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Abstract

The detection of rail surface defects is vital for high-speed rail maintenance and manage-

ment. The CNN-based computer vision approach has been proved to be a strong detection

tool widely used in various industrial scenarios. However, the CNN-based detection models

are diverse from each other in performance, and most of them require sufficient training

samples to achieve high detection performance. Selecting an appropriate model and tuning

it with insufficient annotated rail defect images is time-consuming and tedious. To overcome

this challenge, motivated by ensemble learning that uses multiple learning algorithms to

obtain better predictive performance, we develop an ensemble framework for industrialized

rail defect detection. We apply multiple backbone networks individually to obtain features,

and mix them in a binary format to obtain better and more diverse sub-networks. Image aug-

mentation and feature augmentation operations are randomly applied to further make the

model more diverse. A shared feature pyramid network is adopted to reduce model parame-

ters as well as computation cost. Experimental results substantiate that the approach out-

performs single detecting architecture in our specified rail defect task. On the collected

dataset with 8 defect classes, our algorithm achieves 7.4% higher mAP.5 compared with

YOLOv5 and 2.8% higher mAP.5 compared with Faster R-CNN.

Introduction

In the high-speed railway system, the rail plays a dual role of carrying and guiding the running

of the train. Its performance directly affects the safety of railway transportation. Therefore, the

steel rail is required to be clean and free of surface defects. However, surface defects are inevi-

table, initiated by degradation, temperature differences, fatigue loading, and foreign objects

between the wheel and rail during train operation [1, 2], then propagated through repeated

extrusion caused by the contact stress between the wheel and the rail [3]. If not detected at an

early stage, rail surface defects can result in rapid deterioration and possible failure incurring

high maintenance costs [4].

Early rail surface defect detection relies on manual inspection, which is inefficient and inad-

equate to meet the advanced high-speed railway industry [5]. Later detection methods include

nondestructive evaluation (eddy current, ultrasonic wave, or acoustic emission) [6], time-fre-

quency analysis [4], vision-based approaches [7–9], and the combination of the above [10].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0268518 May 17, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Li H, Wang F, Liu J, Song H, Hou Z, Dai P

(2022) Ensemble model for rail surface defects

detection. PLoS ONE 17(5): e0268518. https://doi.

org/10.1371/journal.pone.0268518

Editor: Sakdirat Kaewunruen, University of

Birmingham, UNITED KINGDOM

Received: October 19, 2021

Accepted: May 2, 2022

Published: May 17, 2022

Copyright: © 2022 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-3992-0934
https://doi.org/10.1371/journal.pone.0268518
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268518&domain=pdf&date_stamp=2022-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268518&domain=pdf&date_stamp=2022-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268518&domain=pdf&date_stamp=2022-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268518&domain=pdf&date_stamp=2022-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268518&domain=pdf&date_stamp=2022-05-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268518&domain=pdf&date_stamp=2022-05-17
https://doi.org/10.1371/journal.pone.0268518
https://doi.org/10.1371/journal.pone.0268518
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Those aforementioned methods have limited effectiveness for rail surface defect detection due

to the lack of ample heuristic structure information or texture features [11]. The rise and devel-

opment of machine learning provides a new effective approach for rail defect detection. DNNs

have been successfully adopted to detect rail corrugation [12], rail flat [13], and have been

applied to investigate the condition of railway sleepers [14, 15], settlement/dipped joints [16],

and other rail track components [17]. Recently, object detection has achieved a substantial

breakthrough by using Convolutional Neural Networks (CNNs), and has been introduced for

rail surface defect detection in the past decades [11, 18, 19]. Compared to DNNs that require

various information (vibration data, frequency data, etc), vision-based approach requires only

image data and is more intuitive in rail surface defect detection tasks. Typically, CNN-based

approaches are usually developed based on images consistently taken by cameras mounted on

rail inspection vehicles. These images are annotated manually to train CNN models in an end-

to-end manner. Once fully trained, CNN models are then deployed to hardware platforms on

the train and can automatically detect surface defects.

