literature that used the same MRF protocol as this study [13],
and the MAPE term was used to balance the T1 and T2* for model learning. N is the total
number of values, yiresidual is the true residual, yp

i residual is the predicted residual, yi is the
T1 and T2* values within the simulated dictionary, and yp

i is their predicted values. The
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value of the loss function corresponding to each stage was used as the error to identify the
model with the lowest error.

Figure 3 presents a flowchart of our experiments. Figure 3a represents the workflow
for training the DnCNN. There were 60 slices with their own unique simulated dictionaries,
and thus a total of 60 models need to be trained. Because of the lengthy training time,
the scanned data were split into single training and testing datasets for the experiment
rather than split into multiple folds. The training and testing datasets consisted of 21 and
11 subjects from the scanned data, respectively. The noise dataset was obtained from the
training dataset, as described in the Section 2.4. The DnCNN was trained for 100 epochs
by inputting simulated signals plus randomly sampled values in the noise dataset. After
100 epochs, the trained model that corresponded to the lowest training error was selected
as optimal. The testing dataset was then inputted to the optimal model for prediction.
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Figure 3b indicates the workflow for training the models with different structures,
namely, WPDaCNN, PDCNN, DCNN, and SCNN. The simulated dictionary was split
into training and validation datasets according to the division described in the Section 2.3.
Subsequently, each model was trained for 100 epochs, and the one with the lowest error for
the validation dataset was selected as the optimal model.

Figure 3c displays the workflow for training the final two-stage model. We first
connected the pretrained stage I model with the untrained stage II model and then froze
the weights of the stage I model. The input for training was the simulated signal from the
dictionary and did not pass through the denoising model while training. The scanned data
was split into half for the validation dataset and another half for the testing dataset. After
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each epoch, the validation dataset was fed into the entire two-stage model for evaluating
the error (loss) of the two-stage model. We observed that the second-stage model converged
rapidly, and excessive training epochs led to overfitting; thus, only 25 epochs were set, and
the optimal model was the one with the lowest validation error within 25 epochs. The
testing dataset was then inputted to the optimal model for prediction.

Each whole-brain scan included 60 slices, with each slice corresponding to a distinct
simulated dictionary. Hence, we trained a two-stage model for each slice with 598,842 entries
as the input, and 60 models were eventually produced (Figure 3a,c). Because of the identical
design concept of the pulse sequence for each slice, when we trained different models for
comparison (i.e., WPDaCNN, PDCNN, DCNN, and SCNN), only one model of each type
was trained by using a dictionary of the first slice (Figure 3b). During model training, the
batch size was 500, and the optimizer employed was Adam with a learning rate of 0.01
and a scheduler with a 5% learning rate reduction per epoch. The intraclass correlation
coefficient (ICC) was used to assess the consistency between the dictionary matching and
prediction of the final two-stage models. The correlation coefficient was applied to test the
mean and difference between the standards and predictions.

3. Results
3.1. SNR of Scan Data and after Denoising by DnCNN

Figure 4a displays the corresponding SNR before and after denoising. The SNR varied
from slice to slice, with lower SNRs in the cranial and caudal portions and higher SNRs in
the middle. Figure 4b contains two examples of the scanned signal after denoising. The
noise was effectively removed after denoising, and the SNR increased (25 dB vs. 47 dB and
16 dB vs. 31 dB). Table 1 presents the SNR and statistics before and after the denoising by
the DnCNN for the training and testing datasets. The results for various tissue types were
obtained after applying the tissue masks that were created by the automatic and manual
segmentation mentioned in the Section 2.3. The SNRs in both the training and testing
datasets increased, and the increases after denoising were statistically significant (p < 0.001).
The SNRs of GM and WM were similar, whereas the SNR of CSF was lower than that of
GM and WM. Regarding the differences in mean SNR between the training and testing
datasets, the p values were 0.40 and 0.32 for the original and denoised SNRs, respectively.
This result suggested that the mean SNRs of the training and testing datasets were not
significantly different, either before or after denoising. Therefore, the model performed
well in the testing dataset.
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Table 1. SNR before and after the denoising model.

