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Abstract Inhibition plays a powerful role in regulating network excitation and plasticity;

however, the activity of defined interneuron types during spatial exploration remain poorly

understood. Using two-photon calcium imaging, we recorded hippocampal CA1 somatostatin- and

parvalbumin-expressing interneurons as mice performed a goal-directed spatial navigation task in

new visual virtual reality (VR) contexts. Activity in both interneuron classes was strongly suppressed

but recovered as animals learned to adapt the previously learned task to the new spatial context.

Surprisingly, although there was a range of activity suppression across the population, individual

somatostatin-expressing interneurons showed consistent levels of activity modulation across

exposure to multiple novel environments, suggesting context-independent, stable network roles

during spatial exploration. This work reveals population-level temporally dynamic interneuron

activity in new environments, within which each interneuron shows stable and consistent activity

modulation.

DOI: https://doi.org/10.7554/eLife.47611.001

Introduction
Excitation is balanced by inhibition in neuronal networks (Andersen et al., 1963). In cortical circuits,

feedforward inhibition is rapidly and robustly recruited by excitatory inputs, while pyramidal neuron

firing elicits feedback inhibition to further dampen excitability (Alle et al., 2001; Lamsa et al., 2005;

Pouille and Scanziani, 2001; Pouille and Scanziani, 2004). Furthermore, inhibition strongly controls

synaptic plasticity, a putative cellular mechanism of learning (Bliss and Lomo, 1973; Whitlock et al.,

2006). Intact inhibition limits potentiation to relatively low levels while pharmacologically blocking

inhibition facilitates both the induction and magnitude of potentiation (Artola and Singer, 1987;

Bear et al., 1992; Steward et al., 1990; Wigström and Gustafsson, 1983). Thus, inhibition sup-

pression is a potential mechanism for enhancing learning by favoring synaptic plasticity in excitatory

neurons.

Notably, inhibition can be strongly modulated in vivo in freely moving rodents. CA1 fast-spiking

putative interneurons are suppressed when rats explore a novel spatial environment (Frank et al.,

2004; Nitz and McNaughton, 2004; Wilson and McNaughton, 1993). Learning new food locations

in a familiar environment dynamically modulated fast-spiking interneuron activity and altered the

associations of these interneurons with pyramidal cell ensembles (Dupret et al., 2013). Hippocampal

CA3 parvalbumin-expressing interneurons (PV-ints) have decreased network connectivity during the

initial learning of the Morris Water Maze, but this connectivity increases with task performance, a

modulation that is is necessary for learning (Donato et al., 2013; Ruediger et al., 2011). Further-

more, numerous studies have shown that suppression of somatostatin- and/or parvalbumin-

expressing interneurons (SOM-ints and PV-ints) is necessary for certain types of cortical and amygda-

lar learning. This suppression is often triggered by disinhibitory inputs from interneurons that prefer-

entially target other interneurons for inhibition, including vasoactive intestinal peptide-expressing

interneurons (VIP-ints) (Gentet et al., 2012; Karnani et al., 2016; Lee et al., 2013; Letzkus et al.,
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2011; Makino and Komiyama, 2015; Mardinly et al., 2016; Pi et al., 2013; Turi et al., 2019;

Wolff et al., 2014). Finally, the activity or plasticity of numerous other interneuron cell-types has

been implicated in controlling animal behaviors (Basu et al., 2016; Hartzell et al., 2018). Together,

this work demonstrates the dynamic nature of inhibition during spatial exploration and learning, and

identifies the importance of inhibition suppression in certain types of learning.

Our understanding of in vivo inhibitory activity in the hippocampus is primarily driven by record-

ings of soma-targeting fast-spiking interneurons (likely PV-ints) since their distinctive firing character-

istics make them relatively identifiable in extracellular electrophysiology recordings (Frank et al.,

2004; Klausberger et al., 2004; Nitz and McNaughton, 2004; Wilson and McNaughton, 1993).

These studies found transient suppression in firing of fast-spiking units during exploration of novel

environments, consistent with a model in which decreased inhibition is permissive for excitatory plas-

ticity and downstream learning. Interestingly, studies using calcium imaging in head-fixed animals

in visual virtual reality (VR) contexts have found conflicting results with freely moving animals, with

either no change in PV-int calcium activity in new virtual environments or a decrease in somatic cal-

cium activity coupled with increased putative axonal calcium fluorescence, both suggesting no

decrease in perisomatic inhibition (Hainmueller and Bartos, 2018; Sheffield et al., 2017).

