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Abstract
During the course of 2020, the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS‐CoV‐2) spread rapidly 
across the world. Clinical diagnostic testing for SARS-Cov-2 infection has relied on the real‐time Reverse Transcriptase Poly-
merase Chain Reaction and is considered the gold standard assay. Commercial vendors and laboratories quickly mobilised 
to develop diagnostic tests to detect the novel coronavirus, which was fundamentally important in the pandemic response. 
These SARS-Cov-2 assays were developed in line with the Food Drug Administration-Emergency Use Authorization guid-
ance. Although new tests are continuously being developed, information about SARS-CoV-2 diagnostic molecular test 
accuracy has been limited and at times controversial. Therefore, the analytical and clinical performance of SARS-CoV-2 
test kits should be carefully considered by the appropriate regulatory authorities and evaluated by independent laboratory 
validation. This would provide improved end-user confidence in selecting the most reliable and accurate diagnostic test. 
Moreover, it is unclear whether some of these rapidly developed tests have been subjected to rigorous quality control and 
assurance required under good manufacturing practice. Variable target gene regions selected for currently available tests, 
potential mutation in target gene regions, non-standardized pre-analytic phase, a lack of manufacturer independent validation 
data all create difficulties in selecting tests appropriate for different countries and laboratories. Here we provide information 
on test criteria which are important in the assessment and selection of SARS-CoV-2 molecular diagnostic tests and outline 
the potential issues associated with a proportion of the tests on the market.
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Introduction

The World Health Organization (WHO) released a state-
ment officially confirming cases of pneumonia with 
unknown origin in Wuhan City, Hubei Province on 31 
December 2019 [1]. On 9 January 2020, a novel corona-
virus was announced as the causative agent by the Chi-
nese authorities and later officially named Severe Acute 
Respiratory Syndrome Coronavirus-2 (SARS-Cov-2) and 
responsible for the disease known as COVID-19 [2]. The 
number of confirmed cases rapidly increased and spread 
to other countries as the pandemic developed across the 
globe [3].

The COVID-19 pandemic continues to spread rapidly 
manifesting as second and third waves of increased trans-
mission with concerns of important viral transmission by 
asymptomatic or moderately symptomatic patients [4]. 
During pandemics, rapid highly sensitive diagnostic tests 
play an essential role in epidemiological control and clini-
cal management by identifying infected individuals and 
ensuring disease management to prevent the spread of the 
infectious agent and save lives [5].

The WHO stated that testing was a critical factor in 
controlling the spread of SARS-CoV-2 [6] (https:// apps. 
who. int/ iris/ handle/ 10665/ 331509) and subsequently re-
emphasized the call to include retesting due to the low 
accuracy of some of the available tests and associated pre-
analytical issues [7–9]. Polymerase Chain Reaction (PCR) 
based methods are the gold standard in virus detection and 
are the assay of choice for the diagnosis of SARS-CoV-2 
[10]. On 13 January 2020 the WHO released SARS-CoV-2 
diagnostic testing guidance and the first real-time Reverse-
Transcriptase PCR (RT-PCR) test was published by Cor-
man et al. in January 2020 [11]. Further, the FDA released 
guidance on Emergency Use Authorisation (EUA) pro-
cedures for laboratories on 29 February 2020. The EUA 
supports emergency preparedness and response and fosters 
the development and availability of medical products for 
use in emergencies [12]. The FDA also updates the list of 
tests that have received EUA approval on its website [13].

During the development of a new diagnostic test, its 
performance should be compared using another device, a 
recognized reference method or clinical criteria for diag-
nosis. Also, validation studies examining the clinical per-
formance of test are required before approval by the FDA 
[14]. However, understanding of FDA-EUA approval has 
been confusing as many clinical laboratories have mostly 
only experienced working with over-detailed FDA-IVD 
kits for which approval is highly complex and stringent 
[15]. Compared to FDA-IVD approval, the process for 
FDA-EUA approval is less stringent and mainly focused 
on analytical performance criteria. As the COVID-19 

pandemic unfolded, the FDA-EUA recommended in the 
template for FDA-EUA approval of SARS-CoV-2 molec-
ular-based tests the inclusion of Limit of Detection (LoD) 
as well as analytical sensitivity, cross-reactivity for ana-
lytical specificity and clinical evaluation for performance 
evaluation [16]. However diagnostic sensitivity, diagnostic 
specificity, positive predictive value and negative predic-
tive value are among the basic and essential performance 
criteria for clinical diagnostic tests and have largely not 
been applied for SARS-CoV-2 molecular-based tests [17, 
18]. Information on SARS-CoV-2 kits that have received 
FDA-EUA approval up to 1st September 2020 is contained 
in Supplementary Table 1. The instruction for use (IFU) 
supplied with these kits was used to extract information 
on analytical performance, target gene, sample volume, 
sample type and turnaround time of each test kit [13].