Training Testing

Tissue Type Original SNR Denoised SNR p Value Original SNR Denoised SNR p Value

Whole Brain 21.33 ± 1.45 37.75 ± 1.55 <0.001 * 21.78 ± 1.41 38.31 ± 1.34 <0.001 *
GM 22.22 ± 1.51 39.10 ± 1.56 <0.001 * 23.01 ± 1.52 39.86 ± 1.31 <0.001 *
WM 22.44 ± 1.49 40.03 ± 1.68 <0.001 * 22.79 ± 1.69 40.48 ± 1.60 <0.001 *
CSF 18.97 ± 1.60 33.29 ± 1.59 <0.001 * 18.75 ± 1.30 33.31 ± 1.34 <0.001 *

GM = gray matter; WM = white matter; CSF = cerebrospinal fluid; MS = multiple sclerosis; SNR = signal-to-noise
ratio. The unit of SNR is in dB. “*” indicates that the p value is less than 0.05.

3.2. Performance of the Pyramid CNN Models

For the first division, models learned well on the training dataset but poorly on
the validation dataset. The mean MAPE of all models on the training dataset was 1.4%,
and that on the validation dataset was 54.8%. For the second division, Figure 5 presents
the pyramid model performance for different dictionary increments. As the increment
increased, the losses of WPDaCNN and PDCNN increased smoothly, but the losses of
DCNN and SCNN increased ruggedly. For the L1 loss, WPDaCNN was the model with
the optimal performance under all dictionary increments. The lowest L1 loss was 10 ms
and 4.5 ms for the training and validation, respectively, at the dictionary with the densest
increment. Compared with SCNN, DCNN had lower losses, except for training losses at
the increments of six and eight and validation losses at six.
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3.3. MRF Parametric Maps Reconstruction by the Two-Stage Model

The dictionary matching using the inner product by the CPU required 1.5 min to
reconstruct a slice, and the previous model with the same MRF protocol as this study by
the CPU required 0.08 s [13]. The time required for the GPU with a two-stage model to
reconstruct a slice was 0.02 s. Tables 2 and 3 present the statistical analysis of T1 and T2*
values from 32 subjects by standard dictionary matching and that by the proposed two-
stage model. Results for various tissue types were obtained by applying the corresponding
tissue mask derived from the automatic and manual segmentation. In both validation and
testing datasets, all ICCs were higher than 0.94 in T1 and T2* relaxation times for all tissues.
The MAPE decreased by approximately a factor of two after denoising for all tissue types.
In GM, WM, and MS lesions, the MAPE was less than 3.2% for T1 and 2.8% for T2* with
denoising. CSF had a much higher MAPE compared with other tissue types. The overall
MAPE with the denoising for the whole brain was approximately 6% and 4% for the T1 and
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T2* values, respectively. Most of the overall increase in error was contributed by CSF. The
previous model based on U-Net and scan data for training was MAPE of five to ten [13].

Table 2. Statistical analysis of T1 relaxation times between dictionary matching and the proposed
two-stage model for each tissue of scanned data.

Validation (7 Healthy and 9 with MS)

Standard (ms) Predicted (ms) ICC MAPE (%) Mean (ms) Difference (ms) R p Value

WB 1483 ± 147 1461 ± 146 1.00 5.9 (12.6) 1472 ± 145 22.9 ± 5.5 0.53 <0.05 *
GM 1278 ± 42 1269 ± 42 1.00 3.0 (7.1) 1273 ± 42 9.2 ± 2.1 −0.22 0.41
WM 803 ± 35 794 ± 36 1.00 3.0 (6.8) 799 ± 36 8.8 ± 2.1 −0.45 0.08
CSF 2993 ± 233 2894 ± 229 1.00 7.4 (15.1) 2943 ± 231 99.5 ± 21.5 0.17 0.54
MSL 1194 ± 208 1192 ± 207 1.00 1.7 (3.9) 1193 ± 207 1.8 ± 3.4 0.28 0.46

Testing (7 Healthy and 9 with MS)

WB 1521 ± 153 1496 ± 151 1.00 6.2 (12.9) 1509 ± 152 25.9 ± 8.4 0.27 0.31
GM 1286 ± 42 1276 ± 43 1.00 3.1 (7.2) 1281 ± 42 10.6 ± 4.2 −0.16 0.57
WM 825 ± 51 816 ± 51 1.00 3.2 (7.0) 820 ± 51 9.1 ± 2.5 −0.25 0.35
CSF 3003 ± 224 2897 ± 230 1.00 7.4 (14.5) 2950 ± 226 106.3 ± 29.8 −0.22 0.41
MSL 1284 ± 152 1279 ± 151 1.00 1.9 (4.2) 1282 ± 152 5.2 ± 4.4 0.10 0.81

WB = whole brain; GM = gray matter; WM = white matter; CSF = cerebrospinal fluid; MSL = lesion of multiple
sclerosis; ICC = intraclass correlation coefficient; MAPE = mean absolute percentage error. “*” indicates that the
p value is less than 0.05. The values in parentheses in the MAPE column are the results without noise removal.
The difference is from the pairwise pixel-value difference.

