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Cutaneous electrogastrography (EGG) is used in clinical and physiological fields to noninvasively measure the electrical activity of the
stomach and intestines. Dipole models that mathematically express the electrical field characteristics generated by the stomach and
intestines have been developed to investigate the relationship between the electrical control activity (ECA) (slow waves) shown in EGG
and the internal gastric electrical activity. However, these models require a mathematical description of the movement of an annular
band of dipoles, which limits the shape that can be modeled. In this study, we propose a novel polygonally meshed dipole model to
conveniently reproduce ECA based on the movement of the annular band in complex shapes, such as the shape of the stomach and
intestines, constructed in three-dimensional (3D) space. We show that the proposed model can reproduce ECA simulation results
similar to those obtained using conventional models. Moreover, we show that the proposed model can reproduce the ECA produced
by a complex geometrical shape, such as the shape of the intestines. The study results indicate that ECA simulations can be conducted
based on structures that more closely resemble real organs than those used in conventional dipole models, with which, because of their
intrinsic construction, it would be difficult to include realistic complex shapes, using the mathematical description of the movement of
an annular band of dipoles. Our findings provide a powerful new approach for computer simulations based on the electric dipole model.

1. Introduction

Cutaneous electrogastrography (EGG) is a noninvasive tech-
nology that records the electrical activity of the stomach and
intestines using electrodes placed on the abdominal surface.
EGG is used in clinical and physiological fields, and gastric
emptying and function are evaluated based on the time and
frequency information obtained from EGG [1–5]. Further-
more, EGG measurements are performed using serous mem-
brane electrodes and floating probes; this method is difficult
to apply in clinical settings owing to the invasive nature of
the measurements. Human EGG was first carried out in
1922 by Alvarez [1], and it was demonstrated as a noninva-
sive method that could be used to assess changes in the motil-
ity of the stomach and intestines. Thereafter, despite
physiological [5–9] and clinical [10–12] research on EGG,
the relationship between EGG and the motility of the stom-

ach and intestines remained unclear. Thus, computer simula-
tion studies have been conducted to replicate the EGG
produced by the electrical activity of the alimentary canal.
Various models have been proposed in literature to achieve
this, such as the Van der Pol oscillator model [13–20], vol-
ume conductor model [21–24], dipole-based model [25–
36], and anatomical model [37–40]. Additional state-of-the-
art models have been discussed in a recent review by Du
et al. [41]. As described in this review, it has been established
that the interstitial cells of Cajal (ICCs) are responsible for
mechanotransduction, neurotransmission, and modulation
of smooth muscle cell membrane potential gradients, in addi-
tion to performing pacemaker functions [42–45].

Studies in this field have suggested that biophysically
based mathematical cell models that quantify the mecha-
nisms of slow wave activity [46, 47] can reproduce the
tissue-level electrical activity generated by the bidomain
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model, which is based on the consideration of smooth muscle
cells (SMCs) and ICCs [48–51]. The continuum modeling
framework—which represents the cellular-level activity of
the ICC and SMC based on the empirical model—was pro-
posed to simulate the electrical properties of biological cells
and tissues (from single cells to organs) [37]. Furthermore,
studies have clarified propagation patterns of slow wave
activity, including detailed representations of the regional
variations of such activity [52–55].

Based on these findings, anatomically realistic multiscale
monodomain models based on the Visible Human Project,
CT, or MRI data have been widely used in EGG simulations
[56–63]. This multiscale modeling is a sophisticated
approach that can be extended on the basis of physiological,
anatomical, and medical knowledge of the gastrointestinal
system. However, it requires a greater number of computa-
tional points and may involve high computational cost for
the construction of the complete 3D model [16, 41].

