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Abstract
The capacity of pathogenic microorganisms to adhere to host cells and avoid clearance by the host immune system is the 
initial and most decisive step leading to infections. Bacteria have developed different strategies to attach to diverse host 
surface structures. One important strategy is the adhesion to extracellular matrix (ECM) proteins (e.g., collagen, fibronectin, 
laminin) that are highly abundant in connective tissue and basement membranes. Gram-negative bacteria express variable 
outer membrane proteins (adhesins) to attach to the host and to initiate the process of infection. Understanding the underly-
ing molecular mechanisms of bacterial adhesion is a prerequisite for targeting this interaction by “anti-ligands” to prevent 
colonization or infection of the host. Future development of such “anti-ligands” (specifically interfering with bacteria-host 
matrix interactions) might result in the development of a new class of anti-infective drugs for the therapy of infections caused 
by multidrug-resistant Gram-negative bacteria. This review summarizes our current knowledge about the manifold interac-
tions of adhesins expressed by Gram-negative bacteria with ECM proteins and the use of this information for the generation 
of novel therapeutic antivirulence strategies.
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Introduction

The capacity to adhere to host cells and thereby avoid clear-
ance by the host defense systems (e.g., via peristalsis, fluid 
flow or innate immunity) is an important determinant for a 
successful colonization by bacterial pathogens. Adhesion 
to the host cells can facilitate translocation of pathogenic 

bacteria across the cellular and tissue barriers by generat-
ing a stable starting point on which the microorganism can 
persist, replicate, and internalize into host cellular compart-
ments. Once a stable adhesion to host cells is established, 
pathogens are able to spread within the host and express 
and/or release further virulence factors enabling subsequent 
steps of infections. Such virulence factors include, e.g., bac-
terial toxins (modulating host cell functions), cell surface 
carbohydrates or proteins (protecting the bacterium from 
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host defense), and exoenzymes (contributing to bacterial 
dissemination).

A group of proteins exposed on the pathogen’s surface 
called “adhesins” has been identified as the molecular basis 
for bacterial adherence to certain host molecules. The way 
that different bacterial populations take advantage of their 
adhesins and how they bind to their specific receptors within 
the host is decisive for the particular type of disease caused 
by a particular organism. Adhesins are involved in biofilm 
formation and have proven to undermine host strategies for 
pathogen clearance [1, 2]. Furthermore, bacterial adhesion 
to host cell surfaces activates both bacterial and host sign-
aling, subsequently enabling bacterial spread and the eva-
sion of innate and cellular immune responses [3]. On the 
host side, the extracellular matrix (ECM) is one of the most 
important proteinaceous tissue components, due to the wide 
distribution of ECM in the connective tissue and basement 
membranes [4]. Targeting of ECM proteins for adherence is, 
therefore, one of the major strategies for pathogen coloniza-
tion and host invasion [4].

Bacterial binding capacity to ECM proteins was first 
described over 40 years ago, with the report of Staphylo-
coccus aureus binding to fibronectin [5]. Since then, our 
knowledge about the mechanisms underlying host–patho-
gen interactions has increased significantly. This resulted in 
promising ideas for inhibiting such interactions for the future 
development of anti-bacterial therapeutics. In this review, 
we summarize the principal ECM proteins involved in the 
adhesion processes of Gram-negative bacteria, the impact 
on virulence and pathogenesis, and how to use this knowl-
edge in terms of generating novel antivirulence-therapeutic 
strategies.

Extracellular matrix proteins involved 
in the adhesion of Gram‑negative bacteria

The ECM is a highly dynamic structure having various func-
tions. It consists of numerous macromolecules in charge of, 
e.g., the structural support and scaffolding of cellular bar-
riers, cellular signaling, and the regulation of physiologi-
cal processes. The ECM is composed of proteoglycans and 
glycoproteins secreted locally and brought together into an 
organized network. The main fibrous proteins forming parts 
of the ECM are collagen, elastin, fibronectin, laminin, and 
vitronectin [6], making these molecules a preferred target 
for bacterial adhesion.

Collagen

Collagen is the major glycoprotein representing 30% of 
the total protein content in the human body. Its presence 
is crucial for maintaining tissue structure, cell adhesion, 

embryonic development, and many other functions. Apart 
from mammals and some other vertebrates, collagen has 
been identified in many invertebrate organisms, evidencing 
the conservation and importance of the molecule throughout 
evolution [7, 8]. The latest report described a total of 28 
collagen types encoded by more than 45 genes distributed 
in body tissue and organs [9, 10]. Initially, it was thought 
that all types of collagen were secreted by fibroblasts which 
are present in the connective tissue [11] but the production 
of certain types of collagen by epithelial cells indicates the 
broad distribution of the molecule in the human body [10]. 
Under normal conditions, collagen is degraded extracellu-
larly by tissue collagenases, belonging to the class of matrix 
metalloproteinases [9].

Collagen consists of α-chains and the variability in the 
number of α-chains present in the molecule defines the dif-
ferent collagen types distributed in the human body. Despite 
the presence of multiple isoforms and tissue expression lev-
els, all the different types of collagen share common struc-
tures [10]. The most significant structure is the presence of 
Gly-X-Y repeats located in the central part of the α-chain, 
known as the “collagenous domain”. A triple helix structure 
is formed by regular hydrogen bonding between proline and 
glycine residues [12]. In addition to the collagenous domain, 
there are regions lacking the Gly-X-Y repeats named “non-
collagenous domains”. The presence of these long non-
collagenous domains along the molecule creates breaks in 
the triple helix conformation, while the non-collagenous 
domains in the N-terminal and C-terminal ends are removed 
by procollagen N- and C-proteinases to allow the assembly 
into fibrils [13]. The supramolecular association occurs after 
extracellular release and further assembly into networks or 
fibrils including other ECM proteins.

The collagen protein family is widely present in skin (col-
lagen type I in association with collagen types III, V, VII, 
XII, XIII and XIV), in bones (collagen type I in association 
with collagen types XXIV), in cartilage (collagen type II 
in association with IX, X, XI and XIII), and in basement 
membranes (collagen type IV in association with collagen 
type XVIII) [9, 10]. The presence of collagen-binding pro-
teins (collagen-BPs) in pathogenic bacteria is, therefore, not 
incidental but has evolved because of the broad distribution 
of this ECM protein in organs and tissue. The majority of 
adhesin–host protein interactions observed in Gram-negative 
bacteria have been associated with collagen type I, IV, and 
V [4].