Table 3. Statistical analysis of T2* relaxation times between dictionary matching and the proposed
two-stage model for each tissue of scanned data.

Validation (7 Healthy and 9 with MS)

Standard (ms) Predicted (ms) ICC MAPE (%) Mean (ms) Difference (ms) R p Value

WB 95 ± 26 83 ± 18 0.97 4.2 (11.3) 89 ± 22 11.9 ± 7.8 0.96 <0.001 *
GM 53 ± 3 53 ± 2 0.94 2.6 (6.0) 53 ± 2 0.3 ± 1.2 0.49 0.05
WM 53 ± 2 53 ± 2 0.98 2.2 (5.8) 53 ± 2 0.1 ± 0.5 0.35 0.18
CSF 245 ± 90 189 ± 61 0.96 9.3 (20.1) 217 ± 75 56.3 ± 29.5 0.96 <0.001 *
MSL 78 ± 7 79 ± 7 1.00 2.0 (4.8) 79 ± 7 −0.3 ± 0.4 −0.43 0.25

Testing (7 Healthy and 9 with MS)

WB 104 ± 35 89 ± 24 0.97 4.6 (10.5) 96 ± 30 14.5 ± 11.0 0.96 <0.001 *
GM 53 ± 2 53 ± 2 1.00 2.6 (5.6) 53 ± 2 −0.0 ± 0.1 0.40 0.12
WM 54 ± 2 54 ± 2 1.00 2.3 (5.2) 54 ± 2 −0.1 ± 0.1 −0.21 0.43
CSF 268 ± 101 204 ± 70 0.96 10.2 (18.9) 236 ± 85 63.8 ± 34.0 0.93 <0.001 *
MSL 86 ± 14 87 ± 15 1.00 2.8 (6.5) 87 ± 14 −0.7 ± 0.9 −0.71 <0.05 *

WB = whole brain; GM = gray matter; WM = white matter; CSF = cerebrospinal fluid; MSL = lesion of multiple
sclerosis; ICC = intraclass correlation coefficient; MAPE = mean absolute percentage error. “*” indicates that the
p value is less than 0.05. The values in parentheses in the MAPE column are the results without noise removal.
The difference is from the pairwise pixel-value difference.

Figure 6 displays a Bland–Altman plot for all subjects of dictionary matching and the
two-stage model. The fifth and sixth columns of Tables 2 and 3 lists the mean and difference
(with standard deviations) between them. A significant positive correlation was observed
for the whole brain for T1 and T2* in the validation dataset and T2* in the testing dataset.
The significant positive correlation also appeared in the CSF for T2* for both validation
and testing datasets. A significant negative correlation was observed for the MS lesion for
T2* in the testing dataset. In both validation and testing datasets, the mean difference was
less than or equal to 10 ms for GM and WM, and 5 ms for the MS lesion, for T1. The mean
difference was less than or equal to 0.7 ms for GM, WM, and the MS lesion for T2* in both
validation and testing datasets. Figure 7 depicts a single slice from an MS patient for the
tissue masks, FLAIR, standard and predicted maps for T1 and T2*, and their corresponding
difference maps. The standard maps were obtained by dictionary matching using the
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inner-product method, and the predicted maps were gathered by the proposed two-stage
model. The MAPE for GM, WM, and MS lesions was low. The MAPE was higher for the
CSF region compared with other tissue types in the difference map, especially for T2*.
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Figure 7. Magnetic resonance fingerprinting parametric maps of a single slice in an MS patient
matched by the simulated dictionary (standard) and predicted by the proposed model. (a) Top is the
tissue masks; bottom is the FLAIR. (b) Standard maps by dictionary matching, predicted maps by the
proposed two-stage model, and difference maps between them.
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4. Discussion

Herein, we propose a two-stage model for predicting parametric maps of MRF-EPI.
The prediction results achieved a MAPE of equal to or less than 3% from the standard
dictionary matching for GM, WM, and MS lesions. In our approach, the first stage used MRF
signal denoising, and the second stage used regression of the simulated signal by the Bloch
equation [18]. The model’s prediction error with denoising was approximately one-half
that without denoising, and in this, we demonstrated the importance of removing the noise.
Furthermore, the pyramid model with self-attention learned well on the simulated signal
and achieved MAPE of approximately 2% and 1% for the training and validation datasets,
respectively, for the dictionary with the densest increment. Our proposed model accurately
reconstructed parametric maps of MRF-EPI and can therefore replace the computationally
expensive inner-product dictionary matching method.