In several published studies, it has been suggested that 
some issues with SARS-CoV-2 detection were associated 
with pre-analytical and analytical factors. These included 
the lack of standardization of specimen type, the time of 
sampling, sample storage conditions, contamination, the 
use of insufficiently validated and verified assays, low viral 
load related to disease phase and recombination or muta-
tion of viral genes [15, 19]. Here, in this review we examine 
the basic test features which are important in the selection 
of SARS-CoV-2 molecular diagnostic tests and discuss the 
existing problems of current tests that affect test selection.

Molecular diagnostic test selection criteria

The WHO’s guide to aid selection of diagnostic tests 
describes the ASSURED (Affordable, Sensitive, Spe-
cific, User-friendly, Rapid and robust, Equipment-free and 
Deliverable to end-users) criteria which is considered the 
benchmark for determining if a diagnostic test is fit for pur-
pose depending on need [20]. For SARS-CoV-2 the first 
aspect of this practical guide is defining the test purpose 
and includes determining if (i) the required test is qualita-
tive or quantitative, (ii) it is a point-of-care (POC) test or a 
central laboratory test, (iii) the test will be performed manu-
ally or by automated instrumentation and (iv) it requires 
specialist skills and who will perform the work (laboratory 
technician or healthcare worker) [21]. Although a number 
of different assays have been developed for the detection of 
SARS-CoV-2, the quantitative RT-PCR assay is considered 
the gold standard. The RT-PCR reaction can be performed 
in one step or two steps. The one-step RT-PCR performs 
both reverse transcription and amplification in the same 
tube. Since technician-based errors, sample mismatching, 
aliquoting, pipetting errors are lower; the potential risk of 
cross-contamination is lower. It is also cheaper and easier to 
set up and is ideal for high throughput applications. Further, 

https://apps.who.int/iris/handle/10665/331509
https://apps.who.int/iris/handle/10665/331509
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gene specific primers are used to generate the cDNA leav-
ing no cDNA template for the amplification of other gene 
targets. In the two-step method, the cDNA synthesis and RT-
PCR reactions are performed in separate tubes. Additional 
pipetting steps increase the risk of pipetting errors and cross-
contamination. However, two-step RT-PCR is more sensitive 
than one-step RT-PCR and it is possible to perform reverse 
transcription of other gene regions and the cDNA can be 
stored for later additional use. The preferred technique for 
detecting SARS-CoV-2 is one-step RT-PCR as it is quicker 
and easily integrated into liquid handling robotic platforms 
and automated systems [22–24]. Isothermal nucleic acid 
amplification is another technique used to detect SARS-
CoV-2 and is especially useful for POC tests as it does not 
require a thermal cycler. Amplification occurs only at one 
temperature under isothermal conditions and can be per-
formed in a single tube, without the need for sophisticated 
instrumentation. Droplet digital PCR (ddPCR), gene chip 
and loop-mediated isothermal amplification are the other 
nucleic acid based detection methods that have been used 
for the detection of SARS-Cov2. Nevertheless, the RT-PCR 
remains the predominant method for SARS-CoV-2 detection 
[11, 25, 26].

The second part of the ASSURED guide focuses on 
reviewing market available tests and includes appraising 
the workflow, technical characteristics, practicability, and 
test kit applicability. Basic information such as manufac-
turer details, the kit catalogue number, storage conditions 
of the kit, shelf-life stability (temperature, humidity, pres-
sure), in-use stability (opened pack stability, opened vial 
stability and onboard stability if it is used with an instru-
ment), and shipping stability are required. In addition, other 
information including appropriate specimen type (such as 
blood, oropharyngeal swab, nasopharyngeal swab, sputum 
or faeces), the required sample volume, control reagents, 
total turnaround time, RNA extraction and additional equip-
ment requirement is required. Finally, instrument size, cost, 
education needs of the users and frequency of education, 
installation and maintenance requirements should be deter-
mined [21, 27].