SOM-ints, although far less understood, are of interest because they selectively innervate the

dendrites of pyramidal neurons and can directly control dendritic excitability. Dendritic spikes, typi-

cally characterized by calcium entry through Ca2+ channels or NMDA receptors, generate burst firing

of neurons and can mediate long-term plasticity, place field formation, and learning (Bittner et al.,

2015; Bittner et al., 2017; Cichon and Gan, 2015; Golding et al., 2002; Larkum et al., 1999). For-

mation of place fields is associated with dendritic spikes that occur during transient periods of SOM-

int activity suppression in novel environments (Sheffield et al., 2017). In contrast, SOM-int activation

rather than suppression is required for fear learning, both in CA1 or in the dentate gyrus (Lovett-

Barron et al., 2014; Stefanelli et al., 2016).

Interneuron activity may be dynamically modulated in new environments or during learning,

but the stability of these activity dynamics in individual interneurons across time remain unknown.

This is partially a technical issue as extracellular electrode recordings are typically stable for a few

hours and have limited ability to identify interneurons, making the longitudinal recording of single

interneuron activity difficult. Many inhibitory interneurons are strongly influenced by pyramidal neu-

rons, driven in a feedforward and/or feedback manner. Thus, if activated pyramidal neuron ensem-

bles are stochastic, as is the case for place cells in different environments, then stochastic ensembles

of strongly activated interneurons should result. An alternate possibility is that individual interneur-

ons play consistent and reproducible roles in a context-independent manner, reflecting an underly-

ing structure that determines how interneurons regulate the pyramidal network. While inhibitory

neurons are composed of multiple cell-types playing distinct network roles (Klausberger and Somo-

gyi, 2008; Pelkey et al., 2017; Wamsley and Fishell, 2017), little is understood about the func-

tional specialization of interneurons within a defined cell-type. Previous work from our lab and

others have found functional diversity within the same putative interneuronal cell-types, with individ-

ual neurons being consistently activated or inhibited by locomotion (Arriaga and Han, 2017; Gar-

cia-Junco-Clemente et al., 2019). Here we investigated whether learning to adapt a previously

learned task to a new spatial context could similarly reveal the ‘set’ functional properties of specific

interneurons.

We examined the activity dynamics of PV- and SOM-ints using calcium imaging over multiple

days of exposure to initially novel environments as animals performed a goal-directed spatial naviga-

tion task. We found that PV- and SOM-int activity was strongly suppressed specifically during

the initial exploration of new virtual worlds, with activity returning to baseline levels as animals

learned to adapt the task to the new context. In contrast, for animals where the recovery of task per-

formance is blocked (static visual scene with no task), SOM-int activity remained persistently sup-

pressed for days, suggesting that the recovery of interneuron activity is tied to recovery of task

performance, rather than to either habituation to the context switch or familiarity with the new visual

environment. Surprisingly, suppressed interneuron activity triggered by context changes showed a

defined population structure across both new environments and the ‘No Task’ condition in SOM-

ints. Each interneuron exhibited consistent activity suppression, with high correlation of suppression

across multiple novel contexts as well as the ‘No Task’ condition. These data reveal interneuron
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activity suppression during spatial exploration in new contexts, as well as a functional inhibitory net-

work structure that may route the encoding of information within the pyramidal network.

Results

Virtual reality behavior
We used two-photon calcium imaging to stably record from neurons over weeks to study the activity

dynamics of the same cells in a goal-directed, spatial navigation task across different virtual environ-

ments. We initially trained water-scheduled mice to run to alternating ends of a virtual visual track to

receive water rewards, using their movement on a floating spherical treadmill (styrofoam ball) to con-

trol their movement in VR (Arriaga and Han, 2017; Dombeck et al., 2010; Harvey et al., 2009).

Note that mice need to physically rotate and run on the ball in order to turn and maneuvre through

VR, making this an internally consistent and continuous virtual world that contrasts with VR tasks

requiring unidirectional movement on a track with either ‘teleportation’ back to the starting point

after each trial (Hainmueller and Bartos, 2018; Sato et al., 2017; Sheffield et al., 2017) or an infi-

nitely repeating corridor (Gauthier and Tank, 2018).

We used this task to study interneuronal activity dynamics as animals learned to adapt this previ-

ously learned behavior to new virtual contexts. We ran animals for 7 min in the well-trained familiar

environment (Fam), immediately switched mice to a new VR environment for 14 min (New), and then

switched them back for another 7-min session in the original familiar environment (Fam0) (schematic,

Figure 1A). The task was identical in familiar and New epochs but the visual environment was differ-

ent, with changes to the walls, track, and distal landmarks. We repeated this protocol over 5 days,

with the same New environment each time.