Fibronectin

Fibronectin (Fn) is a multidomain glycoprotein present in 
body fluids and on cell surfaces with the principal func-
tion of connecting the cell to the exterior ECM. Two major 
forms of Fn are present in the body: a soluble (plasma) and 
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an insoluble (cellular) form. Plasmatic Fn is produced by 
hepatocytes and is, therefore, present in blood, saliva, and 
other fluids, playing important roles in blood clotting [14]. 
Cellular Fn is secreted by fibroblasts and endothelial cells 
and is incorporated on the cell surface into a fibrillar-type 
matrix [15, 16]. Turnover of ECM proteins is an important 
mechanism to remove biologically active proteins from the 
extracellular environment. Fn degradation occurs intracel-
lularly after endocytosis of non-polymerized Fn molecules 
[17].

The Fn molecule is a heterodimer composed of two splice 
variants of about 230 and 270 kDa connected by a C-termi-
nal disulfide bond (see Fig. 1). In general, the Fn structure 
is organized into 12 type I repeats (FnI), two type II repeats 
(FnII), and a variable number (between 15 and 18) of type 
III repeats (FnIII). Differences between the splice variants 
modify the number of modules in FnIII [15, 16, 18]. Addi-
tionally, cellular Fn can include EIIIA and EIIIB domains, 
which notably are not present in the soluble molecule [19, 
20].

Fn mediates important human protein–protein and pro-
tein–oligosaccharide interactions during the formation of 
the ECM [21]. The  FnI1–FnI5 components are the most 
conserved Fn region across vertebrates [21]. This domain 
is required for the proper assembly of the ECM and binds 
to heparin (lower affinity) and fibrin (stronger affinity). 
Moreover, this domain is also the major fibrin-binding site 
in the Fn molecule. The interaction between Fn and fibrin is 
important for cell adhesion, cell migration into fibrin clots, 
and for macrophage removal from circulation after a trauma 

or in the case of inflammation. Another region consisting of 
 FnI6,  FnII1–2, and  FnI7–9, promotes collagen binding. This 
interaction has been suggested to occur either to mediate 
cell adhesion or to favor clearance of denatured collagenous 
material from blood and tissue. The FnIII domain mediates 
cell attachment via integrins (cell-surface heterodimeric 
receptors) in the RGD loop located at the  FnIII8–10 area. The 
interaction via integrins allows the linkage of ECM with the 
intracellular cytoskeleton. The  FnIII12–14 modules contain 
the strongest interaction site necessary for heparin-binding. 
It has been proposed that this region facilitates the formation 
of protein interactions for insoluble fibril assembly, whereas 
in some cell types the heparin-binding domain promotes 
cell adhesion. A second fibrin-binding site is located at the 
C-terminal  FnI10–12 modules [18, 21–23].

The presence of bacterial Fn-binding proteins (FnBPs) 
was demonstrated by the inactivation of the respective 
FnBP genes and the observation of diminished or abolished 
bacterial adhesive characteristics in mutants lacking the 
expression of the protein. The observation of a Fn-binding 
repeat sequence within the adhesins (GGXXXXV(E/D)(F/I)
XX(D/E)T(Xx15) EDT) has been described for certain bac-
terial proteins [24]. On the other hand, a canonical binding 
site in the Fn molecule located in the  FnI2–FnI5 region has 
been identified due to the interaction of many FnBPs in this 
area [22, 25]. Notwithstanding, other non-canonical bacte-
rial binding sites associated with positions  FnI6,  FnII1–2, 
 FnI7–9,  FnIII9–10, and  FnIII12 have also been identified in the 
Fn molecule (see Fig. 1).
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Fig. 1  Schematic drawing of the fibronectin molecule (monomer) 
with selected bacterial protein-binding sites and selected host pro-
tein–protein interaction sites. Fibronectin (Fn) is a heterodimer com-
posed of two splice variants connected by a C-terminal disulfide 

bond. The molecule contains nine Fn type I repeats, two Fn type II 
repeats, and between 15 and 18 Fn type III repeats. In cellular Fn, 
EIIIA (A) and EIIIB (B) domains are present as a result of alternative 
splicing Adapted from [202]
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Laminin

Laminin (Ln) is a multifunctional molecule with a total 
of 15 heterotrimeric isoforms differentially distributed in 
basement membranes, connective tissue, cell surface, skin, 
and blood vessels. This ECM protein is in charge of main-
taining the structural scaffold, cell migration, and signaling 
[4]. Plasmin degrades Ln that is located in the basement 
membrane at the dermal–epidermal junction and in the hip-
pocampus [26, 27].

Ln consists of α-(400 kDa), β-(200 kDa), and γ-(200 kDa) 
chains, independently expressed and interconnected via 
disulfide bonds at their C-terminal regions (see Fig. 2). Ln 
trimerizes prior to its extracellular secretion and then forms 
networks cooperating with other ECM proteins. The first 
N-terminus (240–250 amino acid residues: LN domains) 
are well conserved among Ln isoforms and are involved in 
the polymerization of the molecule. The epidermal growth 
factor-like (LE) domains are associated with functions such 

as signaling, growth, and development and interconnect the 
globular domains of the Ln molecule. Finally, there is the 
coiled-coil region that consists of 600 amino acids and inter-
acts with other proteins and receptors [4].

The Ln molecule has been found widely distributed in 
the renal parenchyma including glomeruli and tubules, and 
in gastric mucosa. The presence of Ln-Binding Proteins 
(LnBPs) has been demonstrated in Gram-negative pathogens 
such as Escherichia coli, Haemophilus influenzae, Neisseria 
meningitidis, Helicobacter pylori, Yersinia enterocolitica, 
and Borrelia burgdorferi [4] (see Fig. 2).

Adhesins of Gram‑negative bacteria 
and cellular matrix protein interactions

Bacterial adherence to host tissues represents the first and 
decisive step in the infection process. Although bacterial 
attachment seems to be beneficial for microorganisms, it 
may become a double-edged sword if, after attachment, the 
host immune signaling is activated and impedes internaliza-
tion and phagocytosis strategies. To overcome this problem, 
bacteria can express surface structures to protect themselves 
from immune recognition and might employ further traits, 
such as protein secretion systems to modulate and to evade 
the host´s immune system. Actually, tight adhesion can be 
an essential prerequisite to engage these important facilita-
tors of infection [28]. A group of proteins, called adhesins, 
are in charge of keeping the pathogen in close contact with 
the host.

