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Objective: Identification of tumor invasiveness of pulmonary adenocarcinomas before

surgery is one of the most important guides to surgical planning. Additionally,

preoperative diagnosis of lung adenocarcinoma with micropapillary patterns is also

critical for clinical decision making. We aimed to evaluate the accuracy of deep learning

models on classifying invasiveness degree and attempted to predict the micropapillary

pattern in lung adenocarcinoma.

Methods: The records of 291 histopathologically confirmed lung adenocarcinoma

patients were retrospectively analyzed and consisted of 61 adenocarcinoma in situ,

80 minimally invasive adenocarcinoma, 117 invasive adenocarcinoma, and 33 invasive

adenocarcinomawith micropapillary components (>5%). We constructed two diagnostic

models, the Lung-DLmodel and the Densemodel, based on the LeNet and the DenseNet

architecture, respectively.

Results: For distinguishing the nodule invasiveness degree, the area under the curve

(AUC) value of the diagnosis with the Lung-DL model is 0.88 and that with the Dense

model is 0.86. In the prediction of the micropapillary pattern, overall accuracies of 92 and

72.91% were obtained for the Lung-DL model and the Dense model, respectively.

Conclusion: Deep learning was successfully used for the invasiveness classification of

pulmonary adenocarcinomas. This is also the first time that deep learning techniques

have been used to predict micropapillary patterns. Both tasks can increase efficiency

and assist in the creation of precise individualized treatment plans.

Keywords: lung adenocarcinoma,micropapillary component, computed tomography, deep learning, convolutional

neural network, artificial intelligence
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INTRODUCTION

Lung cancer is one of the most common cancer incidents
worldwide, comprising one-third to one-half of incidents being
attributed to adenocarcinoma (1). In 2011, adenocarcinomas
were newly classified as adenocarcinoma in situ (AIS), minimally
invasive adenocarcinoma (MIA), and invasive adenocarcinoma
(IA) (2). The micropapillary pattern was added as a new
histologic subtype of IA, with the other four currently existing
subtypes being lepidic, acinar, papillary, and solid patterns (2).
The prognosis of MIA and AIS is quite different from that of
IA, and among IA it was demonstrated that the micropapillary-
predominant lung adenocarcinoma (MPs) have a more adverse
outcome when compared with other subtypes.

Surgical resection is one of the main treatment choices
for the early-stage lung adenocarcinomas which are generally
recognized as lung nodules on the computed tomography (CT).
The resection range depends on the pathological features of the
nodule, and surgical plans will differ depending on the prognosis.
AIS andMIA are suitable for sublobar resection, with a promising
nearly 100% 5-year survival rate. However, for IA, the lobectomy
is considered an adequate option given its more optimal surgical
outcome than the sublobar resection (3–5). As the disease-free
survival at 5 years for MPs is only 67%, a more aggressive
extended resection is required consisting of a larger excision area
and higher surgical risk (4, 6, 7).

Due to an increased degree of invasiveness with poor
prognosis, it is crucial to determine the exact pathological
classification of the tumor. An intraoperative frozen section
is widely used to distinguish MIA from IA during surgery,
and is considered to be the gold standard in clinical practice.
Liu et al. illustrated that the total concordance rate between
an intraoperative frozen section and the final pathology was
84.4%, and the diagnostic accuracy of the intraoperative frozen
section for tumors ≤1 cm in diameter was 79.6% (8). A
second operation, which is an unnecessary waste of medical
resources, may be required if there is incorrect recognition of
the pathological invasiveness stage during surgery. Furthermore,
with the exception of the final pathology report after surgery,
there are few methods that can recognize MPs before or
during resection. Thus, the development of a new, non-invasive
method that provides a reference for the invasiveness degree
and pathologic subtype before surgery is desired to reduce the
occurrence of inappropriate surgical plan choices and optimize
the distribution of medical resources.