Noise is an unavoidable problem when MRI is conducted using fast imaging tech-
niques, and acquisition speed and SNR are perennial tradeoffs. Several approaches have
been proposed for MRI denoising [27]. In general, denoising techniques are based on
specific assumptions to model prior properties, such as inherent pattern redundancy and
sparsity. The disadvantages of such modeling are that obtaining high performance is
computationally expensive and that several manual parameters must be selected [17].
Unlike prior-based approaches, deep learning–based DnCNN is both effective and time
efficient. A previous study demonstrated that by filtering the MRF baseline images, the
image quality improved for parametric maps [24]. We also performed noise reduction on
the MRF baseline image, but we did so on the signal evolution of each pixel instead of
on 2D images. SNRs for both the training and testing datasets increased by nearly twice
the original SNRs after denoising. No significant difference was observed between the
training and testing datasets before and after denoising in our experiments. This result
demonstrated that the DnCNN performed well in handling MRF signals with noise for
both training and testing datasets. In addition, we observed a decrease in the SNR on the
cranial and caudal sides, which conforms with observations in previous studies [28,29].

In learning simulated signals with different increments, the error in model prediction
on both training and validation datasets increased as the increment increased. We observed
that the PDCNN and WPDaCNN had fewer errors and a smoother error trend than did
the DCNN and SCNN. From this result, we observed that the model with the pyramid
structure was more stable than the model without the pyramid structure. In addition, in
the first division type of our experiments, the model was made to learn certain T1 and
T2* ranges of simulated signals and to predict the data outside the simulated scope as
validation. This approach resulted in poor prediction for the validation dataset. This result
demonstrated that the model did not learn the Bloch equation simulation [18] well. The
model must be made to learn all the expected ranges for the simulated signals to ensure
accurate predictions. Moreover, regarding the performance of the PDCNN and WPDaCNN,
the validation loss was lower than the training loss at any increment, indicating that the
model accurately regressed the learned data within the range of T1 and T2* contained in
the training dictionary. That is, once the model learned the dictionary with a 4% increment,
it was able to regress the T1 and T2* of the dictionary with a 2% increment well. Deep
learning models perform better with a single output compared with multiple outputs [13].
In our experimental results, the overall performance of the DCNN was superior to that of
the SCNN, which demonstrated that the dual-path for outputting T1 and T2* was beneficial
in improving the model performance.

To address the problem of noise, previous studies have used Gaussian noise to test the
performance of their model [8,24], but actual MRI noise distributions are non-Gaussian [30,31].
Thus, we created a noise dataset on the basis of the difference between simulated and
scanned data and randomly sampled the data from this dataset to train our deep learning
model. Furthermore, models trained by L1 loss were reported to perform more favorably in
MRF image reconstruction compared with other loss functions [13]. Hence, we concurrently
used L1 loss and MAPE loss to avoid the model’s overfitting to either T1 or T2* values
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(Equation (8)). In addition, studies have demonstrated the power of CNNs and the ability
of RNNs to outperform CNNs in MRF image reconstruction [9,10]. For natural language
processing, Transformer, which relies entirely on the self-attention mechanism, has been
proposed as having a lower computational cost and more advanced performance than
RNNs [20]. We combined a CNN with the self-attention mechanism to make the model
learn the correlations among features captured by the CNN. Furthermore, the performance
of a two-stage model is superior to that of a single-stage one for object detection but at
the expense of computational speed [32]. Our results also indicated that the two-stage
model with noise reduction outperformed the one-stage model without noise reduction.
Moreover, the computation time of the model in the GPU (0.02 s) for predicting a single
slice was 4500-fold faster than that of the commonly used inner-product matching in the
CPU (90 s). Finally, although correlations were observed in the Bland–Altman analysis, the
MAPE for clinically interesting tissues (GM, WM, and MS lesions) was less than or equal to
3%, and the mean T1 and T2* values of these tissues are consistent with those in previous
studies [1,33–36].