Practicability dictates whether a new assay can be easily 
combined with other assays currently used in the laboratory 
and can be performed under the same conditions. Hence, 
determining if a new assay will incur additional cost and 
impact on the workforce is needed [28]. Regarding the tech-
nical and workflow characteristics of test kits, it is important 
to choose those with ready-to-use reagents, a small number 
of reaction tubes, and a limited number of pipetting steps 
to reduce the risk of contamination which is an important 
potential cause of false positive results [29]. This is espe-
cially critical during a pandemic when high throughput 
(number of samples in a run) and short turnaround time are 
demanded. Long turnaround times can result in the backlogs 

and increase in workload and number of patients in pan-
demic outpatient clinics requiring increased isolation peri-
ods [29]. Current sample production capacity, the total time 
required to perform the test and the number of tests each 
device can perform on an hourly and daily basis in theory 
and in practice should be taken into account [30].

The matrices that test kits can work with and the limit 
of detection values of different matrices are reported in the 
IFU documentation of the kits [16]. A test kit compatible 
with the sample type to be analysed needs to be selected. 
Particular consideration should also be given in regard to 
matrix interfering substances and inhibitors which may 
cause the assay to fail [31]. Mucin, blood contamination, 
nasal sprays, drops, corticosteroids and gels, throat lozenges, 
oral anaesthetic and analgesic drugs or sprays, anti-viral and 
antibacterial drugs, haemoglobin, conjugated and unconju-
gated bilirubin, proteins in circulation, lipids, antibodies and 
rheumatoid factors can all interfere with the PCR reaction. 
Evaluation of potential interfering agents is therefore highly 
pertinent for new techniques [30].

The third part of the ASSURED criteria focuses on 
the analysis of the approvals granted by international and 
national organizations [21]. Manufacturers can obtain 
approval for SARS-CoV-2 molecular diagnostic kits from 
regulatory authorities such as CE-IVD, FDA-EUA, Austral-
ian Therapeutic Goods Administration (TGA), Singapore 
Health & Safety/Sciences Authority (HSA), Korea Ministry 
of Food & Drug Safety EUA (Korea-MFDS-EUA), Health 
Canada, China National Product Administration (NMPA)-
EUA [32]. The regulatory approvals of the kits are shown in 
Supplementary table 1.

The final part of the guide involves the review of test per-
formance under optimum conditions and clinical laboratory 
conditions as well as monitoring of the test during routine 
use, including quality control and assurance. The diagnos-
tic accuracy of the test should be checked in peer reviewed 
publications and data from the manufacturer [21]. Impor-
tantly, data provided by manufacturers should be verified by 
post-market assessment [33] (https:// asm. org/ Artic les/ 2020/ 
April/ False- Negat ives- and- Reinf ectio ns- the- Chall enges- of).

Challenges in selecting Sars‑Cov‑2 molecular 
diagnostic tests

Diagnostic performance challenges of SARS‑CoV‑2 
diagnostic molecular tests

Analytical sensitivity and specificity should not be confused 
with diagnostic sensitivity and specificity as each has differ-
ent meanings [34]. High analytical sensitivity does not nec-
essarily equate to a high diagnostic sensitivity, and similarly, 
a test with high analytical specificity does not warrant that 

https://asm.org/Articles/2020/April/False-Negatives-and-Reinfections-the-Challenges-of
https://asm.org/Articles/2020/April/False-Negatives-and-Reinfections-the-Challenges-of
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the test has high diagnostic specificity. Analytical sensitivity 
is the smallest amount of a substance that can be detected by 
an assay and is known as the limit of detection (LoD) [16].

It is important to demonstrate a low LoD, which indicates 
greater analytical sensitivity and is likely the most common 
data provided by assay developers [18]. The SARS-CoV-2 
kits granted FDA-EUA approval and the LoD values of the 
target genes of the tests are shown in Supplementary Table 1.

According to published studies on RT-PCR based assays 
for SARS-CoV-2 the reported diagnostic sensitivity ranged 
from 59 to 71% [35, 36]. It is known that diagnostic sensi-
tivity is especially important in determining false negativity 
[17, 34]. During the COVID-19 pandemic, an enormous vol-
ume of tests have been performed and the number of infected 
individuals that test negative (i.e. false negative rate) con-
stitutes a significant risk for pandemic control. There are 
a number of factors that may contribute to false negative 
results such as low viral load prior to onset of symptoms, 
insufficient sampling, unsuitable transport/storage condi-
tions and mutation in the gene target site. The impact of 
false negative test results may create unnecessary confidence 
and increase the spread of the disease [37].