Specifically, two main difficulties are preventing CNN-based methods from being applied

in the field. First, the detection accuracy is highly sensitive to the image quality, which is largely

affected by the illumination and running speed of the rail inspection vehicles. Early optical

cameras can take images of good quality only with low running speed during the day [20].

Later laser line scan cameras have overcome this shortcut, they can take photographs under

various conditions and can suppress specular reflections [21, 22]. More accurate detection

results can be achieved by introducing extra information, e.g., 3-D information [23]. Second,

CNN models usually require a sufficient number of training samples to be fully trained. The

widely used approach for most industrial detection applications is to follow the pretrain-fine-

tuning paradigm [18], i.e., to completely or partially pretrain a model on large-scale public

datasets such as ImageNet [24] or MS COCO [25] and then fine-tune it on rail surface defect

datasets to achieve task-specific detection ability. However, annotated data are either tedious

or costly in rail surface defect detection applications. The latest Rail-5k dataset for rail surface

defect detection consists of only 1.1 thousand labeled defect images [26]. As a comparison, MS

COCO consists of more than 16 thousand labeled images for detection. The model can hardly

get enough rail surface samples for fine-tuning, thus resulting in over-fitting or a decrease in

detection accuracy. Few-shot detection has shown excellent performance in various conditions

[27–29] where training samples are extremely insufficient, namely one or a few images per

class. However, it focuses more on improving the detection accuracy for various novel classes

instead of specific defects of interest, which is less suitable for the rail defect detection scenario.

Instead of using a single model, researchers have also tried to ensemble multiple models to

achieve good performance [30], especially when the training sample is insufficient [31, 32].

Previous researchers [33, 34] have empirically shown that ensembles perform better when the

diversity among the models is larger. Many ensemble methods [35, 36], therefore, seek to pro-

mote diversity among their combined models. More recent studies have shown the effective-

ness of ensemble methods in both classification [37, 38] and object detection [39, 40]

problems. However, the process to ensemble object detectors is costly in time and memory

both at training and inference, which limits its applicability.

In this paper, we develop a new rail surface defect dataset based on laser line scan cameras

at high speed, and propose a novel Multi-Backbone Double Augmentation (MBDA) frame-

work to tackle the above disadvantage. We ensemble more than one independent backbones

as sub-networks within a single base model. We do not directly ensemble multiple individual

sub-networks, but to construct a shared Feature Pyramid Network (FPN) [41] followed by

shared detection heads after the diverse backbone feature extractors. We do this because mod-

ern detection models are usually over-parameterized [42] to achieve high enough
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performance. Therefore, sharing the FPN can reduce the number of the parameters of the

entire model, while hardly affecting the detection performance. On the other hand, we develop

two augmentation modules for input images and their extracted features respectively. Image

augmentation methods are randomly selected from a developed Image Augmentation Bag

(IAB), whereas feature augmentation methods are randomly selected from a developed Feature

Augmentation Bag (FAB). The two augmentation operations can increase the diversity of the

sub-networks, thus preventing homogenization. Finally, we test our model in a typical indus-

trial application scenario, i.e., the rail defect detection scenario.

In summary, our contributions are two-fold:

• We propose a general framework, MBDA, connecting two successful fields: image/feature

augmentations and multi-backbone ensembling. We connect sub-networks with a shared

FPN to best tackle the diversity/computation cost trade-off in training and inference.

• We develop a novel feature augmentation bag to increase the diversity of sub-networks.

Besides well-developed image augmentation approaches, the feature augmentation process

further allows our model to perform better on extremely insufficient training data.

Rail surface defect dataset

The rail surface defect dataset used in this paper is collected from the 9 km railway test loop

built by the National Academy of Railway Sciences Test Center by a linear array camera

installed on a high-speed train. Although the total number of the captured images within the

dataset is more than ten thousand, only 400 of them have defect features.