We characterized behavioral performance in novel contexts using a cohort of mice, a subset of

which was used for SOM- and PV-int imaging (the remainder used for experiments not discussed

here). One quantification of task performance was the number of rewards per minute (rew/min) in

Fam, New, and Fam’ epochs. Upon initial exposure to the New virtual world, animal behavior was

dramatically altered. Performance in New was significantly worse on Days 1, 2, and 4 compared to

FamAve (the average performance in the flanking Fam and Fam0 epochs) (Figure 1C, performance in

New normalized to FamAve). This impairment was largest on Day 1 and gradually decreased over the

next four days of exposure to the same ‘New’ world, indicating that animals learned to adapt previ-

ously learned behavior to the new context.

The recovery of task performance over days in New could be due to context-specific adaptation

of the task (which is likely to be hippocampal-dependent) or the result of a more general context-

independent strategy. One example of the latter is the identification of a virtual corridor and naviga-

tion to the end of this corridor, without regard for the specific visual context (either Fam or New),

because rewards are given at the end zones of the track. This strategy is intuitive in the real world;

once animals are trained to run to alternating ends of a track, they can perform the task in new

tracks immediately in a non-hippocampal-dependent manner (Kim and Frank, 2009). Similarly in a

task where mice run forward on a treadmill (constrained to 1D movement), move down a VR track

for reward and then are teleported back to the beginning for each trial, task performance recovers

within a few minutes of exposure to a new track (Sheffield et al., 2017). In marked contrast, recov-

ery of behavioral performance occurs over days in our task.

Furthermore, if mice rapidly identify virtual corridors, we would expect to see early indications of

track location awareness in New. In familiar environments, animals typically slow down before enter-

ing the end zone (marked by a period of deceleration beginning several seconds prior the end zone)

in anticipation of receiving reward and consuming water (Gauthier and Tank, 2018). However, in

new environments, animals initially did not decelerate as they approached the end zone, but over 5

days of repeated exposure to New, they decelerated more and more, approaching the levels of

deceleration seen in FamAve (Figure 1D, Day 1, p<0.001, t = 5.1; Day 2, 3, and 4, p<0.05, Day 2

t = 3.44, Day 3 t = 3.48, Day 4 t = 2.8). Similarly, animals in familiar environments generally begin

licking within a 1 s window centered on reward delivery (which we define as ‘correct’ licks); in com-

parison, mice lick with higher frequency outside of this window in New (Figure 1—figure supple-

ment 1A, Day 1, p<0.01, t = �4.82; Day 2, p<0.05, t = �3.13), with their behavior improving over

repeated training. We characterized other behavioral metrics that show a similar pattern of initial
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impairment and recovery (Figure 1—figure supplement 1B,C,D). Other measures of behavior did

not change, such as percent of time stopped or average speed (Figure 1—figure supplement 1E,

F).

If mice employ a strategy of using a virtual corridor as a cue for finding the reward zone, behav-

ioral recovery should be accelerated due to improved cue recognition when exposed to another

new environment. Alternatively, if behavioral recovery is context-dependent rather than cued, the

Figure 1. Behavior in new visual virtual reality (VR) environments. (A) Head-fixed mice run to alternating ends of the VR track by controlling

the movement of a floating spherical treadmill (Styrofoam ball). Mice run forward on the ball to traverse the track and rotate the ball to turn around in

VR. Animals spend 7 min in a familiar environment (Fam), which is instantaneously replaced with a new environment (New) for 14 min, before returning

to the same familiar environment (Fam’). The task is the same but the visual scene differs in the two environments. (B) Example mouse position in VR

shows running to alternating ends of track with water rewards (green) in Fam, with worse performance in New. Lick bouts (black bars) are tracked with

an electronic sensor on the lick tube. Ball speed shows similar magnitude in New and Fam environments. (C) Behavioral performance is initially

impaired in New (rewards/min in New normalized to FamAve, the average performance in flanking Fam and Fam0 epochs) but improves over time. (D)

Mice slow down prior to reward in the familiar environments, measured as deceleration in the 3 s window before reward. Deceleration before reward is

initially lower in New but increases over days, suggesting anticipation of reward sites (N = 14 mice, *p<0.05, **p<0.01, ***p<0.001 by one-sample t-test

with Bonferroni-Holm Correction (C) or paired sample t-test (D)).

DOI: https://doi.org/10.7554/eLife.47611.002

The following source data and figure supplements are available for figure 1:

Source data 1. Statistical tests and results for Figure 1.

