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Abstract: Macrodomain-I of the NSP3 (non-structural protein 3) is responsible for immune response
hijacking in the SARS-CoV-2 infection known as COVID-19. In the omicron variant (B.1.1.529), this do-
main harbors a new mutation, V1069I, which may increase the binding of ADPr and consequently the
infection severity. This macrodomain-I, due to its significant role in infection, is deemed to be an im-
portant drug target. Hence, using structural bioinformatics and molecular simulation approaches, we
performed a virtual screening of the traditional Chinese medicines (TCM) database for potential anti-
viral drugs. The screening of 57,000 compounds yielded the 10 best compounds with docking scores
better than the control ADPr. Among the top ten, the best three hits—TCM42798, with a docking
score of −13.70 kcal/mol, TCM47007 of −13.25 kcal/mol, and TCM30675 of −12.49 kcal/mol—were
chosen as the best hits. Structural dynamic features were explored including stability, compactness,
flexibility, and hydrogen bonding, further demonstrating the anti-viral potential of these hits. Us-
ing the MM/GBSA approach, the total binding free energy for each complex was reported to be
−69.78 kcal/mol, −50.11 kcal/mol, and −47.64 kcal/mol, respectively, which consequently reflect
the stronger binding and inhibitory potential of these compounds. These agents might suppress NSP3
directly, allowing the host immune system to recuperate. The current study lays the groundwork for
the development of new drugs to combat SARS-CoV-2 and its variants.

Keywords: SARS-CoV-2; COVID-19; NSP3; TCM; MD simulations

1. Introduction

Coronavirus disease-2019 (COVID-19) is defined as a disease caused by a novel coro-
navirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. SARS
CoV-2 rapidly spread from person to person, and serious human disease was in recent
times described in the city of Wuhan, Hubei Province, China. Coronavirus causes headache,
fever, and respiratory disease, e.g., cough and shortness of breathing. SARS-CoV-2 infects
humans through direct binding to host cell entry proteins (spike). The six functional open
reading frames (ORFs) are well-arranged in order from 5′ to 3′ replicas (ORF1a/ORF1b),
membrane (M), envelope (E), spike (S), and nucleocapsid (N), whereas nonstructural pro-
tein include3-chymotrypsin-like protease, papain-like protease, and RNA-dependent RNA
polymerase, is encoded by the ORF region [2,3].
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A SARS-CoV-2-associated global pandemic, with unceasing chaos, has now reported
many variants of the virus [4]. Among the reported variants, many are particularly asso-
ciated with immune response evasion, higher transmissibility, increased morbidity, and
re-infection. Until now, these variants have been deemed either as variants of interest
(VOIs) or variants of concern (VOCs) based on the threat they pose to public health. For
instance, the alpha variant, also known as B.1.1.7, with 40–80% increased transmission,
includes 69–70 del, N501Y, and P681H mutations, while beta, also called B.1.1.351, gamma,
delta, and B.1.1.529 variants are classified as VOCs [5,6]. Moreover, a new version of B.1.1.7
supplemented with the E484K mutation was reported to be associated with 39 confirmed
patients [7]. Moreover, B.1.351, which was reported in South Africa and harbors K417N,
E484K, and N501Y variations, which were reported to increase the transmission and de-
crease the T cell-triggered immune response against COVID-19 infection, was recorded. In
early 2021, P.1 variant was discovered in Brazil with K417T, E484K, and N501Y mutations
in the RBD with transmission increased by 38% and mortality by 50% [8]. A molecular
modelling study based on protein coupling deciphered the mechanism of higher infection
associated with these variants of SARS-CoV-2 [9]. The binding variations were deeply
discovered by demonstrating the interaction pattern and dynamic features of the complexes.
In October 2020, India detected a more lethal strain of SARS-CoV-2, officially known as
B.1.617.2. This variation has L452R, T478K, and P681R in the RBD, resulting in an 87 percent
increase in transmissibility, an 85 percent increase in hospitalizations, and a 137 percent rise
in death. Later, in India and the United Kingdom, a novel variant known as “Delta plus”
was discovered with an additional mutation, K417N [10]. Similarly, a novel variant termed
as Mu or B.1.621 was discovered to have spike protein alterations, some of which are shared
with other VOCs. R346K, Y144T, Y145S, and insertion at position 146N are among the new
mutations in this variant [11]. L452Q and F490S mutations in RBD are found in a unique
VOI known as C.37 or its variant, which lowers antibody-mediated neutralization [12].
The B.1.617.1 strain with the L452R mutation in the (RBD) receptor-binding domain, on
the other hand, has been attributed to decreased antibody neutralization by altering the
corresponding conformational epitopes. Furthermore, the VOI Iota (lineage B.1.526) carries
the mutation E484K, which confers resistance to therapeutic monoclonal antibodies and
makes it more resistant to neutralization [13].