Among these models, dipole-based models such as coni-
cal and conoidal dipole models that mathematically express
the electrical field characteristics generated by the stomach
have been developed [25–29]. Dipole-based studies are based
on the concept that electrical control activity (ECA) (slow
waves), which is a type of electrical activity in the gastrointes-
tinal tract that temporally and spatially controls the genera-
tion of intestinal contractions, is generated by the periodic
movement of an annular band polarized by electrical dipoles.
A cylinder-type dipole model has been proposed to express
the ECA generated by electrical phenomena in the intestines
[30, 31, 33, 35]. Recently, a dipole-based model was proposed
to describe the propagation of excitability for the myome-
trium [60]. However, dipole models are prone to some draw-
backs for geometrically complex organs. First, they require a
mathematical description of the position and geometry of the
annular band. Second, the movement or centerline of the
annular band can only be represented in a two-dimensional
(2D) plane. Although the stomach has a simple geometry
and is located in approximately the same region as the intes-
tines, the latter has a more complex geometry. In addition,
solving the two aforementioned problems is necessary when
using the dipole model for the intestines.

In this paper, we present a novel polygonally meshed
dipole model that reproduces the ECA of complex shapes
constructed in three-dimensional (3D) space, based on the
movement of the annular band. We performed a computer
simulation using the proposed dipole model and simulated
the ECA detected at the electrodes arranged on the abdomi-
nal surface. Next, we simulated the ECA using the cylindrical
and conoidal dipole models used previously and compared
the performances of the proposed and conventional
methods. Finally, we investigated the efficacy of the proposed
method by adopting a realistic model geometry that is too
complex to be used in the conventional mathematical dipole
model methods.

2. Materials and Methods

The ECA of the digestive tract is simulated using a dipole-
based model in which the electrical dipole expresses the

depolarization of the SMCs constituting the digestive tract
[5, 21]. These conventional models can express both the
digestive tract geometry and electrical activity through the
motion of an annular band along a centerline. The electrical
potential V due to the annular band at the measurement
points is expressed using the following formula:

V = 1
4πε〠

D•ρ
ρj j3 ΔS, ð1Þ

where D is the dipole density vector, ρ the distance vector
from the microregion to the measurement point, jρj the mag-
nitude of the distance vector ρ, ΔS the microregion in the
annular band, S the annular band surface area, and ε the
permittivity.

However, in the conventional method, the motion of the
annular band must be mathematically described. Thus,
numerous bends and a 3D geometry, such as that of the intes-
tines, cannot be modeled. The conventional method can
model only simple shapes because the centerline of the annu-
lar band is continuously expressed using a numerical for-
mula. To address this issue, this study models arbitrary
shapes by discretely expressing the annular band.

2.1. Proposed Polygonally Meshed Dipole Model Based on the
Centerline. When simulating the ECA of the intestines, their
complex geometry must be modeled. We propose a polygo-
nally meshed dipole model that can construct a structure
with any geometry by using multiple vertices, even in cases
when the mathematical centerline of the depolarization band
cannot be defined; this cannot be achieved using the conven-
tional method. The proposed model can be constructed using
the following steps:

Step 1. Definition of the centerline of the annular band.

The outer surface of the intestines includes the teniae coli,
appendix, and sacculations of the colon, because of which,
the geometry of the colon is highly complex, and hence,
direct modeling of the intestinal surface is difficult. However,
this surface can be modeled easily by considering the intes-
tines as a tubular organ. Thus, because only the geometry
of the intestines is necessary, the centerline of the intestines
can be expressed by moving the depolarization band along
the centerline.

As shown in Figure 1, N arbitrary points Cn are defined
on the centerline as follows:

Cn =
xn

yn

zn

0
BB@

1
CCA n = 1,⋯,N: ð2Þ

Step 2. Configuration of the vertex circle at a point on the
centerline.
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As shown in Figure 2(a), the vertex circle configured on
the origin toward the z-axis is given by

xm,n′

ym,n′

zm,n′

0
BBB@

1
CCCA =

rn cos θm
rn sin θm

0

0
BB@

1
CCA θm = 2πm

M
,m = 1,⋯,M,

ð3Þ

where rn denotes the radius of the circle corresponding to the
point Cn, m is the index of the sampling point on the vertex
circle, M denotes the maximum number of sampling points
on the vertex circle, and θm denotes the angle between the x
-axis and the m-th sampling point on the vertex circle in
the xy-plane.