DOI: https://doi.org/10.7554/eLife.47611.005

Figure supplement 1. Behavior metrics in New world.

DOI: https://doi.org/10.7554/eLife.47611.003

Figure supplement 2. No track location preference in New.

DOI: https://doi.org/10.7554/eLife.47611.004
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time course of recovery should be similar for a second new environment. We put a subset of mice

through a second remapping protocol in which they were exposed to another distinct and novel

visual virtual environment, labeled ‘New 2’, with the original novel environment now labeled ‘New

1’. We found that the time course of behavioral recovery was the same for both new environments

(Figure 1—figure supplement 1G), suggesting context-dependence. We also confirmed there was

no significant difference in behavioral performance (using non-normalized rew/min) between the

flanking Fam and Fam0 epochs, indicating that time-dependent effects such as satiation or fatigue

were not responsible for task impairment in the intervening New epoch (Figure 1—figure supple-

ment 1H).

While the exact nature of the learning that takes place in new environments is not clear, these

data are consistent with mice adapting this previously learned task to new environments by learning

to navigate the context-specific sequence of visual cues that lead to alternating end zones in the

new world. Furthermore, our data do not support the hypothesis that mice immediately recognize

the significance of a virtual ‘corridor’ and use this strategy to navigate to track ends. However, we

note that the recovery of behavioral performance in new environments is not an unambiguous mea-

sure of learning, as performance is affected by other factors such as surprise at the context switch

and running speed.

One such confound that could inadvertently alter mouse behavior is the brightness of the VR

worlds, with bright areas potentially inhibiting movement. We designed the VR environments to be

as dim as possible (both through minimal projector brightness and an additional dimming film

applied to the rear projection screen) with approximately equivalent brightness across worlds. Even

the brightest VR features (which constitute a small fraction of the entire visual scene) were 3 cd/

m2, which is within the mesoscopic range for visual function at which mice are frequently behaviorally

active (Denman et al., 2018; Schmucker et al., 2005). Furthermore, we looked for signs of localized

inhibition of locomotion by calculating the occupancy time in spatial bins of the track for the Fam,

New, and Fam0 epochs. Mice spend most time in the end zones (where they stop to lick their water

rewards) with no obvious indication of preferential areas of stopped or slowed locomotion (Fig-

ure 1—figure supplement 2), suggesting that VR brightness was not a significant factor in mouse

behavior in our experiments.

Characterization of neuronal calcium activity in novel virtual
environments
To investigate in vivo interneuronal activity dynamics during exposure to novel environments, we

used two-photon imaging of neuronal calcium activity during a spatial navigation task in visual virtual

reality (Arriaga and Han, 2017). We used an electric tunable lens to image a 3-D volume of mouse

hippocampal dorsal CA1 by capturing sequential imaging frames along the z-axis moving from stra-

tum pyramidale through oriens, over four to six planes at a frame rate of 5.2–7.8 Hz per plane. Cre-

dependent AAV1-Syn-Flex-GCaMP6f was injected into Cre+ transgenic mice to drive a genetically

encoded calcium sensor specifically in SOM+ or PV+ hippocampal interneurons. Calcium activity can

be taken as a proxy for neuronal activity as multiple studies using simultaneous in vivo imaging and

cell-attached patch electrophysiology on the same neurons have found strong correlation between

spiking and calcium signals (Chen et al., 2013; Dana et al., 2016). We, and others, have measured

the activity dynamics and coding properties of hippocampal neurons in visual virtual environments

and found significant similarity between VR and real world behavior in several aspects of function

such as place coding, direction-specificity, place cell remapping in novel environments, and interneu-

ron activity correlation and anti-correlation with locomotion (Arriaga and Han, 2017; Gauthier and

Tank, 2018; Hainmueller and Bartos, 2018; Harvey et al., 2009; Sheffield et al., 2017).