False positivity and cross-reactivity are also important 
issues that currently have not been well evaluated [38]. In 
low prevalence settings, the false positive rate has been 
found to be proportionally higher than in the high prevalence 
settings. However, in the high prevalence setting, individu-
als with a false positive result also have a major risk of viral 
exposure if isolated with patients with active COVID-19 
infection. False positive results may cause delay of surger-
ies, workforce loss and unnecessary treatment and isolation 
[39]. In the real word setting it can be difficult to determine 
whether the source of false positivity is due to sample cross 
contamination, contamination during sampling from surface 
or gloves, cross reactions with other viruses or intrinsic ana-
lytical issues associated with some kits [38].

Non‑standardized pre‑analytical factors

There are numerous pre-analytic, analytic and post-analytic 
factors that affect performance, accuracy and repeatability of 
a diagnostic test [40, 41]. In some studies, it was mentioned 
that the high false negativity and false positivity rates of 
SARS-CoV-2 RT-PCR kits were mainly related to the pre-
analytical phase, in particular sampling location, sampling 
time, transport and storage conditions [19, 40, 42, 43].

It has been found information on sample type and tim-
ing aimed at improving test accuracy change day by day. 
In the Korean guide, both nasopharyngeal and oropharyn-
geal sampling was recommended, while the United States 
Center for Disease Control and Prevention (US-CDC) 
recently updated their sampling procedure [44, 45]. It 
was established that sputum is the most sensitive sample 

for SARS-CoV-2 nucleic acid detection, with nasopharyn-
geal swabs the next most sensitive [46]. However, sputum 
induction produces an increased risk of aerosol trans-
mission. There are also studies on the diagnostic value 
of saliva and faeces samples, with saliva being an easily 
obtained sample, but is not the preferred sample specimen 
[47, 48]. Due to the rapid release of updates, sample type, 
matrix effect and applicability features of kits should be 
taken into consideration [28]. The ability of kits to work 
with various matrices will make it easier to adapt to chang-
ing sampling procedures [44, 49].

Another crucial issue is that SARS-CoV-2 is an RNA 
virus and since the structure of RNA is much more sen-
sitive than DNA to environmental factors, the integrity 
of RNA viruses can be more affected by transport and 
storage conditions [50, 51]. Swab variety, different viral 
transport media and PCR inhibitors can affect PCR-based 
viral detection [9, 46]. The US-CDC reported that swab 
samples should only be collected with a synthetic-tipped 
swab and the swab should be used with an aluminium or 
plastic shaft. Cotton swabs are not recommended in the 
US-CDC guideline, while transport of cotton swabs in 
viral transport medium (VTM) is considered appropriate 
in the Korean guidelines [44, 52]. Recently it has been 
reported that samples collected in VTM reduce the sensi-
tivity of POC COVID-19 tests and the US-CDC updated 
guidance also noted that for some POC tests the use of 
VTM is not advised [44, 53]. In addition one manufacturer 
added further information to their IFU; indicating swabs 
should be placed directly in the POC instrument for test-
ing and specimens in VTM are not an appropriate sample 
type [54].

In the Chinese Center for Disease Control (China-CDC) 
guidelines for SARS-Cov-2 molecular assays, there is no 
detailed information about swab suitability for different 
specimen types, but it is stated swabs can be placed in dif-
ferent VTM such as isotonic saline solution, tissue culture 
solution, or phosphate buffer solution [49]. The US-CDC 
has also published a standardized VTM contents and pro-
tocol to enable laboratory VTM reagent preparation [55]. 
Further, some SARS-CoV-2 RT-PCR kits contain specific 
swabs and VTMs and these kits are not guaranteed to work 
when using different swab types and VTM [45, 49, 55, 56]. 
The specimen collection and transport materials that are 
supplied with any product should be evaluated during test 
selection. Additionally, the pre-analytic phase gains more 
importance for home sample collection kits. An effective 
self-sampling of patients, contamination of the swabs, and 
the use of nasal swabs in self collection kits instead of 
nasopharyngeal swabs used in healthcare settings can have 
an impact on disease control by adversely affecting test 
results and clinical diagnosis [57].
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Target genes for molecular diagnostic SARS‑CoV‑2 
tests