The most recent omicron strain, formally known as B.1.1.529, was discovered in
November 2019 in South Africa and has 30 mutations in the spike protein including A67V,
∆69–70, T95I, G142D, ∆143–145, ∆211, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N,
N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y,
N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, and L981F, among which 15 mutations
lie in the RBD [14]. Other proteins also reported mutations, such as NSP3 (K38R, V1069I,
∆1265, L1266I, A1892T), NSP4 (T492I), NSP5 (P132H), NSP6 (∆105–107, A189V), and NSP12
(P323L), while I42V was reported in NSP14. Furthermore, sub-lineages, i.e., BA.1/B.1.1.529.1,
BA.2/B.1.1.529.2, and BA.3/B.1.1.529.3, were reported by WHO (World Health Organiza-
tion) as a threat to public health [15]. The variant is a major health concern all around the
globe, and the therapeutic effectiveness of existing vaccines against it is yet unknown [16,17].
More research is needed to determine the molecular basis of pathogenicity in the omicron
variant. Furthermore, new therapies against the recently emerging SARS-CoV-2 strains
would require the use of advanced techniques.

The novel coronavirus-2019 genome encodes four structural proteins (S, M, E, and N),
in which the S-protein gives the virus its corona-like shape, which is mainly responsible
for the attachment to host cell receptors (ACE2s) or surface proteins, and 16 non-structural
proteins (NSP1 to NSP16). The binding of spike protein to ACE2 (Angiotensin-Converting
Enzyme 2) of the host initiates the infection in cells. The ACE2 is mainly expressed in the
lungs, kidney, and small intestine, leading to serious illness [18]. During infection, the
host cell protease cleaves the S-protein at the S1/S2 cleavage site. This priming (cleavage
of S-protein) results in the division of protein into the S1 ectodomain at the N-terminal
and the S2 membrane-anchored domain at the C-terminal. The S1 subunit recognizes the
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associated cell surface receptor, while the latter assists viral entry [19]. The SARS-CoV S1
subunit of the spike protein has conserved 14 aa in the RBD, which functions to recognize
ACE2 and can infect both humans and bats. Among this conserved 14 aa in SARS-CoV,
eight residues are highly conserved in 2019-nCoV, supporting the assumption that ACE2 is
also the receptor of this new virus [20]. Among these proteins, the main proteins, PLpro,
spike, and RdRp, are deemed to be direct drug and vaccine targets, but other proteins are
also essential for drug design [21]. For instance, the Mac-I of the largest protein, NSP3, has
also been deemed as an attractive drug target because of its role in disrupting the innate
immune reaction and increasing of virulent properties of the virus [22]. NSP3 is comprised
of three macrodomains and two adjacent SUD-M-like domains that have been reported
to be associated with NSP3 functional modulation. Mac-I has a significant role in viral
pathogenesis and increases interferons’ responses for viral neutralization [23]. Further
reports have also disclosed the hijacking of the host immune response by Mac, which is
carried out through interference with the IFN (Interferons) pathway and malfunctioning
of STAT1 (signal transducer and activator of transcription 1) [24,25]. This hijacking of the
IFN and STAT1 pathways has been reported to be possibly linked with the cytokines storm
phenomena [26,27].

