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The receptor for advanced glycation end products (AGER) is an oncogenic transmembra-
nous receptor up-regulated in various human cancers. We have previously reported that
AGER was overexpressed in squamous cervical cancer. However, mechanisms of AGER
involved in the progression of cervical cancer are unknown. In the present study, we in-
vestigated the effects of AGER on biological behavior, including proliferation, apoptosis,
and migration using multiple biological approaches. AGER protein primarily localized in the
cytoplasm and cytomembrane of cervical squamous cancer cells. Blockage of AGER with
multiple siRNAs suppressed proliferation, stimulated apoptosis, inhibited migration of cervi-
cal squamous cancer cells. Conversely, overexpression of AGER increased cell proliferation,
migration, and inhibited cell apoptosis. These results indicate that AGER promotes prolifer-
ation, migration, and inhibits apoptosis of squamous cervical cancer and might function as
a tumor promoter in cervical cancer. Our study provides novel evidence for a potential role
of AGER in bridging human papillomavirus (HPV)-induced inflammation and cervical cancer.

Introduction
Cervical cancer remains the fourth most common cause of cancer-related deaths in women worldwide,
with an estimated 527600 new cases and 265700 deaths in 2012 [1]. High risk human papillomavirus
(HPV) is considered as a principal etiologic agent for cervical cancer, however, only a small fraction of
women exposed to this virus develop cancer, implying that other factors contribute to cervical carcino-
genesis [2,3]. It is now well established that inflammation is a critical component of tumor development
and progression [4,5]. As well as its direct oncogenic effects, ongoing inflammation induced by persis-
tent HPV infections also is a driving force that accelerates cervical cancer formation [6,7]. In the context
of cancer development, inflammation stimulated by virus infection is highly involved in the control of
various physiological functions, including increasing cell proliferation and survival, promoting angio-
genesis and metastasis, subverting adaptive immune responses, and altering responses to hormones and
chemotherapeutic agents [7].

The receptor for advanced glycation end products (AGER), a member of the immunoglobu-
lin superfamily of cell surface molecules, has been well known as a promoter of inflammation
[8]. AGER is low or negatively expressed in normal tissues, but increases quickly at sites of in-
flammation, largely on inflammatory and epithelial cells [9,10]. It drives the strength and main-
tenance of an inflammatory reaction during tumor promotion and bridges chronic inflammation
and cancer [11]. AGER engagement activates multiple intracellular signaling mechanisms that fuel
chronic inflammatory conditions leading to malignant transformation [9,10]. Indeed, AGER has been
widely reported being highly expressed in various types of cancer, including ovarian cancer [12],
breast cancer [13], gastric cancer [14], and endometrial cancer [15]. It is well documented that
AGER plays specific roles in the modulation of several cellular events, including proliferation [16],
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Figure 1. Immunocytochemical staining of AGER in cervical squamous cancer cells

(a) Negative control in MS751 cells (SP staining, ×400). (b) Positive staining of AGER protein in MS751 cells (SP staining, ×400).

(c) Negative control in C33A cells (SP staining, ×400). (d) Positive staining of AGER protein in C33A cells (SP staining, ×400).

(e) Negative control in Caski cells (SP staining, ×400). (f) Positive staining of AGER protein in Caski cells (SP staining, ×400). (g)

Negative control in SiHa cells (SP staining, ×400). (h) Positive staining of AGER protein in SiHa cells (SP staining, ×400).

cell motility [17], and angiogenesis [18,19]. Our previous study reported that AGER was progressively up-regulated
from cervicitis to cervical intraepithelial neoplasia and cancer [20]. Furthermore, high AGER protein levels in squa-
mous cervical cancer significantly correlated with tumor differentiation [20]. However, its precise mechanism in-
volved in the carcinogenesis of cervix remains unclear. In the present study, we investigated the effects of AGER on
the regulation of biological behavior, including cell proliferation, apoptosis, and migration in squamous cervical can-
cer. The aim of the present study was to establish the possible role of AGER during cervical cancer development and
progression.
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Materials and methods
Cell lines and cell culture
Human cervical cancer cell lines, SiHa, Caski, C33A, and MS751, were purchased from Shanghai Cell Biology Medical
Research Institute, Chinese Academy of Sciences. SiHa, C33A, and MS751 cells were maintained in Dulbecco’s mod-
ified Eagle’s medium (DMEM) (Invitrogen, NY, U.S.A.) containing 10% FBS, penicillin, and streptomycin at 37◦C in
a 5% CO2 incubator. Caski was cultured in RPMI-1640 (Invitrogen, NY, U.S.A.) containing 10% FBS, penicillin, and
streptomycin in 5% CO2 at 37◦C.