Some studies categorize rail surface defects as squats, spalling, and cracks [9, 43], while oth-

ers focus on wear, breakage, scour, undulation, and oxidation [8, 44]. After analyzing the col-

lected rail surface images as well as combining the existing research and definitions, we mainly

consider the following categories:

• defects

• spalling, displacement of parent metal from the railhead.

• scratch, small/mild wear of the lateral planes of the railhead.

• crush, i.e., big/severe wear of the lateral planes of the railhead.

• squat, defect initiated from rolling contact fatigue cracks.

• crack, tear of the lateral planes of the railhead.

• dirt, paint, or mud that covers the surface of the rail.

• gap, gaps left between successive rails on a railway track.

• unknown, unrecognized features.

The unknown category includes features that cannot be recognized as any defects men-

tioned above, nor can they be recognized as dirt or gap. Since the unknown category usually

needs extra manual recheck, we can regard it as a kind of special defect. As a result, the col-

lected rail surface defect dataset can be used to perform an 8-category detection task. We can

also perform a 3-category detection task involving the generalized defect, dirt, and gap when

we concern more on whether there exists a defect or not.

Examples of images in the dataset are shown in Fig 1, and enlarged examples of each cate-

gory are shown in the upright corner of each subfigure. It is worth noting that the small
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number of annotated images makes it hard to train a detection model without over-fitting to

achieve high detection performance.

MBDA framework

We first introduce the overall structure of the proposed MBDA, summarized in Fig 2. Then

each component of the MBDA is introduced in detail.

Fig 1. Samples of the rail defect dataset with 8 categories. From left to right, the first row contains saplling, dirt, unknown, and gap, and the second

row contains squat, crush, scratch, and crack.

https://doi.org/10.1371/journal.pone.0268518.g001

Fig 2. Structure of the proposed MBDA framework. The input image is a detection sample of YOLO v5.

https://doi.org/10.1371/journal.pone.0268518.g002
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Model architecture

Our MBDA roughly consists of four components as follows:

• Image augmentation. The image augmentation part augments the input image to obtain N
different images by N data augmentation methods randomly selected from the Image Aug-

mentation Bag (IAB).

• Multi-backbone. The multi-backbone component has N individual backbones like ResNet

[45] or MobileNet [46]. The backbones used in this component can either be different from

each other or share the same structure. The main diversity of the backbones lies in the ran-

dom selected image and feature augmentation methods.

• Feature augmentation. The feature augmentation part augments features extracted by the

multi-backbone component. Similar to image augmentation, feature augmentation methods

are randomly selected from the Feature Augmentation Bag (FAB).

• Shared FPN. FPN is used to improve efficiency by concatenating the pyramid of down-sam-

pled convolution features, and it has become a standard component in modern object detec-

tion models. We construct the shared FPN to reduce parameters and computation resource

consumption.

• Detector. The detector component consists of N individual detectors for object classification

and bounding box regression. Each detector is independently responsible for each corre-

sponding backbone, which means that, in the training phase, we want each detector to make

different but accurate predictions as much as possible.

During training, MBDA takes N augmented images as input. These images are all

derived from the same training image but with different data augmentation operations. The

N detectors are independently responsible for the detection tasks of the corresponding input

images. During inference of MBDA, as a comparison, N identical images to be detected are

taken as inputs, and an average of the N outputs is computed to be the category prediction

result, then the Weighted Boxes Fusion [47] is used to compute the final bounding

box prediction.

Image augmentation

Data Augmentation has become a very important means to improve the performance of

CNNs [48]. To improve the diversity of each sub-network, we firstly construct an Image Aug-

mentation Bag (IAB) composed of various image augmentation methods. Then we copy each

input image into N identical images. For each copied image, we select one image augmentation

method from the IAB by sampling from a specific distribution. The sampled image augmenta-

tion method is then applied to the corresponding image, and its label is changed accordingly.