More research is needed to cope with this alarming pandemic situation in order to
create safe and effective treatments swiftly. In this context, the macrodomain is thought to
be the most druggable target for the development of COVID-19 therapy [28,29]. As a result,
we used computational molecular screening to investigate the binding affinity of drugs
against the macrodomain-I of the omicron (B.1.1.529) variant. The current study employs
molecular docking and simulation-based methods [30–32] to identify potential anti-viral
compounds from the TCM database against SARS-CoV-2. The findings provide crucial
information on the antiviral effectiveness of the evaluated drugs against SARS-CoV-2. The
findings will aid in the development and identification of potential medicinal solutions for
the treatment of COVID-19.

2. Results and Discussion
2.1. Macrodomain of Omicron (B.1.1.529) and Structural Modelling

The continuously emerging variants of SARS-CoV-2 are a greater threat to public
health [33]. These variants are associated with high infection, transmission, and re-infection.
Moreover, some of the previous variants such as B.1.1.7, B.1.617, P.1, and A.30 have also been
reported to escape the immune response. Recently, B.1.1.529, or the omicron variant, first
identified in South Africa with the highest number of mutations ever, has been reported to
be associated with higher transmissibility than other variants. All the proteins encoded by
the genome of SARS-CoV-2 are responsible for essential roles in virulence and replication
in different stages of infection [34–36]. Among these proteins, the largest and multi-
domain protein called non-structural protein 3 or NSP3 is an essential factor for efficient
translational and replication processes. NSP3 has eight functional domains that also include
macrodomains, which play significant roles in viral escaping when attacked by the innate
immune response. Among the macrodomains, macrodomain-I (X-domain) in particular
also shares high sequence and structural conservation. Mac-I binds ADPr, and the strength
of binding is directly associated with the pathogenicity level [37]. For instance, binding
strength reduction or the complete loss of ADPr binding has been reported to be related
to less or no infection in the IBV model [38]. Any mutation in the structure is associated
with functional variations induced by conformation changes in the protein structures. For
instance, K38R, V1069I, L1266I, and A1892T, as well as a deletion (∆1266I) have recently
been reported in the NSP3 protein of the omicron variant, as shown in Figure 1A. The Mac-I
in the NSP3 starts from 1025–1194, and a single V1096I has been reported in this region,
which may increase the binding of ADPr and consequently increase the pathogenesis
by hijacking the innate immune response given in Figure 1A. Mac-I is also a potential
therapeutic target; therefore, finding small molecule inhibitors for this domain might aid in
the restoration of the host immunological innate response. For instance, a carbazole-based
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drug known as GeA-69 has been previously tested to target the human macrodomain to
treat various types of cancers [39]. Similarly, structure-based approaches are being used
to find drugs that target viral macrodomains [40]. New powerful therapies are needed
to block Mac-I involvement in SARS-CoV-2 pathogenesis. Hence, our research combines
structure-based drug discovery with molecular modelling to find new compounds that
effectively target the Mac-I and salvage the innate response. The wild-type structure was
used to construct a V1069I mutant of the Mac-I from the omicron variant (Figure 1B). The
modelled V1069I-Mac-I, as shown in Figure 1C, demonstrated an RMSD (root mean square
deviation) difference of 0.132 Å. The minimal RMSD difference demonstrated the accurate
folding and distribution of secondary structural elements.
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Figure 1. (A) NSP3 and reported mutations in the omicron variant. (B) Surface representation of
Mac-I in complex with ADPr. (C) Superimposed wild type a V1069I mutation in Mac-I.