Coronaviruses of the Coronaviridae family are enveloped 
zoonotic RNA viruses. Mammals serve as an intermedi-
ate host and contribute to coronavirus genetic diversity 
by facilitating recombination and mutation [58, 59]. The 
SARS-CoV-2 has a 29,903-nucleotide long viral genome 
with genes encoding structural proteins: spike (S), envelope 
(E), transmembrane (M), helicase (Hel), and nucleocapsid 
(N). There are also species-specific genes necessary for 
viral replication. These are RNA dependent RNA polymer-
ase (RdRp), hemagglutinin-esterase (HE) and open read-
ing frames ORFla and ORF1b [45, 60]. The N, E, S, ORF 
and RdRp are the target viral genes that have been used for 
molecular diagnostic tests, with test kits having numerous 
different primer sets directed against these regions [45, 61, 
62]. Several SARS-CoV-2 RT-PCR based detection proto-
cols have also been published by the World Health Organ-
ization [62] and the target genes of current SARS-Cov-2 
tests from different organisations/institutions are shown in 
Table 1.

It is necessary to evaluate the analytical performance of 
different kits to ensure the test results are correctly inter-
preted. In in vitro sensitivity studies, the most sensitive 
target gene regions were determined to be the E gene and 
RdRp gene [11]. Comparison of the analytical performance 
and sensitivities of SARS-CoV-2 RT-PCR assays by the 
China-CDC, Charité (Universitätsmedizin Berlin Institute 
of Virology, Germany), US-CDC and Hong Kong University 
(HKU) revealed different analytical sensitivities between 
these assays when testing samples with low viral loads [63, 
64]. Additionally, many of the available kits target different 
genes and do not provide the primer sequences data. This 
complicates kit selection as well as validation and verifica-
tion of the sensitivity of the primer sets [65].

SARS‑Cov‑2 mutation and viral evolution

Mutations occurring within the primer–probe binding 
sequences of target gene are another potentially crucial 
issue in SARS-CoV-2 transmission and re-infection [33]. 
The analysis of 7666 SARS-CoV-2 genomes revealed 198 
repetitive mutations in the SARS-CoV-2 genome. Numer-
ous repetitive mutations have been detected in the Orf1ab in 
region encoding Nsp6, Nsp11, Nsp13 and the gene region 
encoding the S protein [66]. In another study 2,492 SARS-
CoV-2 genome sequences were analysed and 1407 muta-
tions were detected, of which 337 were in structural regions, 
including 173, 30, 25 and 109 mutations in S, M, E and 
N genes respectively [67]. Coding and non-coding muta-
tions, SARS-CoV-2 variants show that SARS-CoV-2 exerts 
ongoing evolution [66–70]. Viral evolution can potentially 

cause a decrease in the sensitivity of SARS-CoV-2 assays 
due to primer or probe binding mismatch [71]. One study 
reviewed 992 SARS-CoV-2 sequences and 12 nucleotide 
mismatches in the primary-probe binding region of at least 
two virus sequences were detected during the early stages of 
the pandemic [63]. Therefore, mutations and global diversity 
in the SARS-CoV-2 genome sequence are a crucial point 
when considering appropriate test selection. Whole-genome 
sequencing (WGS) can overcome the mutation-based prob-
lems which can increase the false-negative rate in RT-PCR 
based assays. However, WGS is not practical, cost-effective 
and applicable to clinical laboratories as a primary detection 
assay [72]. Nevertheless, analysis of SARS-CoV-2 target 
gene mutations and dynamic sequence analysis for deter-
mination of the targeted gene in the tests to be developed 
plays a vital role in the success of innovative tests [66, 72].

Recently, the United Kingdom reported the emergence 
of the SARS-CoV-2 Alpha variant B.1.1.7, which is highly 
transmissible and spread rapidly to other countries. Simi-
larly, the Beta variant (known as B.1.351), Gamma variant 
(B.1.1.28.1) and Delta variant (B.1.617.2) have since been 
found in countries worldwide [73]. The FDA has published 
a letter to healthcare providers warning that mutations in 
the virus genome target regions may create primary probe 
incompatibility and that genetic variants can increase false 
negative results. The FDA also noted that tests that rely on 
the detection of multiple regions of the genome may be less 
impacted by genetic variation in the SARS-CoV-2 genome 
than tests that rely solely on detection of only a single region 
[74]. Therefore, the ability of kits to detect multiple variants 
and any updated test performance of kits should be taken 
into consideration. Specific SARS-CoV-2 variant detection 
kits may also be needed to screen for cases that are clinically 
compatible, abut have a high risk of false negativity [74, 75].