Detailed image augmentation methods within the IAB are shown in Fig 3.

We use the 8 methods mentioned in Fig 3 to build the IAB. Mosaic, box dithering, and

image flipping have been widely adopted as useful data preprocessing operations. Color gamut

transformation, target flipping, and target rotation have also been proved to be effective in tar-

get detection [49], In order to adapt to the network structure characteristics of our MBDA, we

also designed two extra augmentation operations: target swap and background swap, which

make the input data of each sub-network more different, so that each detection head can

extract the characteristics of the corresponding backbone and improve the diversity of the

network.
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Feature augmentation

Similar to image augmentation, we also construct a Feature Augmentation Bag (FAB) for fea-

ture maps extracted by the backbones. The development of FAB is inspired by MIXMO [38],

which improves the diversity of sub-network by using CutMix [50], an effective Mixed Sample

Data Augmentation (MSDA) method, on the feature map to improve the accuracy of image

classification tasks. But unlike MIXMO, we apply feature augmentation in the object detection

task, and we randomly select methods from multiple augmentation methods in the FAB

instead of just one single method, which brings more diversity and thus makes the detection

model perform better [51]. Detailed feature augmentation methods within the FAB are shown

in Fig 4.

To be more specific:

• Layer swap. In this operation, the column channel of the feature maps is randomly swapped.

Since the feature maps extracted by different backbones are similar but not the same, a global

noise is introduced by this operation to improve the robustness of the model.

• Channel swap. In this operation, the true bounding boxes mapped to the feature map are

randomly swapped. Since the bounding box feature areas contain local receptive fields, they

are not restricted to the bounding box areas. The channel swap operation also brings a local

noise to improve the robustness of the model.

• Spot cover. The background feature areas are obtained by excluding mapped bounding

box feature areas, then we randomly add small black blocks in the background feature areas

to produce occlusion. The occlusion information can be transferred to the bounding

box areas through the receptive fields of the background feature areas. Therefore, we achieve

Fig 3. Image augmentation methods within IAB.

https://doi.org/10.1371/journal.pone.0268518.g003
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the Mosaic enhancement for bounding box feature areas without obscuring any valuable tar-

get features.

All these feature augmentation operations essentially increase the difference of information

obtained by each sub-network, thus improving the diversity of different feature maps.

Training method

The diversity of backbones as sub-networks is essentially the diversity of parameters. The

update of these parameters is closely related to the training methods. Before training, each

backbone sub-network is pretrained on public large-scale datasets like ImageNet [24] or MS

COCO [25] to acquire basic detection ability and avoid long-time training from scratch. Then,

we divide the training of MBDA into four steps to improve the diversity of our sub-networks:

• Step 1: warm up the parameters of the shared FPN and detectors. Because these parame-

ters are initialized randomly, we freeze the parameters of backbones to train the shared FPN

and detectors on our training dataset.

• Step 2: train the parameters of the shared FPN. We freeze the parameters of both the back-

bones and the detectors to train the shared FPN individually. Considering that the shared

FPN is used to improve detection accuracy by feature fusion, i.e., the combination of loca-

tion and semantic information, we do not adopt any image augmentation or feature aug-

mentation during the training of FPN.

• Step 3: train the parameters of the backbones and the detectors. We freeze the parameters

of the shared FPN and train the rest of the model. During this stage, we force each detector

to find which backbone it belongs to since N images are different and have different labels.

Each detector needs to make corresponding prediction and we also make this correspon-

dence unchangeable.

• Step 4: fine-tune the entire network. We fine-tune the entire network on our training

dataset.