CT interpretation, as a vital part of modern clinical
diagnostic procedures, is critical for the early detection of
lung adenocarcinoma, which can reduce lung cancer-specific
mortality by 20% (5). The diagnosis and the subsequent
treatment of lung adenocarcinoma typically require expert
radiologists to analyze the images, depending on the size,
morphological feature, or the internal texture of the nodule (9).
Many radiologists have attempted to combine the classification
task using radiomics with the machine learning technique (6, 10–
12). The combination of the radiologic image and the pathologic
feature using the artificial intelligence (AI) technique inspired the
medical field to develop a new method regarding the processing

of medical data, revealing information that otherwise cannot be
discovered through the human eye and assessing lesions using a
mechanical method. However, when the amount of data becomes
huge, the performance did not improve limited by the structure
of the model.

Deep learning, as a branch of AI, has emerged due
to its unprecedented superior performance in recent image
classification competitions. With the use of graphics processing
unit (GPU) hardware, the deep learning model can arrange a
much larger scale of the dataset and can achieve higher accuracy
and stability than the traditional machine learning technique,
which has been illustrated in many other fields (13, 14). Deep
learning AI can be used as a computer-aided diagnostic system,
and can become a part of the clinical diagnostic procedure. It
improves the efficiency of the radiologist, saves diagnostic time,
and improves diagnostic accuracy. Also, as many researchers
have illustrated, deep learning can achieve a better performance
than that of many senior medical practitioners addressing tasks
(15, 16). Because well-trained and experienced radiologists are
not always available in less developed areas, the application of
AI can enhance the quality of diagnosis and reduce unnecessary
costs during treatment in these locations.

Previous studies have explored the feasibility of using deep
learning-assisted analysis of lung nodules, and have achieved
promising results. As Nasrullah et al. illustrated (17), deep
learning models to classify benign and malignant nodules can
reach an accuracy of more than 80%. It has been reported
that deep learning in many fields even outperformed senior
radiologists (15). However, insights into subtype classification,
which cannot be performed by human eyes, remained scarce.
We concluded that a deep learning model further focusing on
the malignant nodule is required to determine the grade of
malignancy and classify the subtype of the nodule.

In our research, we propose the utility of the Convolutional
Neural Network (CNN) model to detect the pathologic
invasiveness degree of lung nodules on CT scans, and
furthermore, attempted to discriminate the IA with MPs from
other subtypes. There are two models built in our research, one
called the Lung-DL model and the other one was the Dense
model. We also compared the performance of different CNN
structures. To the best of our knowledge, few researchers have
focused on the classification of malignant nodules down to the
subtype level using deep learning models (16).

MATERIALS AND METHODS

Creation of Datasets
This research was approved by the Institutional Review Board
of Jiangsu Cancer Hospital and Jiangsu Institute of Cancer
Research. Due to the retrospective nature of the study, the patient
informed consent was waived

For the establishment of the dataset, 1,007 histopathologically
confirmed lung cancer patients from Jiangsu Cancer Hospital
were originally obtained in our research. First, 19 patients
whose pathological stage was atypical hyperplasia and 22 patients
diagnosed with squamous carcinoma or other categories were
excluded. Among the 966 patients, we excluded patients whose
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TNM staging is above T1CN0M0. Thus, 25 patients with
lymphatic metastasis and 127 patients withmore than one nodule
were excluded. The remainder of the 814 patients consisted of 72
AIS, 110MIA, and 35MPs. Next, we removed corrupted data that
cannot successfully open or data with poor resolution. Finally, 61
AIS patients, 80 MIA patients, and 33 MP patients were enrolled.

Because there is a similar prognosis for AIS and MIA, but
the prognosis of IA is poorer (3–5), distinguishing IA from AIS
and MIA can assist surgeons in planning an operation. However,
an imbalance in the amount of data will adversely affect the
performance of a deep learning model (18). Therefore, with the
original purpose to distinguish IA from AIS and MIA and the
consideration to avoid any imbalances in the data amount, a
subset of 117 IA without micropapillary was randomly created
from the remainder of the 597 IA cases so that the number of
total invasive adenocarcinoma (150) was approximately equal to
the total amount of MIA and AIS. Finally, a dataset consisting of
61 AIS, 80 MIA, 117 IA, and 33 MPs was constructed. All these
processes are illustrated in Figure 1.

In the dataset, 14 AIS, 11 MIA, 20 IA, and 5 MPs were
randomly selected to form the test set. A training and validation
set was created with the remainder of the dataset, in which 70%
of the data (n= 169) were randomly selected by the program for
training and the other 30% (n = 72) for validation of the deep
learning model.