The vertex circle is rotated on the x-axis toward Cn
(Figure 2(b)):

xm,n″

ym,n″

zm,n″

0
BBB@

1
CCCA =

1 0 0
0 cos αn sin αn

0 −sin αn cos αn

0
BB@

1
CCA

xm,n′

ym,n′

zm,n′

0
BBB@

1
CCCA: ð4Þ

Angle αn, rotating in relation to this axis, is described by

αn = atan zn+1 − znffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn+1 − xnð Þ2 + yn+1 − ynð Þ2

q : ð5Þ

The vertex circle is rotated around the z-axis toward Cn
(Figure 2(c)):

x′′′m,n

y′′′m,n

z′′′m,n

0
BBB@

1
CCCA =

cos βn sin βn 0
−sin βn cos βn 0

0 0 1

0
BB@

1
CCA

xm,n″

ym,n″

zm,n″

0
BBB@

1
CCCA: ð6Þ

Angle βn, rotating around the z-axis, is described by

βn = atan yn+1 − yn
xn+1 − xn

: ð7Þ

Finally, the vertex circle is moved horizontally to Cn
(Figure 2(d)), and this can be written as

xm,n

ym,n

zm,n

1

0
BBBBB@

1
CCCCCA =

1 0 0 xn

0 1 0 yn

0 0 1 zn

0 0 0 1

0
BBBBB@

1
CCCCCA

x′′′m,n

y′′′m,n

z′′′m,n

1

0
BBBBBB@

1
CCCCCCA
: ð8Þ

Step 3. Creation of annular band on surface polygons by con-
necting the vertex circles.

As shown in Figure 3(a), multiple vertex circles can be
placed on the centerline.

The vertex at position m of the vertex circle at position n
of the centerline is described by

Cm,n =
xm,n

ym,n

zm,n

0
BB@

1
CCA: ð9Þ

Next, the surface polygons are created by connecting the
adjoining vertex circles on the centerline, as shown in
Figure 3(b).

In this study, the ECA is simulated by adopting an
improved version of the electric dipole model described in
the previous studies. These studies used the “annular band”
concept to describe dipole distribution and movement [25–
28, 30–33, 35]. Herein, the annular band microregion (ΔS)
consists of four adjoining vertices, as shown in Figure 3(c),
and the annular band is expressed as a “ring of surface poly-
gons” created by connecting the adjoining annular band
microregions in the horizontal direction, as shown in
Figure 3(d). Similar to previous studies [25–28, 30–33, 35],
the movement of this annular band expresses the electrical
activity of the stomach and intestines.

The annular band microregion of the arbitrary annular
band can be expressed as

ΔSm,n =Cm,nCm+1,n
������! ×Cm,nCm,n+1

������!

=

xm+1,n − xm,n

ym+1,n − ym,n

zm+1,n − zm,n

0
BBB@

1
CCCA ×

xm,n+1 − xm,n

ym,n+1 − ym,n

zm,n+1 − zm,n

0
BBB@

1
CCCA

���������

���������
:

ð10Þ

The dipole is positioned at the center of an annular band
microregion (ΔSm,n), oriented toward the normal direction of
the annular band microregion, i.e., the center of the annular
band. Setting the dipole moment vector as Pm,n, the dipole
density vector Dm,n in the annular band microregion is given
by

Dm,n =
Pm,n
ΔSm,n

: ð11Þ

The electrical potential at the measurement points can be
derived from the dipoles in the microregions.