Although we adopt multiple backbones in the MBDA, we do not simply sum up their losses

to form the final loss function. Considering that different backbones may have different model

Fig 4. Feature augmentation methods within FAB.

https://doi.org/10.1371/journal.pone.0268518.g004
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sizes, convergence speed, etc., we apply the weighted sum of their corresponding losses as:

LiðxÞ ¼ FLðŷclsi ; y
cls
i Þ þ L1ðŷloci ; y

loc
i Þ; ð1Þ

where FL(�) is the Focal Loss [52] function for classification, L1(�) is the smooth L1 loss func-

tion for bounding box regression, x is the input image, ŷclsi ; ŷ
loc
i denote the ground truth label

and bounding box location of the augmented x, and yclsi ; y
loc
i denote the label and bounding

box location predicted by the ith detector respectively. The final loss function can be written as:

LðxÞ ¼
X

i

wi � LiðxÞ; ð2Þ

where wi is the weighting factor for the ith sub-network.

After t epochs, we hope to reduce the weight of the sub-network that learns faster on train-

ing and validation set, so that the slower trained sub-networks can be trained relatively faster.

Therefore, we design the weighting factor to be:

wt
i ¼ at

t
i þ bv

t
i ; ð3Þ

where α and β are hyperparameters (we use α = β = 1 in the experiment), τi and vi are parame-

ters used to evaluate the convergence of the ith sub-network on the training set and the valida-

tion set, respectively. The convergence parameters can be defined by training/validation loss

as:

tti ¼ min 1;
Lt
i;tP
iLt

i;t

exp �
Lt� 1
i;t � Lt

i;tP
iðLt� 1

i;t � Lt
i;tÞ

 !( )

;

vti ¼ min 1;
Lt
i;vP
iLt

i;v

exp �
Lt� 1
i;v � Lt

i;vP
iðLt� 1

i;v � Lt
i;vÞ

 !( )

;

ð4Þ

where Lt
i;t and Lt

i;v are the loss of the ith sub-network calculated on the training and the valida-

tion set at the tth epoch, respectively.

Experiments

Experimental setup

In the following sections, we demonstrate various experimental results to illustrate the effec-

tiveness of our proposed method. Below are some experimental setups:

Data preparation. The overall dataset is randomly separated according to a ratio of 7:2:1 into

three parts: a training set, a validation set, and a test set. Both MBDA and the two baselines

are trained on the training set for 5000 epochs. During training, the three models are vali-

dated on the validation set for every 50 epochs. Finally, the models with the best validation

performance will be tested on the test set.

Training configuration. All learnable parameters, including the parameters of all the back-

bone feature extractors, the shared FPN, and the detectors are jointly tuned by stochastic

gradient descent (SGD) for 5000 epochs. The momentum and the weight decaying factor

are set to be 0.9 and 5 × 10−4, respectively. All the images are resized to 640 × 640 pixels

before training and testing. It takes about 147.3 hours to train the proposed model with 400

images (batch size is 32) on one Nvidia RTX 3090 GPU.
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Experimental cases. We perform two types of detection tasks on the rail defect dataset, one is

the 8-category detection task, the other one is the 3-category detection task. In the latter

detection task, we regard all defect categories as well as unknown category as one general

defect type, i.e., we only care about whether there exist defect in images, not the specific cat-

egory of the defect.

Hardware and software implementation. All the experiments were conducted on Intel(R)

Xeon(R) Gold 6226R CPU@2.90GHz and Nvidia RTX 3090 GPU, running an Ubuntu

18.04 operating system. We choose YOLOv5 and Faster R-CNN as our baselines. We do

not apply more complex YOLOv5m or YOLOv5l as baselines because we want to achieve

real-time detection. All models used are implemented based on PyTorch 1.9.1. YOLOv5 is

implemented according to the official GitHub repository, and Faster R-CNN is imple-

mented based on Detectron2 [53].

Detection result

We test the MBDA with 2 sub-networks (dual-ResNeXt152) and 2 detectors (further studies

about sub-network and detector numbers are described in the next section. The detection per-

formance is evaluated by the mean Average Precision with IoU = 0.5 (mAP@.5). The detection

result on the rail defect dataset is shown in Table 1. Unless otherwise specified, the mAP@.5

results are averaged from 10 random runs.