Clinical MRI relies on qualitative imaging, which can require one hour to obtain
multiple contrast weightings. Prolonged scanning is a burden for patients who cannot
recline for long periods and may record motion artifacts because of patient movement.
Additionally, qualitative imaging can be affected by the scanner and imaging parameters
used, which hinders disease follow-up. By contrast, MRF quantitative imaging can generate
multiple relaxation time maps in only a few minutes of scanning time. MRF has been
demonstrated to have high repeatability and reproducibility [37,38]. MRF is a favorable
approach to obtaining quantitative MR relaxation measurements. In addition, quantitative
MR relaxometry can synthesize conventional contrast weightings [2,3], which can be useful
for adherence to current clinical diagnostic standards. Furthermore, quantitative MRI
relaxometry–based tissue segmentation was reported to have favorable repeatability [39]
and can be beneficial in clinical settings for tracking the time course of a disease. With
improvements addressing the drawback of the long reconstruction time of MRF, this
approach is expected to replace the conventional weighted imaging currently used in
clinical practice. In this study, we propose a two-stage model that is able to learn the
simulated dictionary with dense increment and more quickly than dictionary matching.
Our model can accelerate MRF reconstruction and thus increase the feasibility of MRF for
clinical applications.

This study has some limitations. First, the gold standard we applied to evaluate the
accuracy of our models was the use of the parametric maps by dictionary matching, and
no other reference quantitative method was used. However, the quantification accuracy
of MRF-EPI by dictionary matching was validated with a phantom and had good agree-
ment [22,23]. Second, the prediction time we reported in the Results section was for only
one slice, and approximately 30 s were required to compute 60 slices consecutively. This
result was due to the continuous GPU computing also involving memory usage and data
transfer time. Finally, because of the design of MRF-EPI, the simulated dictionary differed
by slice. Therefore, we trained a total of 60 models corresponding to each slice, and this
required training time and space to store the trained weights for the model. Approximately
nine days were required to train the denoising model for stage I, and 18 h to train different
pyramid models for comparison. Regarding the final two-stage model, an excessive epoch
number led to poor model prediction for the scanned data because of overfitting. Therefore,
we used a relatively small number of training sessions (25 epochs), and approximately two
days were required for model training. Regarding storage space, space requirements were
smaller compared with those for the simulated dictionary (15 megabytes for the model
weights and 203 megabytes for the dictionary of each slice).

In this study, we proposed a two-stage model. The MRF signal noise reduction was
for the first stage, and the T1 and T2* value prediction was for the second stage. The
results showed that noise removal was very beneficial for predicting the T1 and T2* values.
Compared with other studies, we used real noise and the simulation dictionary to train
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the model to ensure generalizability. Our proposed model was designed using a 1D
architecture, which required model training for each slice. If the model is designed in 3D,
a single model will be able to cover the whole brain. However, compared with the multi-
model approach, the single model has fewer parameters for learning, and it is conceivable
that the noise reduction performance may be worse. We used the denoising CNN proposed
by Zhang et al. in 2017 [17]. Other advanced denoising deep learning models, such as a
denoising autoencoder [40], are available and can be used in MRF studies in the future to
improve the model performance in noise reduction. Besides, MRF using EPI fast imaging is
sensitive to magnetic field inhomogeneity and can have distortion artifacts at the air-tissue
interface. A common approach for distortion correction is image registration [41]. In
addition, MRI image analysis often requires the segmentation of tissues such as GM, WM,
CSF, and lesion to observe the correlated volumetric changes [42]. Deep learning is well
established in image registration and segmentation, such as VoxelMorph [43], which used
the spatial transformer function, and U-Net [44], a well-known architecture commonly used
for medical image segmentation. In the future, a multi-task deep learning model for MRF
can be added to specifically handle the image denoising, registration, and segmentation
tasks to achieve a one-stop efficient MRF image reconstruction and enhance the value of
MRF in clinical applications.

5. Conclusions

In conclusion, we effectively removed the noise from MRF-EPI in a 1D manner and
thus improved the performance of a deep learning model in the regression task for MRF
parametric map reconstruction. The proposed model achieved a prediction error equal to
or less than 3% in the T1 and T2* map for tissues of clinical interest, such as GM, WM, and
MS lesions. Compared with the 1.5 min required for the CPU computation using the inner-
product method, the proposed model can achieve a computation speed of 0.02 s for a slice
in the GPU. Our proposed two-stage model, trained with dense-increment simulated dictio-
naries, can accelerate image reconstruction and reduce the space required by dictionaries,
thus improving imaging efficiency. Future research can target deep learning models that
incorporate image processing, such as image registration and segmentation, to overcome
the distortion and measure the brain volumetry for facilitating MRF in clinical applications.
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