Cn

Figure 1: Schematic illustration of arbitrary point sampling on the
centerline of the model. The black line represents the centerline of
the model, and the surface of the model is red.
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Figure 2: Constructing the model based on the centerline. (a) The grey line in the center of the figure is the centerline, and the yellow circle at
the bottom of the figure is the vertex circle positioned at the starting point. From here, the vertex circle is determined at an arbitrary point on
the centerline. (b) The vertex circle is rotated toward the x axis to face the same way as the adjacent point Cn+1 from an arbitrary point on the
centerline Cn: (c) The vertex circle is rotated around the z axis to face the same way as the adjacent point Cn+1 from an arbitrary point on the
centerline Cn. (d) The vertex circle is moved to the position of the arbitrary point on the centerline Cn.
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Figure 3: Configuration of polygonally meshed dipole model. (a) The grey line in the center of the figure is the centerline, and the circle
around the centerline is the vertex circle. (b) A surface is extended across the adjoining vertices. (c) The annular band microregion
(yellow) is defined by the four adjacent vertices; the dipole band is positioned in the center of this region. (d) The annular band is defined
by connecting the horizontal annular band microregions (yellow) facing the adjacent point Cn+1 from an arbitrary point on the centerline
Cn.
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As described above, the dipole on the annular band
microregion is positioned at its center; thus, by setting the
electrode coordinates (measurement points) as Eðx, y, zÞ, as
shown in Figure 4, the distance vector ρm,n from the microre-
gion to the measurement point is given by

ρm,n = E x, y, zð Þ − 1
2 Cm+1,n+1 + Cm,nð Þ: ð12Þ

Based on the above considerations, the equation for
deriving the electrical potential according to the proposed
dipole model is improved as follows. According to Equation
(1), V is given by

V = 1
4πε〠

N

n=1
〠
M

m=1

Dm,n · ρm,n

ρm,n
�� ��3

= 1
4πε〠

N

n=1
〠
M

m=1

Pm,n · ρm,n

ΔSm,n ρm,n
�� ��3 :

ð13Þ

The electric potential at the arbitrary measurement point
can be expressed as

V =V1 − V0, ð14Þ

where V1 is the electric potential at the measurement elec-
trode coordinates and V0 is the electric potential at the refer-
ence electrode coordinates.

In the conventional model, the centerline had to be math-
ematically defined, which limited its use in 3D space. How-
ever, the proposed model can expand the motion area of

the annular band and avoid model duplication at sharp
bends.

2.2. Conventional Model 1: Mathematical Cylinder Model.
We tested the cylindrical model that Mirizzi et al. [30] used
to model the intestine of a cat. In this mathematical model,
the centerline must be numerically described. Using polar
coordinates, the electrical potential at the measurement point
is expressed as a function of time:

z tð Þ = v · t = l · f · t, ð15Þ

where zðtÞ denotes the annular band position, v denotes the
transition rate, t denotes the time, l denotes the cylinder
length, and f denotes the frequency of the simulated ECA.

Thus, according to Equation (1), the equation for the
electrical potential at the measurement point is derived as
follows:

where jDj denotes the magnitude of the dipole density vector
D, Θ denotes the angle of the microregion of the annular
band in the xy-plane, zp denotes the z-coordinate of the mea-
surement point, h denotes the Euclidean distance of the mea-
surement point in the xy-plane, and θ denotes the angle of
the measurement point in the xy-plane.

Using this model, an annular band of radius R0 located
on the cylindrical surface can be moved, and the electrical
potential at a measurement point at a given time can be
determined.

However, because the band is expressed by rotation
centered on an axis, its capability is thought to be limited
for the construction of an epaxial model. In addition,
because a polar coordinate system is used, an accurate
value cannot be calculated when the annular band is close
to the origin ðz≒0Þ. The centerline was constructed using
Equation (15).

In this study, we confirm whether the electrical potential
at a measurement point can be produced using the proposed
method with the same centerline and electrode coordinates
as those used in the previous study [30].

2.3. Conventional Model 2: Conoidal Dipole Model. The
conoidal dipole model proposed by Mintchev and Bowes
[27] was improved to model the human stomach. Through
these improvements, the annular band can be expressed at
any point, and a nonepaxial model can be constructed. In
the case of the conoidal dipole model, the movement of the
annular band is represented by the angle as a function of time
relating to the propagation velocity of the annular band,
which is given by

v tð Þ = 0:00825 − 0:00575e−0:362t: ð17Þ

z

xE

𝜌m,n y

Figure 4: Electrode coordinates (measurement points) Eðx, y, zÞ
and the distance vector ρm,n from the microregion to the
measurement point.