Preprocessing
The CT scans were obtained from the CT/MRI department
of Jiangsu Cancer Hospital using a LightSpeed VCT. The
scanning matrix was set to 521∗512 pixels. The slice thickness
was 0.625mm. The reconstructed thickness was 1.25 and
5mm. The patients enrolled all owned two sets of CT scans
with a reconstructed thickness of 1.25 and 5mm. With the
consideration to preservemore vital nodule information required
for the research, the 1.25mm thick CT sets were used for the
research, and the 5mm thick CT sets were abandoned.

Previous studies generally reported a deep learning-based
nodule detection accuracy >90% (19). However, insights into
subtype classification remained scarce. Therefore, in order to
focus on the subtype classification of lung nodules, only 12 slices
with the nodule in the center were chosen for labeling. For
nodules >13.75mm in size (that appear in more than 12 slices),
the slice at the margin of the nodule was excluded to ensure
that most of the information pertaining to the nodule could
be preserved.

For the pre-processing of the images, the Amira 6.0.1 software
was used to label the nodules in the images. We applied a window
range between −1,000 and 400 to assess the images. Then, the
images were manually labeled by two investigators (HD and YZ)
who were blind to the histological results and reviewed by an
experienced radiologist (LZ with 10 years of experience in chest

FIGURE 1 | Creation of the dataset. Corrupted data: data that cannot open and data that has a poor resolution. The 117 IA was randomly selected using a Python

script from the 597 IA with no micropapillary component.
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FIGURE 2 | Preprocessing of image data and the arrangement of dataset. Twelve slices chosen for labeling and 12 label files were trimmed to a size of 96*96 pixels

with nodules in the middle, and then saved as Dicom format in separate directories, both named with the patients’ id.

CT diagnosis). The borders of the nodules were adjusted until
an agreement was achieved between the investigators. The 12
labeling files and 12 CT images were saved in Dicom format
in separate directories and renamed according to the patient
identification numbers. Finally, images were trimmed to a size of
96∗96 pixels placing the nodules in the center by OpenCV 4.2.0
based on Python 3.7. The entire procedure is shown in Figure 2.

In the deep learning procedure, a code name that can be
recognized by the machine is required to represent different
classes of data. In our research, Class 0 and 1 were chosen for
their simplicity. All the nodules in the AIS and MIA stages
were marked with Class 0, and all the nodules in the IA stage
(including the MPs) with Class 1. All the indices were recorded
in a CSV file. In the further task to predict the MPs, a third group
exclusively for images labeled MPs were built and named Class 2.
The grouping process facilitated the recognition of images by the
deep learning models in an organized manner.

Model Architecture
The invention of the classic LeNet model in 1998 was regarded
as the beginning of deep learning (20). Since the AlexNet was
reported in 2012, there have been brilliant development of
the convolutional neural network (CNN). Many outstanding
network structures have been proposed, including the VGG net
in 2014 that deepened the model structure, and the ResNet in
2015 that utilized the residual learning methods to process the
degradation of the deep network structure. The DenseNet in 2018
enhanced the reuse of the feature map (21–23).

There are several basic structures of the CNN model. The
convolutional layer convolves the input parameter and assists
with processing images so that they are abstracted to a feature
map (24). The pooling layer is used to streamline the underlying
computation and reduce the dimensions of the input data (25).

The fully connected layer is analyzedwith a flattened inputmatrix
to classify the images.

In this research, we chose adapted DenseNet and LeNet, with
additional details listed below. The entire structure is shown
in Figure 3. The research was performed with an Nvidia RTX
2070 Super graphics processing unit (GPU). Our models were
developed with Python 3.7 and Keras 2.3.1 on an Ubuntu
18.04 platform.

Lung-DL Model

The first model, which is called the Lung Deep Learning model
(Lung-DL model), was adapted from the LeNet model. The
model consists of two convolutional layers each followed by an
average pooling layer (20). The ReLU function was chosen to be
the activation function. Two fully connected layers were attached
to the end of the network.

Dense Model

The second model was adapted from the DenseNet model.
The most unique feature of the DenseNet is its dense block
that enhances the reuse of feature maps. As Gao Huang et al.
demonstrated in 2018, the layers in the block will receive the
feature-maps of all preceding layers. The layers between dense
blocks are referred to as transition layers and change feature-map
sizes via convolution and pooling (22).