2.2. Virtual Screening and Re-Docking of TCM

Using EasyVS, an online web tool, the entire TCM database was screened against the Mac-I
of the omicron variant. Prior to screening, the RO5 filter was applied, which reported 20,124 drugs
that violated Lipinski’s rule of five. Among the total of 57,000 compounds, 36,876 compounds
were screened against the binding site of ADPr. Among these, 14,255 compounds reported a
docking score less than −4.0 kcal/mol, and 16,453 compounds reported a docking score
less than −8.0 kcal/mol. Among the remaining compounds, 5221 compounds reported
a docking score of less than −9.0 kcal/mol. Among the remaining 947 compounds, only
356 were reported to have docking scores greater than −9.5 kcal/mol. Compounds with
docking scores greater than −9.50 kcal/mol were considered as the threshold, because for
ADPr the docking score was previously reported to be −9.46 kcal/mol. The top scoring
50 compounds were selected for re-docking using AutoDock Vina. Among these 50 com-
pounds, 10 compounds reported the best docking score and are given in Table 1. Among
the top 10 compounds, TCM42798 had a docking score of −13.70 kcal/mol, TCM47007 of
−13.25 kcal/mol, TCM30675 of −12.49 kcal/mol, TCM27763 of −11.93 kcal/mol, TCM33425
of−11.72 kcal/mol, TCM28788 of−11.46 kcal/mol, TCM42159 of−11.45 kcal/mol, TCM47184
of−11.36 kcal/mol, TCM31603 of−11.04 kcal/mol, and TCM31784 of−11.02 kcal/mol. Among
the top 10 compounds reported to have higher docking scores than ADPr, only the top three
were selected for further analysis, such as interactions, simulation, and post-simulation
analysis. In addition to the top three compounds, TCM27763 and apigenin-bioside have
been previously reported to have anti-adenovirus activity, which confirms the anti-viral
activity of these compounds [41]. It was reported that apigenin reduces adenovirus repli-
cation and associated cellular toxicity. For instance, TCM28788 and TCM42159 have been
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reported to have anti-dengue viral properties, which demonstrate the anti-viral potential
of these molecules [42]. The anti-herpes simplex virus type 2 infection activity of tibeti-
canol and the other compounds are well documented, and it has been reported that these
compounds halt viral replication [43].

Table 1. List of top 11 scoring compounds with their TCM IDs, compounds names, 3D structures,
and docking scores.

TCM Database ID Compound Names 2D Structures Docking Scores

TCM42798 Mucic_acid_1-methyl_ester_2-O-gallate
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TCM42798, or mucic acid 1-methyl ester 2-O-gallate, was reported to have the best
docking score of −13.70 kcal/mol. Mucic acid 1-methyl ester 2-O-gallate established a
total of nine hydrogen bonds with Ala1060, Asn1062, Gly1068, Val1071, Ala1072, Leu1148,
Ala1176, and Phe1178. For instance, these residues were previously reported to have an
important role in the binding of ADPr. Comparatively, the docking score for ADPr has been
reported to be −9.46 kcal/mol [22]. This shows the strongest binding of TCM42798 and
consequently produces an inhibitory effect on Mac-I. The binding pattern of TCM42798 is
given in Figure 2.
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Figure 2. Binding of TCM42798 in the cavity of Mac-I. The right surface representation shows the
binding mode of mucic acid 1-methyl ester 2-O-gallate (yellow sticks) inside the binding cavity. The
right panel represent the 3D interaction pattern, where the TCM42798 is shown as yellow sticks,
while the interacting residues are given in green sticks. The interactions (hydrogen bonds) are shown
in pink color.
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On the other hand, TCM47007, or (2S)-5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucurono-
pyranoside, also demonstrated a good interaction profile by predicting the docking score of
−13.25 kcal/mol. Unlike TCM42798, this complex reported only seven hydrogen bonds
with the key residues required for interaction with ADPr. As shown in Figure 3, Ala1043,
Ala1060, Gly1068, Val1071, Ala1072, and Ala1176 are involved in hydrogen bonding in-
teractions. This shows the strongest binding of TCM47007 and consequently produces an
inhibitory effect on Mac-I. Moreover, the interaction pattern for TCM30675, or (5S,6S,7S,8R)-
5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1,
was also analyzed to demonstrate the binding mode of TCM30675. Residues such as
Ala1060, Val1176, Phe1178, and Asp1179 are involved in direct interactions with the Mac-I.
This shows the strongest binding of TCM30675 and consequently produces an inhibitory
effect on Mac-I. The binding pattern of TCM42798 is given in Figure 4.
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Figure 3. Binding of TCM47007 in the cavity of Mac-I. The right surface representation shows the
binding mode of TCM47007 or (2S)-5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucuronopyranoside (orange
sticks) inside the binding cavity. The right panel represents the 3D interaction pattern, where the
TCM47007 or (2S)-5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucuronopyranoside is shown as orange sticks,
while the interacting residues are given in green sticks. The interactions (hydrogen bonds) are shown
in blue color.