In the 3-category detection task, our model does not show significant advantages. However,

all models’ performance decreased in the 8-category detection task, and our model outper-

forms the single detection model in both validation and test dataset. The result indicates that

the 8-category detection task is harder than detection on more general categories. It is easy to

understand because the 3-category detection task only require models to indentify gap, dirt

and defect. The 8-category detection detection task, as a comparison, require models to distin-

guish detailed features of diverse defects with much less samples, thus preventing the model to

achieve high detection performance. Our model benefits from the combination of sub-net-

works as well as image/feature augmentation methods to keep the high detection performance.

The detection performances curves and the validation losses curves are illustrated in Fig 5.

We can see from the figure that all models except MBDA have similar validation loss trends

that go low at the beginning but start to rise with the growth of epochs. This indicates that all

models except MBDA suffer from overfitting.

Table 1. Detection results of different methods over the rail defect datasets.

Method categories mAP@.5 (val) mAP@.5:.95 (val) mAP@.5 (test) mAP@.5:.95 (test) speed (s/img) fps (img/s)

MBDA (2�ResNeXt152) 3 0.908 0.485 0.817 0.382 0.0267 37.45

YOLOv5s 3 0.899 0.462 0.816 0.336 0.0131 76.34

YOLOv5s6 3 0.897 0.466 0.804 0.386 0.0178 56.18

YOLOv5m 3 0.893 0.469 0.806 0.388 0.0237 42.19

FasterRCNN R50 3 0.878 0.464 0.808 0.387 0.0690 14.48

FasterRCNN R101 3 0.892 0.526 0.820 0.373 0.1025 9.76

MBDA (2�ResNeXt152) 8 0.885 0.458 0.754 0.386 0.0281 35.59

YOLOv5s 8 0.837 0.321 0.657 0.317 0.0191 52.36

YOLOv5s6 8 0.832 0.348 0.680 0.346 0.0206 48.54

YOLOv5m 8 0.832 0.349 0.697 0.323 0.0241 41.49

FasterRCNN R50 8 0.838 0.345 0.719 0.333 0.1178 8.49

FasterRCNN R101 8 0.840 0.337 0.726 0.322 0.1111 9.00

https://doi.org/10.1371/journal.pone.0268518.t001
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The detection results are illustrated in Fig 6. In the figure, MBDA provides detection results

closest to ground truth. In the first row, Faster R-CNN neglects two small unknown objects,

while YOLO only detects one unknown object. In the second row, Faster R-CNN and YOLO

both neglect the two small spalling, and YOLO mistakenly detects the gap as a crush. In the

last row, Faster R-CNN detects an extra crush, while YOLO fails to detect the small spalling.

The detection result substantiates the fact that our proposed framework performs better detec-

tion on rail defects with insufficient training samples.

MBDA structure analysis

We further study the impact of different types of sub-networks as backbones on 8-category rail

defect detection. Subnetworks available in this section are: ResNet50, ResNet101, ResNeXt101,

and ResNeXt152. The results are shown in Table 2. In all cases, MBDA performs better than a

single network. MBDA with different backbones have similar performance with MBDA with

two same backbones (e.g., ResNet50+101 compared to double ResNet 101, and ResNeXt101

+152 compared to double ResneXt152), but have fewer parameters (approximately 21% fewer

parameters than double Resnet 101, and 13% fewer parameters than double ResneXt152).

We also analyze MBDA with 3 or more sub-networks by copying the best performed

ResNeXt152 backbone. The analyzed result is illustrated in Fig 7. MBDA’s detection accuracy

on the test set gradually decreases with the increasing number of sub-networks. This result has

been substantiated by previous research [38]. However, the decrease rate is less than that of

previous research, since our sub-networks can partially share features through feature aug-

mentation operation.