Inadequate SARS‑Cov‑2 kit verification

During routine use, it is imperative to monitor and docu-
ment test performance and user complaints to the regulatory 
authorities. In Supplementary Table 1, each approved EUA 
test has its own characteristics and limitations. The verifica-
tion phase is important in objectively evaluating the accu-
racy of kits. For this reason, on 3 April 2020, the American 
Society of Microbiology published a protocol describing 
the verification process of commercial SARS-CoV-2 kits, 
which are used in clinical laboratories [15, 18, 21, 33]. In 
the first step of verification, the information reported by the 
manufacturer is verified. In the second step, accuracy and 
precision studies are performed [15]. Accuracy is evaluated 
by comparing patient results with another EUA approved 
kit. Precision includes repeatability and reproducibility, it 
provides information about the study within-run variabil-
ity, variability between-days, between runs, between lots, 
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between operators and instruments [76]. Quality control 
is another component of monitoring the performance of 
a test in routine use [21]. Internal controls are necessary 
for evaluation of specimen quality, as well as RNA isola-
tion and amplification steps [9]. This involves the use of 
an extraction negative control, extraction positive control, 
no template control and positive template control. External 
quality control assurance is a program in which blind panels 

of verified positive and negative samples are periodically 
sent to participating laboratories from a single coordinat-
ing center. The results of each laboratory are compared to 
the results of other laboratories and/or to an assigned value. 
Comparative results from all peer groups using the same 
method and device are reported to all participating labora-
tories. External quality assessment (EQA) materials usually 
include internationally accepted standards [77–79] (https:// 

Table 1  SARS-CoV-2 molecular test gene target regions [11, 62]

RdRp rna-bound rna polymerase, E envelope, N nucleocapsid, ORF open reading frame, F Forward, R Reverse

Country Organisation/Institute Gene targets forward and reverse primer sequences (5’-3’)

China Chinese Center for Disease Control and 
Prevention

Target 1: ORF1ab
 CCDC-ORF1- F: 5’-CCC TGT GGG TTT TAC ACT TAA-3’
 CCDC-ORF1-R: 5’-ACG ATT GTG CAT CAG CTG A-3’

Target 2: N
 CCDC-N-F: 5’-GGG GAA CTT CTC CTG CTA GAAT-3’
 CCDC-N-R: 5’-CAG ACA TTT TGC TCT CAA GCTG-3’

Germany Charitè Target 1: RdRp
 RdRp_SARSr-F: 5’-GTG ARA TGG TCA TGT GTG GCGG-3’
 RdRp_SARSr-R: 5’CAR ATG TTAAASACA CTA TTA GCA TA-3’

Target 2:E
 E_Sarbeco-F:ACA GGT ACG TTA ATA GTT AAT AGC GT
 E_Sarbeco-R:ATA TTG CAG CAG TAC GCA CACA 

Hong Kong SAR Hong Kong University Target 1: ORF 1b-nsp14
 HKU-ORF1-F: 5’-TGG GGY TTT ACR GGT AAC CT-3’
 HKU-ORF1-R: 5’-AAC RCG CTT AAC AAA GCA CTC-3’

Target 2: N
 HKU-N-F: 5’-TAA TCA GAC AAG GAA CTG ATTA-3’
 HKU-N-R: 5’-CGA AGG TGT GAC TTC CAT G-3’

Thailand National Institute of Health Target 1:N
 WH-NIC N-F:CGT TTG GTG GAC CCT CAG AT
 WH-NIC N-R:CCC CAC TGC GTT CTC CAT T

USA United States Centers for Disease Con-
trol and Prevention

Three targets in N gene
 Target 1: N1
  2019-nCoV_N1-F: 5’-GAC CCC AAA ATC AGC GAA AT-3’
  2019-nCoV_N1-R: 5’-TCT GGT TAC TGC CAG TTG AAT 

CTG-3’
 Target 2: N2
  2019-nCoV_N2-F: 5’-TTA CAA ACA TTG GCC GCA AA-3’
  2019-nCoV_N2-R: 5’-GCG CGA CAT TCC GAA GAA-3’

 Target 3: N3
  2019-nCoV_N3-F: 5’-GGG AGC CTT GAA TAC ACC AAA A-3’
  2019-nCoV_N3-R: 5’-TGT AGC ACG ATT GCA GCA TTG-3’