In our model, three dense blocks were used. Each block
consisted of 12 convolutional layers. The adjacent two dense
blocks were attached by a convolutional layer and an average
pooling layer. A fully connected layer was attached to the end of
the model.

Statistical Analysis
In our research, some data was shown in the form of number
(percentage), the other data were expressed as mean ± standard
deviation. Receiver operating characteristic (ROC) curves were
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FIGURE 3 | Structure of two deep learning model structure. The Lung-DL model on the top of the picture consists of two convolutional layers, each followed by an

average pooling layer. Two fully connected layers were attached to the end of the network; The Dense model on the bottom consists of three dense blocks. Each

block consists of 12 convolutional layers. A fully connected layer was attached to the end of the model.

applied to evaluate the two-class classification models using
the machine learning module scikit-learn 0.22.1 basing on
Python3.7 (26).

RESULTS

Dataset Characteristics
In our research, a dataset of 291 patients was established.
Table 1 shows the baseline data for the patients. There are
61 (20.96%) AISs, 80 (27.49%) MIAs, and 150 (42.96%) IAs.
Among the nodules classified as IA, 33 (11.34%) nodules were
micropapillary-predominant lung adenocarcinoma (MPs). The
age distribution of the patients is 56.52 years ± 10.56 (mean ±

standard deviation). With a total of 176 (60.48%) female patients.
The diameters of 104 (35.74%) nodules were <1 cm, while the
remainder 187 (64.26%) nodules were larger than 1 cm.

Patient Tests
As was illustrated in the data preprocessing, each nodule yielded
12 slices for the test. With the purpose of importing as much
information as possible into the model, we aimed to use all 12
slices to obtain the prediction. Therefore, the total prediction
percentage was the average value of 12 slices. Examples are shown
in Figure 4A. The two classes used is Class 0 for AIS and MIA,
and Class 1 for IA and MPs.

For the Lung-DL model, the total result of the test set was
89.52% (Class 0–87.08%, Class 1–91.17%). For the Dense model,
the total result of the test set was 81.85% (Class 0–78.44%, Class

1–85.19%). The receiver operating characteristic (ROC) curves
generated by the two models were compared in the same figure.
The Lung-DL model yielded an AUC value of 0.88, and the
AUC value of the Dense model was 0.86, which are shown
in Figure 4B.

Performance of the Model
In this research, the cross-entropy loss function was chosen to
accomplish the training task. Every epoch of the training session
consisted of a training step and a validation step. Both the Lung-
DLmodel and the Dense model were trained and validated epoch
by epoch. When no further improvement was observed in the
performance of the model, the training session was automatically
terminated. The reduction in the value of loss function is used to
evaluate the training quality of the model.

For the Lung-DLmodel, the termination occurred at the 104th
epoch. The validation loss decreased from 0.61 to 0.29, and the
validation accuracy increased from 0.66 to 0.87. For the Dense
model, the training session terminated at the 94th epoch. The
validation loss decreased from 0.79 to 0.30, and the validation
accuracy increased from 0.49 to 0.92. A comparison of the two
models is listed in Table 2, and the loss function curve and
accuracy curve are shown in Supplementary Figure 1.

Classification of the
Micropapillary-Predominant Nodule (MPs)
As previous researches demonstrated, micropapillary-
predominant adenocarcinoma (MPs) has a poorer prognosis
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TABLE 1 | The baseline of the patients included in the dataset.

Train and validation Test Total

(n = 241) (n = 50) (n = 291)

Pathologic stage

AIS 47 (19.50%) 14 (28.00%) 61 (20.96%)

MIA 69 (28.63%) 11 (22.00%) 80 (27.49%)

IA 97 (40.25%) 20 (40.00%) 117 (40.21%)

MPs 28 (11.62%) 5 (10.00%) 33 (11.34%)

Age (y) (mean ± std) 56.52 ± 10.29 58.04 ± 11.80 56.78 ± 10.56

Sex

Male 98 (40.66%) 17 (34.00%) 115 (39.52%)

Female 143 (59.34%) 33 (66.00%) 176 (60.48%)