Adhesins are a highly diverse group of proteins with 
heterologous architecture and domain composition [29]. 
The complexity of the bacterial tools used for cell adhe-
sion ranges from single monomeric proteins to intricate 
multimeric macromolecules. Among this group, Trimeric 
Autotransporter Adhesins (TAAs) are a type of adhesins 
presented on the outer membrane of many human patho-
genic Gram-negative bacteria. These obligate homotrimeric 
proteins are secreted via the type Vc pathway and led across 
the inner membrane Sec-dependently by an N-terminal 
signal peptide. The C-terminal β-barrel domain interacts 
with the β-barrel assembly machinery (BAM) in order to 
be inserted into the outer membrane [30–32]. Most likely, 
concurrently with the β-barrel insertion facilitated by the 
BAM, the long passenger domain (N-terminal: head, neck 
and stalk domains) is translocated through the barrel in a 
hairpin-conformation and ends up exposed on the bacterial 
surface [33, 34]. So far, all the described TAAs have been 
functionally associated with adhesion properties [30, 35].

With a similar secretion mechanism, the classical 
autotransporters (“monomeric autotransporter adhesins”) are 
secreted via the type Va pathway. Briefly, the autotransporter 
crosses the inner membrane by the Sec machinery and, once 
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Fig. 2  Schematic drawing of the laminin molecule (heterotrimer) 
with selected bacterial protein-binding sites and selected host pro-
tein–protein interaction sites. Laminin (Ln) consists of α- (400 kDa), 
β- (200 kDa), and γ- (200 kDa) chains interconnected with disulfide 
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the protein is in the periplasm, distinct chaperone proteins 
maintain the unfolded structure of the autotransporter [30]. 
BAM recognizes the C-terminal membrane anchor; this 
step aids the insertion of the β-barrel membrane anchor into 
the outer membrane [34]. The linker region forms a hairpin 
inside the barrel while the passenger domain crosses the 
pore. For some autotransporters, the linker region will be 
cleaved releasing the passenger domain into the extracellu-
lar environment [30, 31]. Monomeric autotransporters [e.g., 
Haemophilus adhesion and penetration protein (Hap), MisL 
and ShdA of Salmonella enterica serotype Typhimurium and 
UpaB of uropathogenic E. coli; see Table 1] are the most 
ubiquitous class of secreted proteins in Gram-negative bacte-
ria and accomplish varied functions including cell adhesion, 
biofilm formation, and resistance to host defenses [36].

Other types of adhesins described in Gram-negative bac-
teria are pili or fimbriae. These filamentous surface proteins 
comprise a scaffold-like domain anchored to the bacterial 
membrane with strong binding specificities. Interestingly, 
some pathogens (e.g., Bartonella bacilliformis) harbor both 
types of adhesins (TAA BrpA/BbadA [37] and flagellin 
[38]). This suggests that such adhesins might play impor-
tant roles in different conditions or at distinct stages of the 
infection process. This diversity and variability of adhesins 
even between species from the same genus of bacteria make 
the task of deciphering the precise mode of bacteria–host 
interaction challenging [39]. In the following paragraphs, 
known ECM binding adhesins will be discussed in more 
detail in accordance with the Gram-negative pathogen they 
belong (see Table 1).

Acinetobacter baumannii

In intensive care units, Acinetobacter baumannii is a sig-
nificant cause of nosocomial infections (e.g., pneumonia, 
bacteremia, wound infections) [94]. The appearance of mul-
tidrug-resistant strains has allocated this bacterium on top of 
the World Health Organization (WHO) list of pathogens for 
which new therapeutics are urgently needed [95].

Taking into account the use of ECM proteins as docking 
sites, it can be speculated that, in tissue damage circum-
stances, the exposure of ECM proteins might favor adher-
ence and biofilm formation, complicating A. baumannii 
infection treatment [40]. A. baumannii has shown affinity to 
collagen and Fn [96], but only recently, the virulence factors 
and mechanism of the disease have been described in more 
detail [97].

Acinetobacter trimeric autotransporter (Ata) is a surface 
adhesin crucial for biofilm formation and binding to ECM 
components (collagen types I, III, IV, and V and Ln), but 
not to Fn and collagen type II [40]. Deletion of ata signifi-
cantly diminished the binding of A. baumannii to endothelial 
cells in static and dynamic conditions, thereby highlighting 

the importance of this adhesin in the persistence of infec-
tion [98]. Additionally, Ata proved to be a potential vaccine 
candidate against A. baumannii as it was observed that the 
application of Ata-specific antisera attenuated the course of 
infection in mice [41]. It is worth mentioning that ata was 
present in 78% of the sequenced A. baumannii isolates but 
only in 3% of the closely related but much less human patho-
genic A. calcoaceticus/A. pittii clade [99].

The impact of outer membrane proteins (OMPs) in the 
adhesion to Fn has been widely described [42]. The inter-
action occurring between OMPs and Fn might represent a 
critical step for lung epithelial colonization in A. bauman-
nii mediated infections [97]. OmpA (previously known as 
Omp38) is a highly conserved OMP in clinical isolates and 
is one of the best-characterized virulence factors of A. bau-
mannii [100–102]. Expression of ompA is associated with 
the cytotoxicity to eukaryotic cells and the adhesion to Fn 
[42, 103]. The interference of OmpA function by the pre-
treatment of A. baumannii with a binding-inhibiting syn-
thetic hexapeptide resulted in a reduced bacterial adherence 
to lung human cells and Fn [104]. Moreover, Omp33 (also 
known as Omp33-36) is also involved in adhesion via Fn 
binding and invasion of human lung epithelial cells [42, 43, 
105]. Finally, the TonB-dependent copper receptor (TonB), 
which facilitates the active transport of substances to the 
outer membrane, has also been described as a FnBP [42, 
106].

Bartonella spp.

The genus Bartonella compromises at least three species of 
major medical interest: B. henselae (cat-scratch disease), B. 
quintana (relapsing fever), and B. bacilliformis (Carrion’s 
disease). The bacterial transmission to humans occurs after 
contact with infected animals or via blood-sucking arthro-
pods (vectors) [107]. Bartonella species are facultative intra-
cellular bacteria with the capacity to colonize a wide broad 
of host cells, among them erythrocytes [108, 109], endothe-
lial cells [110–113], monocytes, macrophages, and den-
dritical cells [114–116]. B. quintana and B. henselae have 
been described as endocarditis-causing agents [117–119]. 
The mechanisms occurring in infective endocarditis point 
to multifactorial events of bacterial adherence in which the 
interaction between bacterial adhesins and ECM proteins 
might fulfill a critical role even under pulsating and high 
shear stress conditions [98, 120, 121].