Ablation studies

Effectiveness of the IAB. To verify the effectiveness of the image augmentation bag, espe-

cially the newly designed object swap and background swap methods, we designed an ablation

Fig 5. Detection performances and validation losses. The first row from left to right are YOLOv5s, YOLOv5s6, and YOLOv5m. The second row from

left to right are FasterRCNN R50, FasterRCNN R101, and MBDA.

https://doi.org/10.1371/journal.pone.0268518.g005
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experiment and the result is shown in Table 3. The result indicates that the newly designed

image augmentation operation can achieve enhanced detection performance similar to other

image augmentation operations.

Effectiveness of feature augmentation methods. We perform another ablation experi-

ment and the result is shown in Table 4. As is shown in the table, compared to the fixed

Fig 6. Detection result. From left to right are ground truth, MBDA, FasterRCNN, and YOLO.

https://doi.org/10.1371/journal.pone.0268518.g006

Table 2. Different MBDA structures.

Backbones mAP@.5 (val) mAP@.5 (test) params.

ResNet50 0.835 0.719 23.5×106

ResNet101 0.840 0.726 42.5×106

ResNeXt101 0.845 0.722 42.0×106

ResNeXt152 0.853 0.731 60.2×106

MBDA (2�ResNet50) 0.839 0.722 48.1×106

MBDA (2�ResNet101) 0.852 0.732 86.1×106

MBDA (ResNet50+101) 0.857 0.739 67.1×106

MBDA (2�ResNeXt101) 0.878 0.754 85.1×106

MBDA (2�ResNeXt152) 0.885 0.754 121.5×106

MBDA (ResNeXt101+152) 0.883 0.751 103.3×106

https://doi.org/10.1371/journal.pone.0268518.t002
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selection of a certain feature augmentation operation (e.g., solely layer swap, channel swap, or

spot cover), models with a random sampling of feature augmentation operations perform bet-

ter than adopting any fixed feature operation method.

Effectiveness of the combination of IAB and FAB. Table 5 shows the ablation results

concerning image augmentation operations and feature augmentation operations. As is shown

in the table, solely adopting either image augmentation or feature augmentation could yield

better performance on almost all model structures. The best performance could be obtained

only when both of the two augmentations are performed.

Fig 7. Number of backbones ensembled and their detection precisions.

https://doi.org/10.1371/journal.pone.0268518.g007

Table 3. Effectiveness of image augmentation operations. N/A refers to taking no image augmentation method. OS and BS are short for object swap and layer swap, oth-

ers refer to randomly selected image augmentation methods other than the two newly designed operations.

Backbones N/A others OS BS mAP (val) mAP (test)

2�ResNet101 ✓ 0.8248 0.703

2�ResNet101 ✓ 0.8265 0.711

2�ResNet101 ✓ 0.8256 0.710

2�ResNet101 ✓ 0.8263 0.714

ResNet50+ResNet101 ✓ 0.8413 0.712

ResNet50+ResNet101 ✓ 0.8521 0.716

ResNet50+ResNet101 ✓ 0.8532 0.714

ResNet50+ResNet101 ✓ 0.8519 0.718

2�ResNeXt152 ✓ 0.8612 0.736

2�ResNeXt152 ✓ 0.8725 0.741

2�ResNeXt152 ✓ 0.8765 0.742

2�ResNeXt152 ✓ 0.8762 0.743

ResNeXt101+152 ✓ 0.8540 0.735

ResNeXt101+152 ✓ 0.8572 0.740

ResNeXt101+152 ✓ 0.8589 0.737

ResNeXt101+152 ✓ 0.8579 0.739

https://doi.org/10.1371/journal.pone.0268518.t003

PLOS ONE Ensemble model for rail surface defects detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0268518 May 17, 2022 12 / 17

https://doi.org/10.1371/journal.pone.0268518.g007
https://doi.org/10.1371/journal.pone.0268518.t003
https://doi.org/10.1371/journal.pone.0268518


Table 4. Effectiveness of feature augmentation operations. LS, CS, SC are short for layer swap, channel swap, spot cover, respectively.