Immunocytochemical analysis
Immunocytochemical staining for AGER detection was evaluated with routine procedures using anti-AGER rabbit
antibody (Santa Cruz, U.S.A.), at 4◦C overnight and biotinylated goat anti-rabbit antibody for 30 min at 37◦C. The cells
were counterstained with Mayer Hematoxylin to enhance nuclear detection, dehydrated, and mounted in distrene
dibutylphthalate xylene. Immunostaining of the negative control was incubated with PBS in the absence of primary
antibody.

RNA extraction and quantitative real-time PCR
The mRNA levels were measured by quantitative real-time PCR (qRT-PCR). Total RNA was isolated from cervical
cancer cells using TRIzol reagent according to the manufacturer’s instructions (Invitrogen, NY, U.S.A.). Total RNA
(2 μg) was reverse transcribed into cDNA using random primers and M-MLV reverse transcriptase from Invitrogen
Life Technology (NY, U.S.A.). qRT-PCR was performed using Power SYBR Green PCR Mix from Life Technologies.
Primer pair specificity was determined by generation of a single peak for dissociation curve at the end of real-time
PCR cycling program. All experiments were performed in triplicates. GAPDH was used as the internal control. The
primers used in the study are as follows: AGER, forward primer, 5′-TCATTGGGGTCATCTTGT-3′; reverse primer:
5′-TACTACTCTCGCCTGCCT-3′; GAPDH, forward primer, 5′-AAGAAGGTGGTGAAGCAGG-3′; reverse primer:
5′-GTCAAAGGTGGAGGAGTGG-3′.

Western blot analysis
Samples were homogenized and lysed in Laemmli buffer with a cocktail of protease inhibitors. The total protein
concentrations were quantitated by the BCA protein assay (Thermo Scientific, IL, U.S.A.). Equal amounts of total
protein were resolved by SDS/PAGE, transferred on to a nitrocellulose membrane under constant voltage and blocked
with TBS with tween (TBST) containing 5% non-fat dried milk. Primary antibodies (AGER, 1:1000, Santa Cruz, CA,
U.S.A.; GAPDH, 1:2000, Santa Cruz, CA, U.S.A.; GFP, 1:1000, Cell Signaling, MA, U.S.A.) and secondary antibodies
were diluted in TBST and applied with a washing step in between. Proteins were detected using the Amersham ECL
Western blotting detection kit (GE Healthcare, NJ, U.S.A.).

Construction of lentiviruses
GFP-AGER cDNA was subcloned into pLenti-C-mGFP vector (Origene, MD, U.S.A.) in vitro. After confirma-
tion using gene sequencing, the pLenti-C-mGFP-AGER plasmid (LV-AGER) and matched pLenti-C-mGFP vector
(LV-vector) were co-transfected together with two packaging vectors psPAX2 and pMD2.G into 293T cells. Lentiviral
particles were harvested and filtered to infect cervical cancer cell lines.

Knockdown analysis using AGER siRNAs
Cells were seeded at 30–50% confluence in six-well plates. AGER was transiently silenced by using two different
siRNAs targetting AGER (AGER-siRNA-1, -2) (GenePharma, Shanghai, China). A silencer negative transcription
control (siRNA-NC) (GenePharma, Shanghai, China) was used in each experiment. Transfection was performed
using Lipofectamine RNAiMAX (Invitrogen, NY, U.S.A.) according to the manufacturer’s instructions. Forty-eight
hours after transfection, whole-cell lysates were prepared for further analysis by Western blot and in vitro CCK-8
assay as well as transwell migration assay as described below.