Bartonella adhesin A (BadA) is the representative 
adhesin of the species and was first described as a “type IV-
like pilus” expressed by B. henselae [111]. Later research 
described the OMP as a TAA mediating bacterial binding 
to ECM proteins [44]. It was demonstrated that the presence 
of BadA in low passage bacteria facilitates adhesion and 
invasion in human epithelial cells [111]. After the utilization 
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of wild-type strains and isogenic mutants, the mechanism 
of adhesion was found to be mediated by binding of BadA 
to ECM components (collagen III, Ln and Fn) under static 
and dynamic infection conditions [44, 98, 121]. Expression 
of truncated BadA-constructs (with deletions of specific 
subdomains) identified that the neck-stalk module of BadA 
is crucial for Fn-binding. This suggests that this neck-stalk 
module might mediate host cell adherence via interactions 
with, e.g., beta-1 integrins [45]. The head and a short part 
of the neck-stalk BadA module was found to be sufficient 
for collagen binding after expression of a truncated BadA 
hybrid in E. coli resulting in significantly higher adherence 
rates to endothelial cells than in E. coli controls [122]. These 
and other data demonstrate that the BadA protein is a major 
pathogenicity factor of B. henselae [44] and that the head 
and stalk domains of the protein have overlapping functions 
in the adhesion process [45].

Other bacterial surface proteins from B. henselae also 
show affinity to Fn. Pap31, a protein possibly involved in 
packaging or phage particle assembly, was described to be 
responsible for binding to immobilized Fn, specifically to 
the  FnIII12–13 repeat module and to human umbilical vein 
endothelial cells (HUVECs) [46]. Additionally, Omp43, a 
porin protein [123], and Omp89 were identified as FnBPs 
after batch affinity-purification from OMPs binding to Fn-
coated wells [47].

Among the genus, there are other important TAAs detect-
able: Variably expressed outer membrane proteins (Vomps) 
are a group of proteins identified as crucial for the patho-
genicity of B. quintana as shown in a macaque animal 
infection model [48]. Amidst the four Vomps A to D pro-
teins, VompA-C contains collagen-binding motifs, but only 
VompA and VompC showed collagen IV binding in in vitro 
assays [48]. The importance of Vomps in the adherence pro-
cess was confirmed by binding experiments using in vitro 
cell culture vials and in dynamic experiments using capillary 
flow chambers, where the interaction between B. quintana 
and HUVEC was diminished in the absence of Vomps [121]. 
Due to the similarities shown between the BadA and Vomps, 
it was initially thought that Vomps were FnBPs; neverthe-
less, binding assays between Vomp and Fn did not show 
affinity, and this exemplifies the complexity involved in the 
prediction of binding interaction [112].

In the case of B. bacilliformis, little research has been 
done regarding adhesins and their interaction with ECM 
proteins. The TAA Bartonella repeat protein (Brp), also 
called B. bacilliformis adhesin A (BbadA), shares common 
domains and structural features with the already identified 
TAAs, BadA, and Vomps. For this reason, it is speculated 
that Brp/BbadA might be involved in similar biological pro-
cesses including adhesion to host cells and ECM proteins 
[49, 124]. Additionally, hemin-binding proteins (Hbps) from 
B. bacilliformis are homologous to Pap31 from B. henselae. 

Some possible interaction of Hbps with Fn might be specu-
lated because of this reported similarity [49]. The role of 
flagellin in Fn-binding of B. bacilliformis has not been ana-
lyzed so far.

Borrelia burgdorferi

Borrelia burgdorferi is the causative agent of Lyme disease, 
one of the most common tick-borne diseases occurring in 
the Northern hemisphere. B. burgdorferi is a Gram-nega-
tive obligate extracellular spirochete, frequently found to 
be associated with its hosts’ connective tissues [53]. The 
persistence of spirochetes in joints and connective tissue 
is essential for the incidence and severity of the infection 
[125]. Bacterial adhesion to host tissue is, therefore, a criti-
cal step for the initial process of infection and the capacity 
of spirochetes to disseminate to distant organs.

B. burgdorferi  expresses at least 19 OMPs, many of 
which are known to bind to host cells and ECM components 
[126, 127]. The BBK32 protein is a surface-exposed mol-
ecule first identified by its property to bind Fn [50]. Isogenic 
bbk32-deficient mutants showed an impaired ability to bind 
immobilized Fn and an attenuated adhesion to mouse fibro-
blast cells when compared to wild-type strains. Moreover, in 
a murine model of Lyme disease, mice infected with wild-
type and isogenic mutants indicated a decreased infectivity 
of the bbk32-deficient strains highlighting the importance of 
BBK32 for initial infection [128]. Recent research revealed 
a 70-kDa N-terminal Fn region as the responsible element 
for BBK32 binding [129]. Regardless of the proven impor-
tance of the BBK32 protein in the infection process, the 
isogenic bbk32-deficient mutants are still able to bind Fn 
with a reduced capacity suggesting that additional mecha-
nisms for Fn-binding exist. RevA, another borrelial outer 
surface protein was discovered to bind to the N-terminal 
Fn region in a comparable affinity as BBK32 based on their 
KD values. RevA was also found to interact with Ln but in a 
lower affinity than BBK32 [57]. The RevA paralogous pro-
tein RevB was also identified as a FnBP after the evaluation 
of recombinant RevB protein in binding assays with Fn [57].

Spirochetes are often associated with connective tissues 
and collagen fibers in the infected mammalian hosts, sug-
gesting the presence of adhesins for binding certain types of 
collagen. BBA33, a surface-exposed lipoprotein linked to 
bacterial virulence, has been proven to stick in high affinity 
to collagen type VI and to collagen type IV [52]. The affinity 
of Borrelia spp. to collagen fibers might also be related to 
the presence of collagen-associated proteoglycans such as 
decorin which is an abundant molecule in connective tissues. 
For instance, the decorin-binding proteins DbpA and DbpB 
display a strong affinity to decorin but lack binding affinity 
to collagen [130–133].
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The first Ln-binding protein identified in B. burgdorferi 
was the OspE/F-related protein ErpX [55]. The interaction 
of this lipoprotein with Ln-containing host tissues favors 
migration through extracellular matrices with long-term 
colonization [56]. Borrelia membrane protein A (BmpA) 
is another LnBP. Binding of Ln with BmpA was obstructed 
upon the incubation of Ln with solubilized collagen. These 
competition assays localized the Ln-BmpA binding site at 
the collagen-binding region in Ln [53]. The BmpA paral-
ogous proteins BmpB, BmpC, and BmpD have also been 
described as LnBPs [53]; all four paralogs are expressed 
during mammalian infections [134]. Of note, BmpA and 
BmpB are selectively expressed in joint tissues and, thus 
are involved in the genesis of Lyme arthritis [135].