Nodule size

(0–1.0 cm] 86 (35.68%) 18 (36.00%) 104 (35.74%)

(1.0–2.0 cm] 124 (51.45%) 26 (52.00%) 150 (51.55%)

(2.0–3.0 cm] 31 (12.86%) 6 (12.00%) 37 (12.71%)

Nodule location

RU 90 (37.34%) 17 (34.00%) 107 (36.77%)

RM 22 (9.13%) 2 (4.00%) 24 (8.25%)

RD 38 (15.77%) 9 (18.00%) 47 (16.15%)

LU 62 (25.73%) 11 (22.00%) 73 (25.09%)

LD 29 (12.03%) 11 (22.00%) 40 (13.75%)

AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IA, invasive

adenocarcinoma; MPs, invasive adenocarcinoma with micropapilary components; RU,

the right-up lobe; RM, the right-middle lobe; RD, the right-down lobe; LU, the left-up

lobe; LD, the left-down lobe.

than the other four subtypes (4, 6). Based on this statement, we
attempted to distinguish the MPs from IA. The code name of the
MPs was adapted to Class 2, and three classes were used in this
task: Class 0 for AIS and MIA, Class 1 for IA, and Class 2 for
MPs. We also explored the ability of our models to classify MPs
from other IA nodules.

For the Lung-DL model, the training session terminated at
the 131st epoch. The validation loss value decreased from 0.90 to
0.34, and the validation accuracy increased from 0.62 to 0.86. The
overall accuracy of the test set was 92% (Class 0–91.18%, Class 1–
92.27%, Class 2–95.0%). For the Dense model, the termination
occurred at the 106th epoch. The validation loss value decreased
from 1.15 to 0.36; the validation accuracy increased from 0.39 to
0.93, and the overall accuracy of the test set was 72.91% (Class
0–73.27%, Class 1–74.24%, Class 2–73.77%). A comparison of
different models is listed in Table 2, and the loss function curve
and accuracy curve are shown in Supplementary Figure 2.

DISCUSSION

In our study, we first built a dataset containing pathologic
information for 291 lung nodules. Two models adapted from the
LeNet and the DenseNet architecture were used to distinguish
the AIS and MIA from the IA. Next, knowing that the pathologic
subtype of the nodule can assist in guiding resection, we adapted

the two models so that they would detect the IA with MPs. We
also assessed the performance of the two deep learning models.

After the construction of our models, we focused on two
clinical problems. The first problem is that the classification of
MIA and IA through pathological biopsy during surgery has a
15.6% possibility of being discordant with the final pathology.
The misrecognition of the pathologic invasiveness stage can
result in an inappropriate resection range. Insufficient resection
range for IA will result in a high risk of locoregional recurrence,
and thus, lobectomy is a more optimal surgical approach. On the
contrary, given that the 5-year survival after resection of MIA
and AIS can reach 100% regardless of the surgery performed,
a sublobar resection with a smaller margin is recommended
(8). The misrecognition of the pathologic invasiveness stage can
result in a second operation or unnecessary excision of lung
tissue. In our research, a value of more than 0.85 was obtained
for the Lung-DL and Dense models, indicating an ability to
thoroughly distinguish the degree of invasiveness. Recognition
of the nodule invasiveness stage can guide surgeons to formulate
more optimal resection strategies. The issues described above
can be avoided if this information can be used to assist
medical participators, and thereby increase the efficiency of the
medical procedure.

Another problem is that many researchers are demonstrating
that a poor prognosis is associated with MPs (4), but there are
few approaches available to determine the pathologic subtype.
Surgeons are informed of the exact subtype only upon obtaining
the final pathology report after resection. As Tsao et al. reported,
it is predicted that patients with MPs will benefit from adjuvant
chemotherapy (27). If there is a method to determine the
pathologic subtype before surgery, a prophylactic plan for an
appropriate resection margin and an empirical therapy can be
obtained prior to surgery to improve the prognosis for the
patients (6). As our research illustrated, an accuracy of more
than 70% can be obtained with the two models. Although the
imbalance scale of the three classes restricted the performance
of models, the result still could reveal the potential to detect the
specific pathologic component.