Backbones LS CS SC FAB mAP (val) mAP (test)

2�ResNet101 ✓ 0.8272 0.705

2�ResNet101 ✓ 0.8277 0.713

2�ResNet101 ✓ 0.8256 0.719

2�ResNet101 ✓ 0.8398 0.724

ResNet50+ResNet101 ✓ 0.8487 0.720

ResNet50+ResNet101 ✓ 0.8514 0.730

ResNet50+ResNet101 ✓ 0.8501 0.723

ResNet50+ResNet101 ✓ 0.8567 0.731

2�ResNeXt152 ✓ 0.8606 0.737

2�ResNeXt152 ✓ 0.8756 0.752

2�ResNeXt152 ✓ 0.8689 0.741

2�ResNeXt152 ✓ 0.8794 0.753

ResNeXt101+152 ✓ 0.8601 0.700

ResNeXt101+152 ✓ 0.8572 0.738

ResNeXt101+152 ✓ 0.8568 0.737

ResNeXt101+152 ✓ 0.8603 0.741

https://doi.org/10.1371/journal.pone.0268518.t004

Table 5. The impact of the combination of image augmentation and feature augmentation operations.

Backbones N/A IAB FAB mAP (val) mAP (test)

2�ResNet50 ✓ 0.815 0.689

2�ResNet50 ✓ 0.825 0.695

2�ResNet50 ✓ 0.826 0.703

2�ResNet50 ✓ ✓ 0.839 0.722

2�ResNet101 ✓ 0.825 0.703

2�ResNet101 ✓ 0.827 0.714

2�ResNet101 ✓ 0.840 0.724

2�ResNet101 ✓ ✓ 0.852 0.732

ResNet50+101 ✓ 0.841 0.712

ResNet50+101 ✓ 0.842 0.716

ResNet50+101 ✓ 0.857 0.731

ResNet50+101 ✓ ✓ 0.857 0.739

2�ResNeXt101 ✓ 0.832 0.726

2�ResNeXt101 ✓ 0.856 0.737

2�ResNeXt101 ✓ 0.860 0.745

2�ResNeXt101 ✓ ✓ 0.878 0.754

2�ResNeXt152 ✓ 0.861 0.736

2�ResNeXt152 ✓ 0.873 0.741

2�ResNeXt152 ✓ 0.880 0.753

2�ResNeXt152 ✓ ✓ 0.889 0.754

ResNeXt101+152 ✓ 0.854 0.735

ResNeXt101+152 ✓ 0.851 0.737

ResNeXt101+152 ✓ 0.860 0.741

ResNeXt101+152 ✓ ✓ 0.883 0.751

https://doi.org/10.1371/journal.pone.0268518.t005
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Conclusion

In this paper, we presented the Multi-Backbone Double Augmentation (MBDA) framework to

tackle the rail surface defect detection problem. Multiple backbones are ensembled to achieve

higher detection performance than a single model. In particular, MBDA with two sub-net-

works has the best detection performance. In addition, randomly selected image augmentation

and feature augmentation operations can increase the diversity of sub-networks, thus improv-

ing the robustness of MBDA. The shared FPN as well as the combination of backbones of dif-

ferent parameter levels, on the other hand, helps to reduce the overall parameter and

computation cost.

The main limitations of this paper, which are also the limitations of all vision-based defect

detection methods, lie in two aspects. First, the proposed method can only detect defects that

are recognizable on rail surface. The forumation of rail defects are complex, which makes their

manifestations and types vary from each other. This paper covers only a small number of

defect types, namely typical surface defects. Second, the detection performance is sensitive to

illumination environment. Images too dark or too bright will seriously degrade the detection

performance. Possible image proprocessing process may required before training and actually

using the proposed method.
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