Other borrelial adhesins comprise proteins displaying 
multi-functional properties; this is the case of complement 
regulator-acquiring surface protein 1 (CspA) and 2 (CspZ). 
Both proteins do not only bind to Fn and Ln but also to col-
lagen type I, III, and IV with a stronger interaction in the 
case of CspA [54].

Campylobacter jejuni

Campylobacter jejuni is recognized as a common cause for 
bacterial gastroenteritis. Like other intestinal pathogens, the 
capacity to colonize the gastrointestinal tract by binding epi-
thelial cells is a fundamental step during the initial phases 
of infection.

CadF from C. jejuni is an OMP described for the first 
time in 1997 after the observation of reduced binding to Fn 
in an isogenic strain lacking CadF expression [59]. Later 
research applying overlapping peptides of CadF identified a 
four-amino-acid sequence responsible for Fn-binding. Modi-
fications in this sequence resulted in a recombinant CadF 
protein that significantly showed reduced Fn-binding and 
adherence to epithelial cells compared to the wild-type [60]. 
As a proof of concept, reduction in the internalization of C. 
jejuni into human intestinal epithelial cells was observed in a 
CadF mutant strain [136]. Other possible functions of CadF 
still remain unclear; post-translational proteolytic cleavages 
of the protein in clinical C. jejuni revealed that small frag-
ments of CadF still bind Fn and are no longer recognized by 
the host humoral response [137].

The recently detected FnBP from C. jejuni is encoded by 
the gene Cj1279c; the protein was termed as Fn-like protein 
A (FlpA) because of the presence of three Fn type III-like 
repeats in its protein structure [63]. Due to the description 
of Fn–Fn interactions located in Fn type III domains [18], 
it was hypothesized that FlapA might be involved in Fn-
binding activity [63]. FlapA was found to mediate bacterial 
attachment to host epithelial cells via Fn-binding [61], and 
this interaction was described to occur through the Fn gel-
atin-binding domain and the second Fn type III-like repeat 

from FlpA [62]. CadF and FlpA have probed to act together 
in cellular membrane rearrangements and epithelial cells 
invasion [138].

Other adhesins have also been identified in C. jejuni: 
for instance, Cj1349c has been annotated as a putative Fn/
fibrinogen-binding protein because of observed reduced 
binding in isogenic forms of the protein in vitro; however, 
its functional role in vivo is still unknown [63]. Addition-
ally, adhesion of C. jejuni to collagen and Ln (only under 
high concentrations) has been reported via in vitro binding 
experiments using coated coverslips and OMP suspensions 
[139, 140].

Escherichia coli

Escherichia coli has been associated with diarrheal illness 
ranging from acute to long-lasting stages in developing and 
industrialized regions of the world. The worldwide spread of 
the bacteria has promoted the need to unravel the pathogenic 
mechanisms applied by this pathogen to colonize and infect 
intestinal cells. Several adhesins have been recognized for 
binding ECM proteins that are naturally present in epithelial 
cells; among them are flagella, aggregative adherence fim-
briae (AaF), long-polar fimbriae (Lpf1), curli, and UpaB, 
highlighted for their multiple binding specificities.

The flagella of enteropathogenic and enterohemorrhagic 
E. coli contribute to host-colonization. Flagellin of enter-
opathogenic E. coli binds in a dose-dependent manner to 
collagen and to a lesser extent to Ln and Fn [64]. A more 
recent report demonstrated higher affinity of flagellin from 
an atypical enteropathogenic E. coli to cellular Fn, underlin-
ing the high variability of virulence strategies among this 
species [65]. Oppositely, flagellin of enterohemorrhagic E. 
coli has almost no selectivity for ECM proteins [64]; there-
fore, its contribution to host colonization might be related 
to other mechanisms.

In enteroaggregative E. coli, the AaF II protein contrib-
utes to the adherence to human intestinal tissue. Farfan 
et al. reported that enteroaggregative E. coli adhered more 
abundantly to surfaces precoated with Fn, Ln, and type IV 
collagen than a strain with a mutation in the AaF II major 
pilin gene, concluding that Fn-AaF II binding may contrib-
ute to colonization of the gastrointestinal tract [66]. Further 
research focused on the participation of α5β1 integrins in 
the Fn-mediated adherence of AaF II to intestinal cells. It 
was shown that enteroaggregative E. coli binds indirectly to 
integrin α5β1 (mediated by AaF II and Fn interaction), but 
remarkably it can also bind directly to integrin α5β1, pre-
sumably by the interaction of another so far uncharacterized 
adhesin [141].

Lpf1 protein from enterohemorrhagic E. coli has been 
associated with increased adherence to cultured cells (Caco-
2, HeLa-229) [142, 143]. In line with that observation, it 
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was shown that mutations in the LP fimbrial operons of the 
lpf genes lead to a decreased colonization in animal models 
[144]. The adhesive properties of Lpf1 were described to 
be mediated via ECM protein binding, as inactivation of 
the lpfA1 gene significantly reduced the binding of E. coli 
mutants to Fn, Ln, and collagen IV [69].

Curli are thin surface fibers expressed by many patho-
genic isolates of E. coli and other bacteria associated with 
severe infections in humans. Among clinical isolates of E. 
coli, most enterohemorrhagic, enterotoxigenic, and sepsis-
related strains express curli, in contrast to enteroinvasive 
and enteropathogenic strains, which lack curli expression. 
This difference in expression suggests a versatile role of 
curli fibers in pathogenicity [67, 145]. Curli fibers have 
been described as adhesins for their binding capacity to 
host molecules such as Fn and Ln. Remarkably, their abil-
ity to bind Fn has demonstrated to be an important factor 
for the internalization of bacteria in eukaryotic cells [145]. 
Recently, using a nanomechanical force-sensing approach, 
it was identified that curli and Fn formed multiple specific 
bonds with high tensile strength, resulting in tight E. coli 
binding [68].