2.3. Dynamic Stability Analysis of the Top Compounds

Analysis of the drug-bound protein complexes to decipher the structural stability is
a key process in determining the inhibitory potential of the interacting compound. To
foresee the dynamic stability of each top-scoring compound, we calculated the root mean
square deviation (RMSD) for all of the simulation trajectories. As given in Figure 5A–C,
all the complexes attained equilibrium at the earlier simulation and reached stability
at 1.0 Å. In the case of mucic acid 1-methyl ester 2-O-gallate, the complex demonstrated
overall stable dynamics with no significant deviation, except at the start of the simulation
(1–10 ns) when the structure reported minor acceptable deviation and then reached the
equilibrium point with a uniform RMSD graph. The average RMSD reported for the mucic
acid 1-methyl ester 2-O-gallate complex was reported to be 1.0 Å. The RMSD for mucic acid
1-methyl ester 2-O-gallate is given in Figure 5A. The RMSD for TCM47007 or (2S)-5,7,2’,5’-
Tetrahydroxyflavanone 7-O–D-glucuronopyranoside reported comparatively small unstable
dynamics until 15 ns, but then RMSD stabilized and attained equilibrium. As given in
Figure 5B, after 15 ns the structure attained stability and demonstrated an average RMSD
of 1.1 Å. Furthermore, the RMSD of TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-
[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 demonstrated more
similar behavior to the mucic acid 1-methyl ester 2-O-gallate complex. The RMSD initially
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increased until 10 ns and then attained equilibrium. The complex reported no significant
deviation except a small deviation between 10 and 20 ns, and then it stabilized again. An
average RMSD of 1.2 Å was reported for TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-
[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1, as given in Figure 5C.
Consequently, this shows the stronger binding and inhibitory potential of these compounds
to rescue the host immune response against the COVID-19 infection.
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Figure 4. Binding of TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-
methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 in the cavity of Mac-I. The right surface
representation shows the binding mode of TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-
hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 (blue sticks) inside the binding cavity.
The right panel represent the 3D interaction pattern, where the TCM30675 or (5S,6S,7S,8R)-5,6,7,8-
Tetrahydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 is shown as
orange sticks, while the interacting residues are given in green sticks. The interactions (hydrogen
bonds) are shown in blue color.
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Figure 5. Dynamic stability analysis of the TCM42798, TCM47007, and TCM30675 complexes. (A) The
RMSD graph for mucic acid 1-methyl ester 2-O-gallate. (B) The RMSD graph for TCM47007 or (2S)-
5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucuronopyranoside. (C) The RMSD graph for TCM30675
or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-
chromen-4-1 complex.
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2.4. Structural Compactness Analysis

Analysis of structural compactness in a dynamic environment is essential to under-
stand the binding and unbinding events that happened during the simulation. These
events demonstrated significant information regarding the binding stability and could
be used to select the best compounds for the inhibition potential determination in the
experimental setup. Thus, to determine the structural compactness, we calculated radius of
gyration (Rg) over the simulation time as a function of time for each complex. As given
in Figure 6A–C, all the complexes followed a similar pattern as RMSD. The TCM42798
complex demonstrated a uniform pattern of Rg with no increase or decrease over the
simulation time. The structure reported no significant deviation, and the average Rg was
reported to be 14.90 Å. The Rg for TCM42798 is shown in Figure 6A. On the other hand,
TCM47007 demonstrated a small deviation between 23 and 28 ns and then reported a
stable straight graph, which showed the stable binding steered by different kinds of bonds
between TCM47007 and Mac-I. The TCM47007-Mac-I complex reported an average Rg
of 14.96 Å. The Rg for TCM47007 is shown in Figure 6B. Furthermore, TCM30675 also
reported a similar pattern of Rg as RMSD with no major significant deviation. A straight
uniform Rg graph can be seen in Figure 6C, where a small fluctuation between 20 and 22 ns
can be observed, while the Rg then stabilized and no significant deviation was reported.
An average Rg of 15.90 Å was also reported for TCM30675. The Rg for TCM30675 is shown
in Figure 6C.
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2.5. Residues Flexibility Profiling