France Pasteur Institute, Paris Two targets in RdRp gene
 Target 1: RdRP/nCoV_IP2
  nCoV_IP2-F: 5’-ATG AGC TTA GTC CTG TTG -3’
  nCoV_IP2-R: 5’-CTC CCT TTG TTG TGT TGT -3’

 Target 2:RdRP/nCoV_IP4
  nCoV_IP4-F: 5’-GGT AAC TGG TAT GAT TTC G-3’
  nCoV_IP4-R: 5’-CTG GTC AAG GTT AAT ATA GG-3’

https://aslm.org/wp-content/uploads/2020/05/Assuring-quality-test-results-short-version-pdf.pdf?x78457
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aslm. org/ wp- conte nt/ uploa ds/ 2020/ 05/ Assur ing- quali ty- test- 
resul ts- short- versi on- pdf. pdf? x78457). Information about 
internal quality controls for the extraction and amplification 
steps as well as external quality control materials and supply 
conditions can be obtained from EUA kit manufacturers.

Discussion

The COVID-19 pandemic has been a significant issue for 
global health, society and economies. The chief executive 
and general manager of the WHO, Tedros Ghebreyesus 
emphasized that countries should give priority to diagnos-
tic testing and isolation by saying: “You cannot fight a fire 
blindfolded” [80]. However, what is more important than 
providing a result in clinical laboratories is to give an accu-
rate result [81]. Diagnostic errors are critical clinically and 
economically and the effects of diagnostic errors are com-
pounding during outbreaks [82]. Unnecessary quarantin-
ing and treatment of a patient that has a false positive test 
result can cause significant impacts on individuals, as well 
as loss of workforce and time for healthcare workers and 
unnecessary cost. In addition, false negative test results of 
asymptomatic or mildly symptomatic patients create a risk 
to pandemic control [19]. Surgical mortality and pulmonary 
complications may also occur due to peri-operative infection 
in patients with false negative pre-operative screening results 
and also pose a risk for surgical crew [83]. Further, conva-
lescent immune plasma therapy is a promising treatment 
for SARS-CoV-2 and the eligibility criteria for donors and 
patients is determined by RT-PCR testing [84]. Therefore, 
high false negativity of SARS-CoV-2 diagnostic tests can 
challenge pandemic management at multiple points [19].

Rapidly produced SARS-CoV-2 RT-PCR tests have 
been able to obtain FDA-EUA and is a new classification 
for clinical laboratories. Also, diagnostic performance 
problems of SARS-CoV-2 molecular test have increased 
questions about diagnostic molecular test selection in 
clinical laboratories. In one study, false negativity rates 
of two tests that approved FDA-EUA were 14.8% and 11% 
[85]. Feng et al. recommended chest computer tomogra-
phy to detect the first-period change of COVID-19 when 
RT-PCR test results are negative [86]. This is not only an 
issue for false negative and false positive results, but also 
for conflicting results that vary from initial and subsequent 
confirmatory tests and may be due to pre-analytical (viral 
load) or analytical factors [19, 87]. Many studies associ-
ate false negative results with the pre-analytical phase. 
Different studies have shown that viral RNA is detected 
in different patterns depending on sample type and the 
time of sample collection and the disease phase [46]. It 
is important to carefully consider pre-analytical variables 
that will affect test clinical performance. However, in a 

comparison study in which the pre-analytical phase condi-
tions were equal for all kits tested, seven commercial kits 
(which were granted FDA-EUA) were compared with an 
in-house kit and the diagnostic sensitivity values ranged 
from 62.5% to 81.2% [88].

The accurate diagnosis of patients infected with SARS-
CoV-2 is crucial to controlling the spread of SARS-CoV-2. 
However, some RT-PCR based diagnostic assays do not meet 
proper clinical diagnostic performance standards. These 
tests are recommended to be performed by trained staff in 
central laboratories and may not be widely deployed in unde-
veloped countries with limited health care facilities, or in 
remote locations. Although the diagnosis of SARS-CoV-2 
by RT-PCR is mostly laboratory-based, molecular-based 
POC tests may be an attractive alternative due to reduced 
transport problems and relatively shorter turnaround times. 
POC tests can be used in any location, such as hospitals, 
clinics, emergency departments or remote locations [89, 
90]. In Supplementary Table 1, molecular POC assays that 
use isothermal nucleic acid amplification technology for the 
detection of SARS-CoV-2 is shown. However, in compara-
tive diagnostic accuracy studies, the performance of POC 
tests was found to have significant limitations for the diag-
nosis of SARS-CoV-2 [85, 91, 92]. Although NGS based 
detection provides better results, it is not a cost-effective and 
practical method for routine clinical diagnosis [93]. Simi-
larly, ddPCR is more sensitive than RT-PCR and allows the 
detection of lower viral loads, but has low throughput and 
requires more specialised technical settings and equipment, 
making it unsuitable for widespread use [24, 25].