CCK-8 assay
CCK-8 assay was performed to determine the effect of AGER expression on cell proliferation in cervical cancer cells.
Cells were seeded in 96-well plates (5 × 104 cells/well). After transfection, CCK-8 solution (10 μl/well) was added
and incubated at 37◦C for 2 h in a humidified incubator. The absorbance value was measured at 450 nm wavelength
on a Biotek plate reader (Bio–Rad, U.S.A.). The experiments were repeated three times.
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Figure 2. The expression of AGER mRNA and protein in human cervical squamous cancer cells

(a) The mRNA levels of AGER in four cervical squamous cancer cells were detected by qRT-PCR. GAPDH transcript was used for

normalization. (b) The protein levels of AGER in cervical squamous cancer cells was detected by Western blot. GAPDH protein

level was used to validate equal sample loading. Data presented were mean +− S.D. from triplicate experiments (*P<0.05).

Flow cytometry
Cells were plated at 5 × 105 cells/dishes into 60-mm dishes. After reaching 70–80% confluence during exponential
growth, cells were harvested, washed with cold PBS, and resuspended with binding buffer at a concentration of 1 ×
106 cell/ml. Then the cells were double-stained with annexin V-FITC/propidium iodide or PE/7-AAD according to
the manufacturer’s protocol (BD Pharmingen, CA, U.S.A.). The percentage of apoptotic cells were detected by flow
cytometry after staining. The experiment was repeated three times.

Transwell migration assay
Cell migration assays were performed in 24-well transwells with 8-μm pore polycarbonate membranes (BD Bio-
sciences, San Diego, CA). Cells at a density of 15000 cells/well in serum-free medium were seeded in the upper insert
in triplicates after transfection. The lower chamber was filled with medium containing 10% FBS as a chemoattrac-
tant. After incubation in 5% CO2 at 37◦C for 24 h, the cells that did not penetrate the polycarbonate membrane at
the bottom of the chamber were removed with a cotton swab. Then the cells that had invaded through the membrane
to the lower surface were fixed with methanol for 20 min and stained with 1% Crystal Violet for 10 min. Five vision
fields were selected randomly under a microscope (Nikon, Japan) with 100× magnification, and the number of cells
that penetrated the membrane was counted.
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Figure 3. The effect of AGER on the proliferation of cervical cancer cells evaluated by CCK-8 assay

(a) AGER cDNA and match vector were transfected into SiHa and Caski cells via lentivirus infection. Protein levels of AGER in

AGER cDNA transfected, control vector transfected and NC cells by Western blot. GAPDH protein level was used to validate equal

sample loading. (b) Cell proliferation was analyzed by CCK-8 assay. (c) Confirmation of AGER silencing in SiHa cells by Western

blot. GAPDH protein level was used to validate equal sample loading. (d) Cell proliferation was analyzed by CCK-8 assay.

Statistical analysis
Two-tailed Student’s t test was used to compare the means of two groups. One-way ANOVA with Tukey–Kramer post
hoc test was used for analyzing data when means from more than two groups were compared. P<0.05 was considered
to be statistically significant. All the statistical analysis was performed with SPSS 17.0 statistical software.

Results
The localization of AGER protein in cervical squamous cancer cells
Initially, the localization of AGER protein in four cervical squamous cancer cells (SiHa, C33A, Caski, and MS751)
was determined using immunocytochemical assay. As shown in Figure 1, AGER protein localized in the nucleus,
cytoplasm and/or cytomembrane of the indicated cell lines, which was consistent with our previous report in cervical
tissues [20]. SiHa, MS751 and C33A showed moderate or intense positive staining of AGER in cytomembrane, while
there was no positive staining of AGER detected in cytomembrane of Caski cells.

The mRNA and protein expression of AGER in cervical squamous cancer
cell lines
To determine whether AGER was overexpressed in cervical squamous cancer cell lines, the mRNA and protein levels
of AGER were determined in MS751, C33A, SiHa, and Caski cells by qRT-PCR and Western blot, respectively. All
these four cervical squamous cancer cell lines expressed certain mRNA levels as well as protein levels in AGER (Figure
2). The mRNA level of AGER was lowest in MS751 cells and highest in SiHa cells (P<0.05). Consistent with their
mRNA levels, the expression of AGER protein was lowest in MS751 cells and highest in SiHa cells (P<0.05) (Figure
2).