Residue flexibility is strongly correlated with the functional relevance of a protein, as
it confers strength to the binding between the interacting molecules. Assessment of residue
flexibility for the key residues demonstrates the impact of the small molecule binding.
Thus, to determine how the residue flexibility is affected by the binding of these drugs, we
calculated the root mean square fluctuation (RMSF) for each complex. As given in Figure 7,
all the complexes demonstrated a similar pattern of residue flexibility. All the residues in
each complex displayed minimal fluctuation, which showed the stronger binding of these
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compounds. The regions between 40 and 50, 90 and 100, and 120 and 140 demonstrated
comparatively higher fluctuations due to the loop distribution.
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2.6. Hydrogen Bonding Analysis

Hydrogen bonds confer strength to the binding of small molecules. The binding of
small molecules is steered by hydrogen and many other bonds, which consequently show
the inhibitory features. To determine the binding strength, we calculated the total number
of hydrogen bonds and the population, and the simulation trajectories were analyzed. In
TCM42798 or mucic acid 1-methyl ester 2-O-gallate, the average number of hydrogen bonds
was reported to be 82, while in the case of TCM47007 or (2S)-5,7,2’,5’-Tetrahydroxyflavanone
7-O–D-glucuronopyranoside, the average number of hydrogen bonds was also reported
to be 79, while TCM30675 or the (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-
methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 complex reported 78 average
hydrogen bonds. The total number of hydrogen bonds in each complex is shown in
Figure 8A–C. Moreover, the hydrogen bonding population for the key interacting residues
was estimated and revealed in each complex, namely Ala1060 (63%, 74%, 58%), Asn1062
(66%, 53%, 61%), Gly1068 (51%, 43%, 34%) Val1071 (32%, 24%, 23%), Ala1072 (4%, 17%,
13%), Leu1148 (1%, 6%, 12%), Ala1176 (0%, 0%, 7%), and Phe1178 (0.36%, 2%, 11%) in
TCM42798, TCM47007, and TCM30675 complexes, respectively. Together these results
show that these compounds bind more strongly to the Mac-I and thus produce inhibitory
properties that could help to rescue the host immune response against COVID-19 infection.
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(A) The H-bonds graph for mucic acid 1-methyl ester 2-O-gallate. (B) The H-bonds graph for
TCM47007 or (2S)-5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucuronopyranoside. (C) The H-bonds
graph for TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-
5,6,7,8-tetrahydro-4H-chromen-4-1 complex.
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2.7. Binding Free Energy Estimation

The binding strength of small molecules using the binding free energy method, MM-
GBSA, is a widely used method for re-demonstrating docking stability and correct binding.
The above-mentioned MM-GBSA technique is more computationally economical than
the more expensive alchemical free energy method. When compared to rational scoring
functions, it is one of the most accurate techniques. Keeping in mind the implementation
of this approach, we also employed the same method to compute the binding free energy
for TCM42798, TCM47007, and TCM30675 complexes. The vdWs for these complexes
were reported to be −84.26 kcal/mol, −59.79 kcal/mol, and −53.24 kcal/mol, respectively,
while the electrostatic energies were reported to be −12.22 kcal/mol, −13.22 kcal/mol,
and −15.66 kcal/mol, respectively. Moreover, the ESURF values were reported to be
17.45 kcal/mol, 14.68 kcal/mol, and 12.25 kcal/mol, respectively. The total binding free
energy for these complexes was reported to be −69.78 kcal/mol, −50.11 kcal/mol, and
−47.64 kcal/mol, respectively, which consequently reflected the stronger binding and
inhibitory potential of these compounds. The MM/GBSA results are given in Table 2.

Table 2. Binding free energy calculated as MM/GBSA. All the values are given in kcal/mol.