V r, tð Þ = −
Dj j
4πε

ð2π
0

ðz tð Þ+δ

z tð Þ

R0z R0 − h cos Θ − θð Þð ÞdzdΘ
z2 + zp2 + R0

2 + h2 − 2 zzp + R0h cos Θ − θð Þ� �� �3/2
R0

2 + z2
� �1/2 , ð16Þ
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The displacement of the annular band is expressed as lðtÞ:

l tð Þ =
ðt
0
v tð Þdt: ð18Þ

The relationship between αðtÞ and lðtÞ is given by

α tð Þ = l tð Þ
R

, ð19Þ

where αðtÞ denotes the angle of the center of the annular
band on the yz-plane and R is the distance from the origin
O to the center of the annular band.

However, the motion of the annular band is limited to a
2D plane. Furthermore, the direction of the band is fixed in
the vertical direction relative to the radiation plane.

In the proposed method, the centerline is constructed
using Equations (18) and (19).

By contrast, the conventional conoidal dipole model can
be presented using the following description [27]. The origin
is O, and the current location of the microregion in the annu-
lar band is labelled with L,

OL =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 + r tð Þ2 − 2Rr tð Þ cos θ

q
, ð20Þ

takingOL to be the distance fromO to L, rðtÞ to be the radius
of the annular band, and the center point of the current
annual band to be O″, θ becomes the angle OO″L.

φ t, θð Þ = sin−1 r tð Þ sin θ

OL

� 	
: ð21Þ

φðt, θÞ is the angle from the y-axis to L in the xy-plane;
taking the position of the electrode to be Q, the magnitude
of the distance vector ρ can be expressed as

ρ t, θð Þj j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OL2 +OQ2 − 2OLOQ cos φ t, θð Þ − φcð Þ cos αc − α tð Þð Þ

q
:

ð22Þ

OQ is the distance from the origin O to Q, φc is the angle
between the y-axis and OQ in the xy-plane, and αc is the
angle between the y-axis and OQ in the yz-plane.

Thus, according to Equation (1), the equation for the
electrical potential at the measurement point is derived as
follows:

where jPj denotes the magnitude of the dipole moment vec-
tor P.

Equation (23) is a function of the two angles αðtÞ and φ
ðt, θÞ and can be solved by numerical analysis.

In this study, we also confirm whether the electrical
potential at a measurement point can be produced using
the proposed method with the same centerline and electrode
coordinates as those used in a previous study [27].

2.4. Pseudocolon Model. The proposed method can express
the movement of an annular band without using numerical
formulas; therefore, models of arbitrary 3D shapes can be
constructed. This means that it can model sudden bends
and kinks, such as those found in the intestines, as well as
depressions in the surface. We simulate EGG signals based
on a pseudocolon model created by a centerline that cannot
be expressed simply.

Finally, the validity of the proposed method is investi-
gated by using it to construct the above three models.

3. Results

Simulations of the conventional and proposed methods were
compared for each of the models shown below. However, the
source code for the simulations used in the reference litera-
ture [27, 30] is not publicly available, and therefore, we cre-
ated our own program using the equations presented here.
Moreover, there are parameters that have not been specified;
therefore, analogs were used for some parameters to obtain
results close to the figures published in the literature.

3.1. Conventional Model 1: Mathematical Cylinder Model.
Figures 5(a) and 5(b) show the centerline of the mathematical
cylinder model constructed according to Equation (15) and an
annular band on the centerline constructed using the pro-
posed method, respectively. V1 and V0 can be obtained by
moving the annular band along the centerline of the model.
An EGG was simulated using the following parameters: cylin-
der length l = 0:10m, frequency of the simulated ECA f = 5:4

V tð Þ = −
Pj j

4πεδr tð Þα tð Þ tan αc

×
ð2π
0

1 + tan αcð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 + r tð Þ2 − 2Rr tð Þ cos θ

q
− 2OQ cos φ t, θð Þ − φcð Þ cos αc − α tð Þð Þ − 1ð Þdθ

θ R2 + r tð Þ2 − 2Rr tð Þ cos θ +OQ2 − 2OQ cos φ t, θð Þ − φcð Þ cos αc − α tð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 + r tð Þ2 − 2Rr tð Þ cos θ

q� 	2 ,

ð23Þ
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cycles/min, annular band of radius R0 = 0:0125m, dipole
moment magnitude jPj = 0:45 × 10−7C/cm, permittivity ε =
2:65 × 10−8C2/Ncm2, maximum number of sampling points
on the vertex circle M = 100, maximum number of sampling
points on the centerline N = 910, reference electrode coordi-
nates E0ðx, y, zÞ = ð0:0, 0:0, 4:0Þ, and measurement electrode
coordinates E1ðx, y, zÞ = ð0:0, 0:0, 4:2Þ:

