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Main text
The immune system is a pervasive network of molecular media-
tors, cells, tissues, and organs with central relevance in human 
health. Importantly, immunotherapy designed to modulate the 
activity of CD8 or CD4 T cell lymphocytes is a promising and 
increasingly relevant pillar for cancer treatment.1 T cells recog-
nize epitopes in the context of human leukocyte antigen (HLA) 
molecules that are highly diverse and have a broad but fine-
tuned capacity of binding non-self-peptides to contribute for 
appropriate immune responses. The search for the motifs 
responsible for the binding of peptides to HLA molecules 
started several decades ago but the discovered complexity of 
HLA-peptide interactions prompted continuous development, 
namely using in silico approaches and artificial intelligence. 
Machine learning (ML) is a fundamental branch of artificial 
intelligence, which can be defined as a set of models and respec-
tive induction algorithms, able to learn complex relationships or 
patterns from empirical data and capable of making accurate 
decisions. Thus, ML intends to train models from large amounts 
of data, through specific algorithms that give the machine the 
ability to learn how to perform a specific task from data without 
being explicitly programmed. This approach can be used to ana-
lyse, interpret and predict the outcomes for unseen data, achiev-
ing results that would not be possible in many cases through 
conventional statistics. ML has several applications in medicine, 
including the field of immunoinformatics, which focuses on the 
in silico analysis and modelling of immunological data and 
problems. Immunoinformatics applications are growing and, 

consequently, are becoming more important to immunological 
research.2 Experimental HLA-binding assays require synthesis 
and testing of overlapping peptides, including the full-length 
sequences of interest, which on a large-scale is an expensive and 
time-consuming laboratorial task. The primary objective of 
immunoinformatics research is to design efficient algorithms 
for the mapping of potential B cell and T cell epitopes. These 
tools can determine the sequence regions with potential binding 
sites, which in turn accelerates the development of novel 
immunotherapies.3

These methods were developed using models such as artifi-
cial neural networks (ANNs).4 ANNs are one of the main ML 
models, providing a computational approach mimicking the 
information processing of the brain. These models can be used 
to solve problems of classification or regression.5 Their archi-
tecture is composed of a set of ‘artificial neurons’ distributed in 
layers: the input layer receiving the initial data, the hidden or 
intermediate layer(s) that are responsible for extracting the pat-
terns associated with the data, and the output layer, which pre-
sents the final result of the process. The learning capability is 
one of the most important characteristics of neural networks. 
Thus, from a sample, the neural network learns the relationship 
between the inputs and outputs and can produce solutions for 
any new example. The learning process consists of a gradient-
descent based algorithm that iteratively changes the synaptic 
weights associated with the neurons of the network seeking to 
minimize a given cost function, typically based on an error 
metric (loss function) computed over the training examples.5
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Currently, several ML-based epitope prediction tools are 
available. The Immune Epitope Database and Analysis 
Resource (IEDB) is a widely used resource hosting a database 
of experimentally validated epitopes and tools for de novo pre-
diction. NetMHCpan6 and NetMHCIIpan7 are two tools that 
generate quantitative predictions of peptide binding affinity to 
class I and class II HLAs, respectively. NetMHCpan and 
NetMHCIIpan have high accuracy in available datasets but are 
closed source software with limited licence user agreements. 
MHCflurry8 is an ensemble of HLA class I allele-specific pre-
dictors, whose accuracy, implementation, and open-source 
licencing makes it very attractive for large-scale epitope predic-
tion studies. Another ML-based class I HLA prediction 
method is MHCnuggets9, which uses gated-recurrent ANNs 
to process sequences directly and handle peptides of any length 
without artificial lengthening or shortening. Similarly, needed 
improvements in class II epitope prediction tools are in devel-
opment with tools such as MixMHC2pred.10 Despite of its 
immense potential, successful ML-based approaches are highly 
dependent on the datasets available for training and testing.11 
The datasets of validated T cell epitopes found in databases are 
almost entirely formed of epitopes from bacteria or viruses and 
were not obtained by standardized experimental methodolo-
gies. Improvements in the available epitope datasets will likely 
boost the performance of ML-based predictors and facilitate 
tool benchmarking. Recent developments in HLA peptidom-
ics12 for class I and II HLA molecules have been relevant for 
this goal, opening doors to evaluate the potential of deep learn-
ing tools for T cell epitope predictions. However, neoepitopes 
are rare and challenging to discover. Maximizing the probabil-
ity of identifying clinically relevant neoepitopes requires the 
development of integrated frameworks to generate multiple 
method epitope prediction and advanced neoepitope quality 
metrics. Recent webservers such as HABIT (http://habit.evo-
biomed.com/) address this issue by automating HLA-binding 
prediction and the interpretation of the impact of amino acid 

variants in peptide-HLA binding. Future developments should 
include user-friendly webtools to allow automated treatment 
of next-generation sequencing (NGS) data, epitope prediction 
and neoepitope propensity quality analysis with interactive 
visualization (Figure 1). Overall, the continued development in 
the field of ML-based epitope prediction is of great value for 
the rational design of T cell-based immunotherapies to cancer 
and other relevant diseases.
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figure 1. Workflow for automated and integrated bioinformatics frameworks going from next-generation sequencing data inputs to neoepitope prediction, 

quality analysis and visualization.
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