Effect of AGER on proliferation of cervical squamous cancer cells
To understand whether AGER could affect biologic behavior in cervical squamous cancer cells, SiHa and Caski cell
lines were first stably transfected with AGER cDNA via lentiviral infection. Ectopic expression of AGER was con-
firmed by Western blot assay. When compared with LV-vector cells (transfected with control vector) as well as nega-
tive control (NC) cells, LV-AGER cells (transfected with AGER cDNA) expressed a higher level of AGER (Figure 3a).
Proliferation was then determined by CCK-8, as shown in Figure 3b (repeated three times), overexpression of AGER
significantly enhanced the proliferation of SiHa and Caski cells compared with the control group (Figure 3b).
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Figure 4. The effect of AGER on the apoptosis of cervical cancer cells

(a) AGER cDNA and match vector were transfected into SiHa and Caski cells via lentivirus infection. Apoptosis percentage was

analyzed by Annexin V-APC/7-AAD staining. (b) SiHa cells were transfected with AGER siRNA. Apoptosis percentage was analyzed

by Annexin V-FITC/PI staining. Each bar represents mean +− S.D. of triplicate experiments.

To confirm these results, we further analyzed the role of AGER by blocking its expression. AGER was silenced by
two siRNAs (AGER-siRNA-1 and AGER-siRNA-2) in SiHa cell lines, in which the mRNA and protein level of AGER
was the highest. Expectedly, as shown in Figure 3, transfection of cells with AGER siRNAs significantly suppressed
AGER expression, which was confirmed by Western blot (Figure 3c). Silencing AGER significantly inhibited the cell
proliferation in SiHa cells determined by CCK-8 assay (Figure 3d).

Effect of AGER on apoptosis of cervical squamous cancer cells
Effect of AGER on apoptosis of cervical squamous cancer cells was further determined by flow cytometry assay.
Up-regulating the expression of AGER significantly reduced the apoptosis percentage in SiHa cells as well as Caski
cells (Figure 4a). Conversely, apoptosis percentage in SiHa/AGER-siRNA-1 cells and SiHa/AGER-siRNA-2 cells was
significantly increased compared with SiHa/siRNA-NC cells (Figure 4b).

Effect of AGER on migration of cervical squamous cancer cells
To explore the effect of AGER on the migration in cervical squamous cancer cells, transwell migration assay was
performed. As shown in Figure 5, overexpression of AGER could significantly increase the number of SiHa cells that
penetrated the membrane relative to control vector group (Figure 5a,b). Additionally, knockdown of AGER markedly
reduced the number of SiHa cells that penetrated the membrane as compared with the control siRNA group (Figure
5c,d).
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Figure 5. The effect of AGER on cervical cancer cells migration

(a,b) AGER cDNA and match vector were transfected into SiHa cells via lentivirus infection. Cell migration was evaluated by transwell

migration assay (×200 magnification). (c,d) SiHa cells were transfected with AGER siRNA. Cell migration was evaluated by transwell

migration assay (×200 magnification). Data presented were mean +− S.D. from triplicate experiments (*P<0.05).

Discussion
AGER is a multifunctional receptor that binds a broad repertoire of ligands, including AGEs, β-sheet fibrils, S100
protein family (S100B, S100P, S100A4, S100A6, S100A8/9, S100A11–13), high mobility group box-1 (HMGB1), and
prions [10]. It plays decisive roles in diverse processes including inflammation and cancer [9,10]. AGER has been
widely reported to be overexpressed in ovarian cancer [12], breast cancer [13], gastric cancer [14], colorectal cancer
[21], and endometrial cancer [15]. With regard to cervical cancer, Xu et al. [22] reported that AGER 82G>S poly-
morphisms were associated with significantly elevated risk of cervical cancer. Along similar lines, our previous study
documented that AGER protein expression was gradually increased from chronic cervicitis to cervical intraepithe-
lial neoplasia and to squamous cervical cancer, and higher levels of AGER were related to histological differentiation
[20]. In this investigation, we reported, for the first time, that AGER was positively expressed in a panel of squamous
cervical cancer cells. Collectively, these data suggested that AGER may be implicated in the development and pro-
gression of cervical squamous cancer. To further elucidate its role in the progression of cervical squamous cancer, we
silenced the expression of AGER by RNAi approach and overexpressed AGER via lentivirus infection. Our results
showed that up-regulation of AGER in SiHa and Caski cells significantly promoted cancer cell growth, conversely,
down-regulation of AGER expression in SiHa cells inhibited cell proliferation. These data are consistent with previous
studies, which suggest AGER serve as an oncogenic gene in a wide spectrum of cancers [20]. AGER-deficient mice
presented a decreased tendency for breast tumor growth [8] and AGER gene deletion inhibited the development of
pancreatic intraepithelial neoplasia and progression to pancreatic ductal adenocarcinoma in a murine model [23].
Similar results were reported in endometrial cancer [15], colorectal cancer [18], and prostate cancer [24].