As in the conventional method, to maintain the width of
the annular band at 0.00011m, the number of vertices on the
centerline was set to 910.We compare the proposed method
with the conventional mathematical cylinder model con-
structed using Equation (15). Figure 5(c) shows the results
of the comparison between the conventional method and
the proposed method at a sampling rate (SR) of 10Hz, which
confirm that as reported in previous studies, the annular
bandmoves from the top to the bottom of the model. In addi-
tion, as the annular band approaches the measurement elec-
trode, the electric potential increases, whereas as the band
approaches the reference electrode, the electric potential
decreases. Furthermore, we confirmed that the EGG wave-
form generated by the proposed method is very similar to
the EGG waveform generated by the conventional method.

3.2. Conventional Model 2: Conoidal Dipole Model.
Figures 6(a) and 6(b) show the centerline of the conoidal
dipole model, constructed according to Equations (18) and
(19), and an annular band on the centerline, constructed

using the proposed method, respectively. V1 and V0 can be
obtained by moving the annular band along the centerline.
An EGG was simulated using the following parameters from
the previous work [31]: distance from the originO to the cen-
ter of the annular band R = 10 cm, dipole moment magnitude
jPj = 2:2 × 10−6 C/cm, permittivity ε = 2:21 × 10−8 C2/N cm2,
maximum number of sampling points on the vertex circle
M = 100, maximum number of sampling points on the cen-
terline N = 201, reference electrode coordinates E0ðx, y, zÞ
= ð0:0, 4:8, 10:9Þ, and measurement electrode coordinates
E1ðx, y, zÞ = ð0:0, 3:8, 11:1Þ: From these figures, we confirm
that the centerline of the conoidal dipole model is bent and
is different from that of the mathematical cylinder model.

Figure 6(c) shows the results of the comparison between
the conventional method and the proposed method, at SR
= 10Hz of the centerline for both the conventional method
and the proposed method. The figure clearly shows that in
the conventional method, the amplitudes diverge at 20, 40,
and 60 s, due to the angles αðtÞ and φðtÞ, an effect that is
related to the SR of the centerline. To address this problem,
as shown in Figure 7, we compared the results of the conven-
tional method and the proposed method at SR = 1Hz of the
centerline for the conventional method and SR = 10Hz for
the proposed method. From this figure, using the 1Hz cen-
terline SR, the amplitude waveform obtained by the conven-
tional method is similar to that reported in a previous study
[27].
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Figure 5: Cylindrical model used in a polygonally meshed dipole model. (a) Centerline constructed using the equation for the conventional
mathematical cylinder model. (b) Mathematical cylinder model constructed using the proposed method. (c) EGG simulation results for the
conventional method and the proposed method obtained, in the latter case, by moving the annular band.
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When the annular band moves from the top to the bottom
of the model, the electric potential increases as the annular
band approaches the measurement electrode, whereas the elec-
tric potential decreases as it approaches the reference electrode.

Furthermore, we found that compared with the conven-
tional method, the proposed method can achieve smoother
amplitude increases and decreases. The result obtained by
the proposed method more closely resembles the recording
from an actual experiment performed on a patient, as reported

by Mintchev and Bowes [27]. In the dipole-based model, the
next cycle begins as soon as the annular band reaches the
end of themodel, with themovement of the annual band start-
ing from the beginning. In the proposed method, since the
potential increases and then gradually decreases, the next cycle
starts before it is fully attenuated, and thus, there is a sudden
change in the electric potential at the turns of the cycles,
depending on the position of the electrode.