Second, we built a dataset containing the pathologic
information of the patients. Due to the essential role of
large standard datasets in deep learning, enormous datasets
such as LIDC-IDRI (28) have been constructed for public
usage. However, only a handful of them contain pathological
information that is attached to radiological images. In 2019,
Gong et al. collected 828 ground-glass nodules and constructed
a dataset (15). Compared to the 1,018 patients with 243,958
slices in LIDC-IDRI, the amount of data containing pathologic
information is still not abundant. In our research, we proposed
to compensate for the shortage of existing data. Furthermore, we
tried to input several slices of nodules into the model, not just
merely three slices in three different axes as Gong et al. illustrated
in their research (15).

Third, we proposed two models built with the CNN
architecture. Since the invention of LeNet-5 in 1998, profound
development has occurred in deep learning. Many models
emerged after the design of the AlexNet in 2012. In the medical
field, the deep learning method has been applied to lesion
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FIGURE 4 | (A) The prediction generated by our two models and the pathologic pattern of the nodule examples. (B) ROC curve generated from the Lung-DL model

and the Dense model in the task to distinguish pathologic invasiveness degree. The Lung-DL model yielded an AUC value of 0.88, and the AUC value of the Dense

model was 0.86.

TABLE 2 | The performance comparison of different models.

No. of classes Model Validation loss Test accuracy

Start End

2 Lung-DL model 0.61 0.29 89.52%

Dense model 0.79 0.3 81.85%

3 Lung-DL model 0.91 0.34 92%

Dense model 1.15 0.36 72.91%

The 2-Class classification taskis used to distinguish the invasiveness degree. The 3-Class

classification task is used to predict the micropapillary component.

segmentation, detection, and malignancy classification. The two
models presented in our research revealed abilities to classify
the invasiveness degree and the pathologic subtype of lung
adenocarcinoma. The utility of deep learning techniques in
clinical diagnosis procedures can assist surgeons in enhancing
the accuracy of diagnosis and supporting precise individualized
treatment plans.

We also compared the performance of the two models.
According to our research, the Lung-DL model generally
outperformed the Dense model due to its fast training speed
and more optimal performance, which partly arose from its
simpler structure. The Dense model was rather complicated in
structure and was overwhelmed with unnecessary information
for solving a simple, two-class classification task. It was also
noteworthy that the reusing of features, a characteristic function
of the Dense model, backfired and led to more mismatching and
a less satisfactory outcome.

Several limitations remain to be addressed in our research.
First, data insufficiency persisted and could lead to bias during
the training session. The dataset scale limited the performance
of the model, and the advantage based on a large dataset has
not been rigorously proved. The insufficiency of data resulted in
an unsatisfactory performance when generating feature maps. As
Song et al. combined imaging parameters with clinical features
to identify pathologic components (6), if the clinical features
manually labeled in a radiomic fashion can be used in our
labeling procedure as a complement, more information can be
sent to the fully connected layers at the end of the model,
which will increase the performance and stability of the model.
Second, in our research, we did not introduce an external dataset
for validation, partly because of the lack of a standard public
lung nodule dataset that contained pathologic information. The
performance of the model still requires validation in another
cohort. A comparison between radiologists and AI models is
also a method that can be used to validate the practicability of
using deep learning models in the clinical procedure. Last but
not least, because of the limitation of resources, we can only
conduct single-center research, which restricted the performance
of the models and the application of the research has not been
dug completely.

Further research would involve the introduction of radiomic
methods into deep learning models as radiomic methods
readily expand the required datasets and features and receive
augmentation in the upper limit of accuracy and stability from
deep learning models. Another possibility is the conduction
of malignancy prediction using a combination of AI extracted
features and handcrafted features. Further applications will be
explored when more initial studies in this field are come up.
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CONCLUSION

Herein, we proposed two deep learning models based on the
LeNet and DenseNet to generate predictions. We evaluated
their usefulness in the prediction of invasiveness of lung
adenocarcinoma along with their capability to discriminate
MPs from other subtypes. The results showed that deep
learning models can distinguish different subtypes of lung
adenocarcinoma and can detect certain pathologic components.
Thus, our models can assist radiologists to better distinguish the
invasiveness degree of lung nodules and help surgeons to make
their operation choice more appropriately.
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