MM/GBSA TCM42798 TCM47007 TCM30675

vdW −84.26 −59.79 −53.24

electrostatic −12.22 −13.22 −15.66

ESURF 17.45 14.68 12.25

EGB 9.25 8.22 9.01

∆G Bind −69.78 −50.11 −47.64

3. Material and Methods
3.1. Modelling of the Macrodomain-I (Mac-I) of B.1.1.529 Variant

The experimentally reported structure in the protein database was collected through
accession number 6W02 to model the V1069I mutations reported in the Mac-I of NSP3
of the omicron variant [44]. For this purpose, the amino acid sequence using P0DTD1
accession number was obtained from UniProt, European union [45]. For modelling of the
variant structure, AlphaFold 2.0 Seoul National University, Seoul, South Korea, was used,
which is currently the best and most accurate approach for 3D structural modelling [46].

3.2. Virtual Screening of Traditional Chinese Medicine Database

The Traditional Chinese Medicine Database (TCM) currently holds 57,000 entries
of different medicinal compounds isolated from Chinese herbs. It is considered as an
important medicinal repository for discovering novel treatments that are safe and effective.
Thus, we screened the complete TCM database against Mac-I of the B.1.1.529 variant.
For screening, we used the EasyVS (http://biosig.unimelb.edu.au/easyvs, accessed on
10 April 2022) webserver [47]. Custom parameters were used and defined, such as the
active site, and the RO5 filter was enabled for the filtration and removal of molecules that
violated Lipinski’s rules. Furthermore, for the top 100 hits, a second round of screening was
performed using the Auto Dock Vina algorithm [48]. Finally, the top-selected compounds
were used for the Induced-Fit docking (IFD) approach to remove the false-positive results.
The top hits were identified based on the docking score for ADPr, taken as a control, as
previously reported [22].

3.3. Molecular Dynamics Simulation (MDS)

Characterization of dynamic features to accurately portray the inhibitory potential
of the top hits was studied by performing molecular dynamics simulation [49]. The top
three hits were investigated by using AMBER20 simulation software by adding an optimal
point charge water model and sodium ions for neutralizing the effect of any charge. Protein

http://biosig.unimelb.edu.au/easyvs
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and drug parameterization was achieved by recruiting FF19SB and GAFF forcefields. Each
system after gentle minimization was subjected to heating followed by equilibration. The
production runs for 50 ns each were completed. For any long-range electrostatic interactions
(10.0 Å cutoff), the PME (particle mesh Ewald algorithm) was used, while covalent bonds
were treated with the SHAKE algorithm.

3.4. Trajectories Analysis Using CPPTRAJ and PTRAJ

Evaluation of the simulation trajectories to forecast the dynamic stability, flexibility
index, hydrogen bonding, structural compactness, and other parameters was completed
by using CPPTRAJ and PTRAJ modules [50]. Root mean square deviation (RMSD) was
estimated for stability, root mean square fluctuation (RMSF) to index the flexibility of each
residue, radius of gyration (Rg) to foresee the compactness, and hydrogen bonding analysis
to estimate the bonding population.

3.5. Estimation of Post-Simulation Binding Energy

The most generally utilized strategy in many related studies is to evaluate the strength
of small molecule binding by employing the binding free energy (BFE) approach [51–54].
We also adopted the MMPBSA.py script to compute the binding free energy of the protein–
ligand complexes by evaluating 2500 snapshots, keeping in mind the relevance of this
strategy in re-ranking the binding conformations. For this purpose, the following equation
was used to estimate the BFE:

“∆Gbind = ∆Gcomplex− [∆Greceptor + ∆Gligand]”

The ∆Gbind represents the total binding energy, while ∆Greceptor, ∆Gligand, and ∆Gcomplex
represent the binding energy of protein, drug, and complex, respectively. The following
equation was used to estimate individual binding energies such as bonded (Gbond), electro-
static (Gele), polar (Gpol), and non-polar (Gnpol), which contribute to the total binding free
energy.

“G = GbondGelectrostatic− Gvan der Waal − GpolarGnon− polar”

4. Conclusions

The present study employs molecular modelling and MD simulation approaches to
target the macrodomain-I of the B.1.1.529 variant of SARS-CoV-2. Three novel compounds,
namely TCM42798, TCM47007, and TCM30675, were identified as potential inhibitors of
Mac-I. These agents may suppress NSP3 directly, allowing the host immune system to
recuperate. The current study lays the groundwork for the development of new drugs to
combat SARS-CoV-2 and its variants.
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