As shown in previous studies [5, 27], this problem can be
avoided by designing a model with sufficient distance for full
attenuation, because the measured values increase or
decrease smoothly compared with the results of the conven-
tional method. Moreover, considering the original shape of
the organ, the movement of the annular band does not stop
abruptly at the end of the target organ because of other
organs connected before and after it.

In the conventional dipolemodel, discontinued points were
confirmed at the end of periods. This is also due to the angles
αðtÞ and φðtÞ used in the conventional method. Note that this
trend was also confirmed in the result of the conventional
method shown in Figure 6(c). From these results, we found that
the proposed method achieves a level of resemblance between
the amplitude waveform and the actual waveform that cannot
be achieved by the conventional dipole models.

3.3. Pseudocolon Model for Complex Geometry. Figures 8(a)
and 8(b) show the centerline of the pseudocolon model
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Figure 6: Conoidal dipole model used in a polygonally meshed dipole model. (a) Centerline constructed using the equation for the
conventional conoidal dipole model. (b) Conoidal dipole model constructed using the proposed method. (c) EGG simulation results for
the conventional method and the proposed method obtained by moving the annular band.
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obtained with reference to the shape of the colon and an
annular band on the centerline constructed using the pro-
posed method, respectively. V1 and V0 can be obtained by
moving the annular band along the centerline of this model.
An EGG was simulated using the following parameters from
a previous study [31]: dipole moment magnitude jPj = 0:45
× 10−7 C/cm, permittivity ε = 2:21 × 10−8 C2/N cm2, maxi-
mum number of sampling points on the vertex circle M =
100, the maximum number of sampling points on the center-
line N = 81, reference electrode coordinates E0ðx, y, zÞ = ð
3:19, 0:25, 7:36Þ, and measurement electrode coordinates E1
ðx, y, zÞ = ð2:62, 0:25, 7:33Þ. Figure 8(c) shows the EGG sim-
ulated using the proposed method. The model was 15 cm
long, and the radius of the dipole band periodically changed
from 1.5 to 2.5 cm.

The centerline of the model used in the proposed method
does not have to be expressed using a numerical formula, and
thus, a model in which the orientation of the annular band
changes frequently and irregularly can be easily constructed.
Moreover, changes in the radius of the annular band are arbi-
trary; thus, not only the shape of the stomach but also that of
other organs such as the intestines can be modeled.

The simulation results using the pseudocolon model pro-
duced the appearance of a cyclic waveform similar to those
obtained in previous studies, and the waveform was not
smooth because serous membrane electrodes were used.
Moreover, the electric potential is highest at the point where
the dipole band and the electrode are closest. However,
unlike the results obtained using the conventional model
described above, the orientation of the annular band fre-

quently changes, and therefore, the electric potential switches
frequently between positive and negative.

4. Discussion and Conclusions

The simulation results for the proposed method show that
the polygonally meshed dipole model can reproduce both
accurate organ-like shapes and the ECA simulation results
of the conventional dipole-based methods. Therefore, we
expect that there should no longer be a need to find a new
simulation model (numerical expressions for annular band
movement) every time the shape of the model changes. Thus,
instead of using the conventional models, ECA simulations
can be conducted using models that more closely resemble
real organs, which would be difficult to achieve using numer-
ical expressions.

Based on the theoretical concepts and assumptions of
Mirizzi et al. and Mintchev and Bowes [25, 27], existing
dipole-based model studies have shown that gastrointestinal
ECA is generated by the periodic movement of an annular
band that is depolarized by electrical dipoles [26, 28–34].

EGG measurements include ECA and electrical response
activity (ERA) signals. However, in the dipole-based model,
ERA is ignored when modeling gastric electrical activity,
owing to the assumption that ERA typically has no signifi-
cant effect on the spatial and temporal organization, fre-
quency, velocity of propagation, waveform, phase locking,
and coupling of the signals [27–29]. However, as described
in the study of Mirizzi et al. [26, 30, 32–34], if required,
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Figure 8: Complex structure expressed using a polygonally meshed dipole model. (a) Centerline drawn by reference to the shape of the colon.
(b) Pseudocolon model constructed using the proposed method. (c) EGG simulation results obtained by moving the annular band in the
proposed method.
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ERA simulations can be incorporated by appropriate selec-
tion of the simulation parameters of the dipole-based model.