UpaB, an autotransporter of uropathogenic E. coli strains, 
is known to contribute to the colonization of the urinary tract 
and promotion of bacterial binding to the ECM proteins Fn, 
fibrinogen, and Ln, but not collagen (type I, II, III, IV, and 
V) [71]. Due to the observation of stronger affinity between 
UpaB and Fn, the molecular interaction between these two 
proteins was analyzed at a molecular level. Ten residues in 
UpaB (D116, D119, N146, N175, D217, K245, D246, D281, 
R310, and D336) demonstrated to be necessary to maintain 
the secondary structure of UpaB and to mediate Fn binding; 
from the Fn site, binding of UpaB was located at the FnIII 
region, most likely at the  FnIII1–2 [70]. Summarizing, the 
interaction between the two proteins involves the folding of 
a β-helix in UpaB presenting charged/polar residues which 
interact with charges on the FnIII domain [70].

Haemophilus influenzae

Haemophilus influenzae is often found as a commensal of 
the respiratory tract but also represents a common cause of 
respiratory tract infections and meningitis. The presence of 
a polysaccharide capsule classifies H. influenzae in encap-
sulated strains responsible for invasive disease and unen-
capsulated (nontypeable NTHi) strains found in mucosal 
infections in the upper and lower respiratory tract [146]. H. 
influenzae prefers binding to non-ciliated cells, areas with 
damaged epithelium and mucus present in the respiratory 
tract [147] via a number of OMPs that influence the process 
of adherence and colonization [148].

The Haemophilus adherence and penetration protein 
(Hap) is a classical autotransporter adhesin ubiquitously 

present among H. influenzae type b encapsulated and 
NTHi clinical strains. Hap promotes bacterial adherence 
to epithelial cells and mediates bacterial aggregation and 
microcolony formation by Hap–Hap interactions occurring 
between neighboring bacteria [73]. The passenger domain 
of the protein harbors a serine protease activity that directs 
autoproteolytic cleavage under dispersal and migration from 
the site of infection [147]. The mutation on the serine active 
site inhibits the release of Hap from the bacterial surface and 
results in increased adherence to epithelial cells [73]. Hap 
binds to Fn, collagen IV (but not collagen II), and Ln. Inhibi-
tion of bacterial binding to ECM proteins after the applica-
tion of polyclonal antiserum against the passenger domain 
confirmed the importance of Hap in the infection process 
[72]. Hap was found to interact with the  FnIII1–2 region, 
a domain in Fn previously described as crucial for matrix 
assembly [18]. The interaction between Hap and  FnIII1–2 
might indicate that Hap is involved in the destabilization of 
the Fn matrix enabling the spread of H. influenzae through 
the submucosa to the basement membrane [75].

The surface lipoprotein Haemophilus protein E (PE) is 
a highly conserved protein among the Haemophilus spp. 
members [149]. PE induces the pro-inflammatory response 
during infection and promotes bacterial adherence and inva-
sion through the binding of the N-terminal PE and the Ln 
globular domains [76, 79], which also happens with a simul-
taneous interaction of PE with vitronectin [78]. Moreover, 
Haemophilus protein F (PF), a ubiquitous protein of H. influ-
enzae, was described as a LnBP after the observation of 
reduced Ln-binding and human pulmonary epithelial cells’ 
attachment in an isogenic hpf mutant [150].

The observation that H. influenzae mutants lacking 
expression of the known ECM-binding proteins (Hap, PE 
and PF) still bind ECM proteins aroused the interest in other 
bacterial adhesins. To further study this, OMPs of H. influ-
enzae were analyzed in regard to their ECM interactions. A 
28-kDa protein, later identified as Haemophilus lipoprotein 
e (P4), was found binding to Ln, Fn, and vitronectin by a 
strong interaction (constant dissociation Kd: 9.26 nM, and 
10.19 nM and 16.51 nM, respectively) [80]. P4 is present in 
NTHi and encapsulated H. influenzae and was previously 
described as important for NAD uptake and hemin utiliza-
tion [151, 152]. Interactome studies of Ln and NTHi strains 
gave a major description of interactions occurring between 
already known and novel LnBPs [76].

Although all adhesins (Hap, PE, PF and P4) exhibit bind-
ing capacities to ECM proteins, Hap has shown the highest 
binding capacity to Fn. In contrast, Ln binds almost equally 
well to all the bacterial adhesins [80]. It seems that not a 
single OMP of H. influenzae is responsible for bacterial 
adhesion to the host but a coordinated interaction between 
adhesins and host proteins.
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Yersinia spp.

The genus Yersinia harbors 17 different species but only 
three of them have been described to be pathogenic to 
humans (Y. enterocolitica, Y. pseudotuberculosis, Y. pes-
tis). Y. enterocolitica and Y. pseudotuberculosis are causa-
tive agents for a wide range of diseases associated with the 
consumption of contaminated food. Y. pestis is a zoonotic 
pathogen transmitted by fleas from one mammalian host to 
another. Three major adhesins have been described: the Yers-
inia adhesin A (YadA), invasin (Inv), and attachment inva-
sion locus (Ail). These adhesins mediate attachment to host 
cells, either directly via binding integrins (as for invasin) 
[153, 154] or indirectly via ECM proteins. This attachment 
is a crucial prerequisite for injection of effector proteins 
(Yersinia outer proteins, Yops) via a type three secretion 
system and thus essential for a successful host cell invasion. 
Both YadA and Ail have been shown to bind Fn and Ln pro-
teins [91], whereas only YadA may interact with collagen 
[155, 156].