Mechanistically, Kwak et al. [25] reported that AGER knockout mice displayed striking impairment in breast tumor
cell growth along with decreased mitogen-activated protein kinase signaling, tumor angiogenesis, and inflammatory
cell recruitment. Elangovan et al. [24] documented that silencing AGER expression inhibited prostate tumor growth
by activation of caspase-8 and caspase-3 death signaling and Radia et al. [16] reported that the blockage of AGER
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inhibited the proliferation of various subtypes of breast cancer via arresting cells in the G1 phase and inhibiting DNA
synthesis. Our presented data indicated that AGER inhibits apoptosis in cervical squamous cancer. Apoptosis is well
known as a protective mechanism against cancer progression by removing mutated, infected, or damaged cells. The
development and progression of cancer are related to abnormal proliferation and apoptosis [26]. Thus, AGER may
promote cervical squamous cancer growth via suppressing apoptosis.

It has also been well documented that AGER regulates cancer cell motility and drives tumor metastasis through
its ligand [25]. Interaction of S100A4-AGER mediates S100A4-induced cell motility in colorectal cancer [17] and
thyroid cancer [27]. AGER binding to S100A8/A9 promoted lung metastasis through actin polymerization and
epithelial–mesenchymal transition in breast cancer [28]. AGER bound to S100A7 mediated its ability to activate
extracellular signal regulated kinase, NF-κB, and cell migration [8]. Suppressing AGER reduced cell migration via
the regulation of extracellular signal regulated kinase, and downstream pathways in human oral cancer cells [29]. In
vivo, AGER neutralizing antibody significantly inhibited metastasis development in an established mouse model of
lung metastasis [8] and silencing AGER using shRNA markedly reduced metastasis to the lung and liver in multiple
xenograft and syngeneic breast cancer mouse models [25]. Nevertheless, the impact of AGER on migration in cervical
cancer has not been elucidated so far. In the present study, overexpression of AGER in SiHa cells increased transwell
migration. AGER knockdown with multiple siRNAs in SiHa cells led to decreased transwell migration. Thus, AGER
may be a newly recognized factor regulating cancer cell migration and metastasis in cervical cancer. The underlying
mechanism responsible for the effects of AGER on the motility of cervical cancer cells remains to be further clarified.

HPVs are considered the main etiological agents of cervical cancer, especially high-risk genotypes. Previously,
Xu et al. [22] reported that AGER 82GS and 82SS genotype carriers in the HPV infection subgroup, but not in the
HPV negative subgroup, had increased risk of cervical cancer compared with 82GG genotype. Their study indicated
that AGER 82G>S polymorphisms, interacting with HPV infection, played an important role in the carcinogenesis of
cervical cancer [22]. Additionally, previous bioinformatics analysis has indicated AGER contributed to prostate cancer
cell proliferation by promoting Rb phosphorylation and degradation [19]. These results suggested AGER may be
involved in HPV-induced cervical cancer. However, the involvement of synergistic effects of AGER and high-risk type
HPV on the cervical carcinogenesis or progression need further study. Our future study will focus on the relationship
between HPV and AGER in cervical cancer as well as the mechanism of AGER involved in HPV-caused cervical
cancer.

Conclusion
Overexpression of AGER promotes and silencing its expression suppresses the proliferation and migration of cervical
cancer cells. Our current data provide novel evidence for a potential role of AGER in bridging HPV-induced inflam-
mation and cervical cancer. However, the molecular mechanism responsible for the role of AGER in such malignancy
and the involvement of synergistic effects of AGER and HPV on the squamous cervical carcinogenesis or progression
needs further investigation.
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