Considering a different approach, the multiscale mono-
domain model [56, 61, 62] proposed by Du et al. has achieved
realistic modeling through quantitative evaluation of the rel-
evant biophysics. However, a larger model may require
higher computational cost because the multiscale monodo-
main model uses a finite element method to obtain the slow
waves and potentials in electrically active tissues in the gas-
trointestinal tract. The dipole-based model simplifies the fol-
lowing procedure considered in the multiscale monodomain
model: conceptually representing a continuum unit of a mix-
ture of ICCs and SMCs, reproducing the regional variation in
membrane potentials and slow wave amplitudes, and spike
activity (SMC action potentials) [56].Considering this proce-
dure, it is apparent that the dipole-based model has the
advantage of being more technically compact and simple to
compute than the multiscale modeling approach.

The dipole-based model has been proposed not only for
modeling but also for comparison of the simulated and actual
values by observing the amplitudes, cycles, and waveforms
[25, 27]. However, the dipole-based model, which has been
strongly advocated thus far, requires the movements of the
annular band to be expressed numerically; therefore, it is a
simple model for simulating the stomach and intestines,
and it does not consider the heterogeneity of the abdominal
wall, effects of contact between the skin and electrodes, and
other factors (such as the effects of other organs and the
amplitude range of the electric potential). Moreover, because
the EGG calculations use polar coordinates, if the annular
band is near the origin, problems associated with the dis-
persal of the numerical values can occur.

In this study, we compared the amplitude waveform
obtained using the conventional dipole-based approach with
that obtained using the proposed method. The results
showed that (i) the amplitude waveform can be represented
more accurately by the proposed method, by comparison
with the actual data obtained in a previous study [27], and
(ii) the performance of the conventional method depends
on the SR of the centerline. As can be understood from Equa-
tion (23), the positional relationship between the small
region on the annular band and the measurement electrode
is expressed using αðtÞand φðtÞ. When the SR is high, there
is almost no difference between the angles, and when these
values are substituted into the expression based on trigono-
metric functions, the difference becomes even less noticeable,
and thus, the vector ρðt, θÞ from the small region to the mea-
surement electrode may not be accurately represented. Since
the conventional dipole-based model uses a polar coordinate
system, an accurate potential may not be obtained, for the
same reason, when placed on the model surface, as with sero-
sal electrodes or at the beginning or end of the model; elec-
trode arrangement will be limited irrespective of the shape
of the proposed model. This is one of the limitations of the
conventional dipole-based approach.

In contrast, the polygonally meshed dipole model pro-
posed in this study, which resolves this problem, does not
require numerical formulas to express the movement of the
annular band. This means that a model with an arbitrary

shape can be constructed, including both the annular band
shape and transition speed, simply by defining the centerline.
Moreover, unique numerical values can be calculated for any
coordinates using the Cartesian coordinate system, thus
avoiding the abovementioned problem with the dispersal of
numerical values.

In the case of moving the annular band along the center-
line, which does not require numerical expressions in 3D
space, if the band is moved in the same manner as in the con-
ventional dipole-based approach, a part of the domain moves
back or stagnates in the band containing the adjacent points,
or the domain that is not included in the band is generated
with the adjacent points. Thus, to address the issue of domain
inclusion, we moved the vertex circle in space and devised a
scheme to move the annular band using the surface formed
with the adjacent vertex circles (by following the four steps
described in Figure 3). This allowed us to move the annular
band in 3D space in the same manner as in the conventional
dipole-based approach.

The novelty of the proposed method can be attributed to
the use of the dipole-based model, which does not require a
mathematical description of the movement of the annular
band, to simulate the ECA of complex shapes, such as the
stomach and the intestines.

The findings of this study suggest that if the centerline of
the target internal organs can be extracted from CT images,
or if 3D model data (model archiving file format) of the ali-
mentary canal can be created, EGG simulation may become
possible. Such simulations will be carried out in our future
work.
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