YadA is by far the best described TAA. This protein is 
essential for virulence in Y. enterocolitica and is encoded 
by the pYV virulence plasmid. In contrast to Y. enteroco-
litica, Y. pseudotuberculosis does not require YadA for a 
successful colonization process [157, 158] and Y. pestis does 
not express the yadA gene due to a frameshift caused by a 
nucleotide deletion [159–161]. Among the manifold viru-
lence traits associated with YadA, one very important role 
is the mediation of bacterial adhesion. YadA of Y. entero-
colitica stably interacts with collagen types I, II, III, IV, V, 
and XI [155]. The YadA-collagen type I interaction has been 
studied in most detail due to the strong interactions. It was 
discovered that the trimeric form of the YadA head domain 
is essential for binding [90]. However, a specific sequence 
responsible for the interaction with collagen was not identi-
fied so far. Therefore, it is assumed that the binding motif 
is formed by a specific fold instead of a distinct peptide 
sequence [89]. Compared to most serotypes of Y. entero-
colitica, the YadA of Y. pseudotuberculosis possesses an 
additional short stretch within its head domain. This region 
significantly determines the differential ECM-binding rep-
ertoire of the two Yersinia species. Actually, the deletion of 
this region abrogated Fn-binding but increased binding to 
collagen by four- to fivefold and significantly enhanced bind-
ing to Ln [158]. YadA of Y. enterocolitica also binds Fn and 
Ln, however, with a significantly lower affinity compared to 
collagen and using a different binding region in the YadA 
molecule [121, 156]. Y. enterocolitica strains of serotype O:9 
contain a similar stretch and it was shown that this stretch is 
responsible for vitronectin binding [162]. The YadA–colla-
gen interaction can even resist harsh conditions as incubation 
at 80 °C for 20 min, pH values from 5.0 to 10.0, proteolytic 
treatment, and incubation in 1 M urea [163].

Ail is a 17-kDa chromosomally encoded protein also 
associated with Yersinia virulence. Ail is present in Y. pestis, 
Y. enterocolitica, and Y. pseudotuberculosis, but the similar-
ity between the protein sequences in the species is rather low 
[164]. Ail accomplishes an important activity in binding to 
ECM proteins (especially to Ln and Fn) with no detectable 
binding to collagen [91, 92]. Contrarily, in Y. pseudotubercu-
losis Ail lacks the conserved residues responsible for bind-
ing [165] but still accomplishes functions related to serum 
resistance. As Ail is a small-sized protein, its functions may 
be masked by LPS outer core and/or O-antigen and this has 
been shown already for Y. enterocolitica and Y. pseudotu-
berculosis. Therefore, Ail may only contribute to adhesion 
in strains expressing rough LPS, such as Y. pestis [166, 167].

ECM interactions occurring in other 
Gram‑negative bacteria

For some genera of Gram-negative bacteria, the interactions 
occurring between adhesins and Fn, Ln or collagen are not 
critical for bacterial attachment, but the description of bac-
terial-host receptor occurrence is vital for understanding the 
orchestrated process of infection.

Salmonella enterica serotype Typhimurium expresses 
adhesins such as ShdA, MisL, and SadA, of which the 
last one is a TAA. ShdA and MisL are type Va autotrans-
porter adhesins that have proved to contribute to intestinal 
colonization possibly by binding to Fn. The interaction of 
ShdA and Fn happens between the passenger domain and 
the  FnIII13 module, respectively [84, 85], while the interac-
tion occurring between MisL and Fn has not been further 
described [87, 168]. Even though SadA shares structural 
similarities with YadA and BadA, current studies did not 
succeed in identifying any SadA-mediated interactions with 
ECM molecules. However, it was shown that SadA plays a 
role in biofilm formation and adhesion to human intestinal 
epithelial cells via a yet unknown mechanism [169]. Addi-
tionally, Rck and PagC, Salmonella-homologs of Ail of Y. 
pestis, have proved to induce bacterial binding to Ln and Fn, 
when these adhesins are expressed in E. coli [88, 91].

Pseudomonas aeruginosa is an opportunistic pathogen 
affecting mainly immunocompromised patients and also has 
demonstrated affinity to ECM proteins (Fn and Ln). The 
outer membrane porin Q (OprQ), known to play an impor-
tant role in membrane permeability, antibiotic resistance, 
and virulence, was later identified as a FnBP. Based on the 
observation that the expression of Fn is positively correlated 
with the degree of injury in affected tissue from lung epithe-
lial cells [170], it seems to be possible that overexpression 
of Fn favors the adherence and colonization of P. aerugi-
nosa in patients promoted by OprQ [82]. Moreover, Ln is a 
ubiquitously expressed ECM protein in the respiratory tract 
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and is a highly important target for Paf (orthologue protein 
of H. influenzae protein F) in P. aeruginosa also facilitating 
bacterial adherence [83].

Helicobacter pylori is the etiological agent of gastritis 
and malignant neoplasias, such as gastric cancer. The adher-
ence to the gastric epithelium has been shown to enhance 
inflammation, yet only a few H. pylori adhesins have been 
paired with targets in host tissue. H. pylori was described 
as binding some ECM proteins with different affinity: vit-
ronectin [171], collagen type IV, and Ln [172]. The binding 
capacity of H. pylori to collagen type IV and Ln was reduced 
when the bacteria was subjected to proteolytic enzymes, sug-
gesting that the bacterial attachment to the basement mem-
brane is mediated by bacterial surface proteins [172]. Later 
research demonstrated that H. pylori mutants lacking the 
adhesins AlpA and AlpB showed reduced binding to Ln, 
while expression of a plasmid containing the alpAB locus 
in E. coli conferred Ln-binding capacity. Surprisingly, such 
mutants did not show lesser inflammation capacity than the 
wild-type when gerbils were experimentally infected [81].

Other interactions related to ECM binding 
proteins: degradation of ECM proteins 
by bacterial proteases

In order to reach the host tissue, bacteria can make use of 
endogenous proteases to degrade the basement barrier pro-
tecting the ECM [4]. Presence of proteases has been more 
commonly described for fungi and parasites. However, the 
activity of a few bacterial proteases in the host ECM has 
also been observed. Examples are elastase and alkaline 
proteases produced by, e.g., P. aeruginosa; both enzymes 
target soluble Ln resulting in different cleavage products 
[173]. Another example is a chymotrypsin-like protease 
from Treponema denticola which allows bacterial invasion 
of the basement membrane after degradation of Ln, col-
lagen IV, and fibrinogen [4, 174]. In H. pylori, proteases 
of the high-temperature requirement A (HtrA) family have 
ECM protein degradation activity. HtrA proteins cleave Fn 
in in vitro assays, suggesting implications of the secreted 
HtrA in the infection process and in the disruption of the 
epithelial barrier [175]. In Y. pseudotuberculosis, the Pla 
protein has protease activity degrading Ln and fibrin during 
the invasion of epithelial cells [176].

Inhibition of bacterial adhesion as a possible 
therapeutic strategy

The overwhelming increment of antibiotic resistance in 
many clinical bacterial isolates has stimulated the scientific 
and medical interest for the development of new approaches 

directed to combat serious infections. Many strategies 
designed against bacterial survival and growth pathways 
are already established; nevertheless, the selective pressure 
imposed by bactericidal promotes continuously the spread 
of resistant strains among clinical patients. This fact under-
lines the need for redirecting the focus to alternative thera-
peutic targets. Furthermore, the ambitious idea of blocking 
virulence factors associated with bacterial colonization and 
infection processes is an attractive strategy to possibly pre-
vent infections, to attenuate already existing infections, and 
to promote the natural clearance of the pathogen [3, 29, 39, 
177].