Epidemiologically regional and common mutations in 
primer and probe target regions in the SARS-CoV-2 genome 
should be considered in kit selection. Although primers and 
probes are specifically designed against protected areas of 
the viral genome, mismatches between primers and probes 
and target sequences can occur and result in decreased test 
accuracy [71]. These primary probe mismatch mutations can 
also affect assay annealing temperatures and increase the 
risk of dimer and hairpin formation of primers [94]. RT-
PCR approaches that target multiple genes may overcome 
mutation based errors. This would potentially increase the 
amount of information gained from a single test, improve 
diagnostic specificity and reduce reagent usage and cost, 
as well as workload in clinical laboratories [17, 95, 96]. 
Considering that SARS-CoV-2 is continuously evolving 
and accumulating mutations, access to genome sequenc-
ing data to assist primers and probe design is an important 
requirement for assay developers and is likely to decrease 
false negative rates. Improving the multiplex properties of 
nucleic acid tests and integrating these with serological tests 
may also improve test accuracy [17, 95]. Further, combined 
tests may enable better differentiation of false negatives in 
the early and late phases of infection [19, 97].

https://aslm.org/wp-content/uploads/2020/05/Assuring-quality-test-results-short-version-pdf.pdf?x78457
https://aslm.org/wp-content/uploads/2020/05/Assuring-quality-test-results-short-version-pdf.pdf?x78457
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The clinical performance of commercial kits should be 
evaluated objectively and publicly shared by the authorita-
tive institutions. Rapidly produced tests do not go through 
the verification phase and clinical trials have been inad-
equate [37]. In order to provide users with more accurate 
diagnostic kits, several organizations have invited assay 
developers to evaluate their test products independently [27, 
98]. In order to compare the kits, the LoD values obtained 
using standardized reference material are shown in Supple-
mentary Table 1 [99]. The Foundation for Innovative New 
Diagnositics (FIND) is an organization that is working with 
the WHO and in partnership with the University Hospital of 
Geneva (HUG) to evaluate assays to verify molecular test 
kits detection limit, and clinical performance data reported 
by vendors. The evaluated commercial test data is now being 
published on the FIND website [98]. While diagnostic sen-
sitivities ranging from 90 to 100% have been reported by 
FIND, the fact that tests perform at approximately 70% of 
diagnostic sensitivity in routine use emphasizes the impor-
tance of verification by end users [15, 35]. Monitoring and 
publishing the performance of kits will be a useful guide for 
users in selecting tests [33]. An important part of test per-
formance monitoring is the quality control phase. External 
quality control is a critical process for the verification of 
molecular assay accuracy. It is recommended that an inter-
national external quality assessment is needed to assess the 
quality of assays used [38]. Procedures for internal quality 
control and external quality control of molecular tests and 
the provision of control materials with kits is also critical in 
test selection [81, 95].

It is clear that pandemics affect the economies of all 
countries, and successive waves of infection magnify this 
problem. Choosing a cost-effective high performance test 
by considering the above parameters during kit selection 
will enhance the role and success of clinic laboratories in 
pandemic management.

Conclusion

Early and accurate diagnosis of SARS-CoV-2 is the first 
of a number interventions required for effective pandemic 
management. It is essential to increase the diagnostic sensi-
tivity and specificity of SARS-CoV-2 tests to minimize the 
impact of the pandemic on the global health system. There-
fore, laboratories and national authorities should consider 
types of RT-PCR tests (one-step vs. two-step), pre-analytical 
factors (types of samples, interfering substances, transport 
conditions), diagnostic and analytical accuracy (specificity, 
sensitivity), target genes analysed, mutation variants of the 
virus, quality control requirements in PCR test selection. 
Further, laboratories should verify kits under laboratory con-
ditions and monitor performance data. Requesting updated 

diagnostic performance data from manufacturers as part of 
the test selection process will encourage companies to evalu-
ate their commercial kits by independent authorities.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11033- 022- 07455-5.
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