As stated before, adhesion plays a primordial role at dis-
tinct steps of the infection process; therefore, the attempt 
of targeting this interaction by the application of “anti-
adhesion”-therapeutics is not new and has been approached 
previously. One example is the type I pili adhesin of uropath-
ogenic E. coli (FimH), which binds to mannosylated recep-
tors on the surfaces of mammalian bladder epithelial cells. 
Anti-adhesion agents targeting FimH-mannosylated interac-
tion have been observed either disrupting the adhesin protein 
directly [178, 179] or interfering with the binding by fit-
ting the binding pocket of the host receptor in FimH (FimH 
antagonists) [180–182]. In murine models, administration of 
a FimH antagonist has proven to decrease bacterial coloniza-
tion to similar levels as by antibiotic treatment suggesting 
an attractive alternative to classical antibiotics [183, 184]. 
However, it is worth mentioning that no antivirulence agent 
against uropathogenic E. coli has been tested in humans so 
far.

Alternatively, the observation of mucus secretion as a 
natural defense mechanism against enteropathogens guided 
the scientific interest in studies of a variety of mucin gly-
coproteins mimicking the glycosylation patterns present in 
epithelial surface receptors. Mucins bind and immobilize 
bacteria, favoring the bacterial clearance by discharging the 
mucus layer from the gastrointestinal tract [185]. Purified 
bovine mucin (Muc1) extracted from cow milk inhibited the 
binding in vitro of Gram-negative pathogens (E. coli and S. 
enterica serovar Typhimurium) to intestinal epithelial cells 
[186].

Peptide-based adhesion inhibitors represent another 
attractive approach to interfere with bacterial adherence. 
The feasibility of large-scale production and effective-
ness in in vitro assays makes them an attractive target for 
an antiadhesive therapy approach. A promising example is 
represented by the multivalent adhesion molecule (MAM7), 
a bacterial surface protein involved in the attachment of a 
range of Gram-negative bacteria (enteropathogenic E. coli, 
Y. pseudotuberculosis and Vibrio spp.) to the host cell 
membrane receptors (Fn, phosphatidic acid) [187, 188]. 
An in vitro assay using bead-coupled MAM7 successfully 
reduced the cytotoxicity of host cells. It should be noted 



292 Medical Microbiology and Immunology (2020) 209:277–299

1 3

that this approach was not interfering with the bacterial-host 
receptor binding process directly, but via a bacterial-host 
receptor competition strategy after the pre-exposition of the 
host-receptor binding pocket to bead-coupled MAM7. The 
results brought to light a potential application of MAM7 
as a prophylactic agent against multidrug-resistant bacterial 
pathogens [189, 190].

Moreover, elucidating the molecular mechanisms respon-
sible for the anti-adhesive capacity of bioactive natural com-
pounds from plants might give some insights about strate-
gies to block bacteria–host interactions avoiding endogenous 
impact on cellular host signaling. Some examples are the 
anti-adhesion activity described for salvianolic acid B (SA-
B) against Neisseria meningitidis [191], the use of cranberry 
proanthocyanidins against uropathogenic E. coli [192, 193], 
and the identification of anti-adhesive peptides against a H. 
pylori FnBP obtained by the enzymatic hydrolysis of pea 
seeds Pisum sativum [194]. The presence of food compo-
nents contrasting bacterial adhesion has been reviewed 
extensively [195].

Despite the promising future of anti-adhesion therapy, 
several considerations have to be made before the applica-
tion of this concept to patients. First, the redundancy of the 
interaction between adhesins and cellular receptors repre-
sents a challenge. For instance, TAAs such as BadA and 
YadA show affinity to various ECM proteins [44, 156], while 
curli and flagellin from E. coli strains bind not only ECM 
proteins but also cellular receptors involved in immunity 
[196, 197]. Moreover, many pathogens such as P. aerugi-
nosa express a wealth of adhesion and other virulence fac-
tors that may act in concert and/or redundantly. Blocking 
the function of a single adhesion molecule would, therefore, 
be an unsuccessful therapeutic strategy. Additionally, the 
design of high-affinity anti-ligands might be considered as a 
milestone for the treatment of bacterial infections. The simi-
larity between pathogenic adhesins and extracellular protein 
domains, as the case of FlpA from C. jejuni and Fn type III 
domains [63], implies that interfering with pathogen attach-
ment might compete with host signaling pathways leading 
to undesirable consequences [198]. Another drawback is the 
fact that adhesins are often expressed only at very distinct 
time points of the infection process, as shown for YadA and 
invasin of Y. enterocolitica [156, 199, 200]. Based on this, 
the successful application of anti-ligands for treatment (once 
they have been designed) will depend strongly on the time 
point when these compounds are administered to a patient.

In summary, multiple strategies for bacterial attach-
ment to the host exist and they are highly regulated and 
orchestrated during the entire course of an infection [201]. 
Attempts to overcome the limitations of an anti-adhesin 
therapeutic strategy will thus require also a time-resolved 
and tissue-specific understanding of the host cell signaling 
events occurring during the infection process. Even so, and 

in the light of the global threat of emerging and spreading 
antibiotic-resistant pathogens, anti-adhesion and in a more 
general way anti-virulence therapies might be a worthwhile 
alternative to classical antibiotic treatment.

Concluding remarks

As we gain more and more insights into the interactions 
that occur during host cell adhesion, colonization, and the 
invasion processes of pathogenic bacteria, the complexity 
of these interactions becomes obvious. The evolution of 
adhesin structures and the redundancy for cellular targets 
suggest a dynamic interaction and adaptability to the par-
ticular conditions in host tissues. This creates a challenge 
for researchers aiming at the inhibition of host–pathogen 
interactions. Even though matrix-binding proteins have been 
studied for more than 40 years, it is still a long way to com-
prehensively understand the underlying molecular mecha-
nisms important for the bacterium–host interplay. Because 
of the current limitations associated with the application of 
any anti-adhesion therapy, further efforts are necessary to 
better understand these interactions in the search for thera-
peutic alternatives to overcome the severe threat by multi-
drug resistant Gram-negative bacteria.
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