Interneuron activity suppression in a New environment
To investigate the functional activity dynamics of SOM-ints during spatial exploration, we recorded

calcium activity from the same cells while animals performed the VR track-running task in Fam, New,

and Fam0 over 5 days. SOM-int neuronal activity, measured as DF/F, was strongly suppressed upon

transition into New (DF/F of 6 sample cells from one imaging plane of one mouse, Figure 2A;

Video 1 shows activity suppression in another set of SOM-ints). Individual neurons were differentially

suppressed with some being relatively unaffected. On returning to Familiar after New in Fam0,
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calcium activity rapidly recovered, as did behavioral performance (example cells and behavior from

an additional three animals in Figure 2—figure supplement 1). Similar results can be seen in all cells

from this animal (Figure 2B). We quantified the neuronal activity of all cells in this example animal as

mean DF/F and compared this activity across Fam, New, and Fam0. Activity suppression is calculated

as the percent difference of mean DF/F for each cell between New and FamAve using the

formula Percent Change ¼ DF=FNew�DF=FFam

DF=FFam
X 100. The histogram of percent differences for each cell in

the sample mouse shows a distribution of cells that are suppressed in New (Figure 2C). The calcium

activity from another sample mouse over 5 days of exposure to New follows a similar pattern of

activity dynamics (Figure 2—figure supplement 2). Across all animals, suppression histograms of

SOM activity over the 5-day protocol show a large initial suppression in New that diminishes over

days of exposure (Figure 2D).

We also examined the spatial correlates of SOM-int activity in Fam, New, and Fam0 during Day 1

exposure. We typically observed broad firing fields in Fam and Fam0, while activity in New was

Figure 2. SOM+ interneuron (SOM-int) activity suppression in new environments. (A–C) Example data from individual mouse (SOM 1). (A) Top, position

in VR track of example mouse. Middle, DF/F of sample SOM-ints showing activity suppression in New. (B) Mean DF/F of all cells from example mouse

on Day 1 of New exposure in each environment (gray), mean DF/F of example cells from (A) in corresponding colors, with mean of all cells (black). (C)

Histogram of percent change in DF/F of SOM-ints shown in panel (B) in New relative to FamAve on Day 1. (D) Activity suppression in New decreases

with exposure over days (cells from all mice). (E) SOM-int activity is initially suppressed but recovers over days of exposure to New. (F) Performance in

New world increases over days. (G) Mice increasingly slow down prior to reward in New. (N = 10, n = 209 cells; n.s. p>0.05, *p<0.05, **p<0.01,

***p<0.001 by paired sample t-test or one-sample t-test with Bonferroni-Holm corrections).

DOI: https://doi.org/10.7554/eLife.47611.006

The following source data and figure supplements are available for figure 2:

Source data 1. Statistical tests and results for Figure 2.

DOI: https://doi.org/10.7554/eLife.47611.011

Figure supplement 1. SOM-int activity suppression in multiple example animals.

DOI: https://doi.org/10.7554/eLife.47611.007

Figure supplement 2. SOM-int activity suppression over 5 days of remapping into New.

DOI: https://doi.org/10.7554/eLife.47611.008

Figure supplement 3. Broad SOM-int firing fields in Fam and New on Day 1.

DOI: https://doi.org/10.7554/eLife.47611.009

Figure supplement 4. Suppression of SOM-int neurite activity.

DOI: https://doi.org/10.7554/eLife.47611.010
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similarly broad, with the magnitude of activity

being reduced in comparison to familiar environ-

ments (Figure 2—figure supplement 3). Occa-

sional SOM-ints showed firing fields restricted to

end zones, representing interneurons activated

during immobility (Arriaga and Han, 2017).

To quantify this suppression over time, we cal-

culated a percent difference for each mouse by

averaging all cells per mouse and then calculated

a grand mean for all mice on each day

(Figure 2E). Indeed, SOM-int activity exhibited

significant suppression in New that gradually

decreased over days (Day 1, p<0.001, t = �8.70;

Day 2, p<0.05, t = �4.06). This decrease in sup-

pression paralleled the increase in behavioral per-

formance in New, as normalized to the average performance in Fam and Fam0 (Figure 2F,

performance worse in New on Days 1 and 4, p<0.05, Day 1 t = �4.34, Day 4 t = �5.57). (Note that

metrics in Figure 2 are from ten SOM-cre mice, a partially overlapping set of the larger behavioral

cohort of 14 mice in Figure 1). We also found decreased deceleration before rewards in

New, which recovered with continued exposure to a New environment (Figure 2G, Day 1, p<0.05,

t = 3.73). While we used other behaviors such as licking to characterize behavior in Figure 1—figure

supplement 1, licking behavior was highly variable across animals, leading us to focus on task per-

formance and deceleration before rewards for characterizing behavior in New. These data show, on

average, strong suppression of SOM-int upon exposure to a New environment, with recovery of

activity over repeated exposures. At the same time, behavioral performance was initially impaired

and then increased over time.

Next, we investigated whether SOM-int somatic activity dynamics correlated with activity from

nearby SOM-int neurites (axons and dendrites). A previous report found decreased PV-int somatic

calcium levels with simultaneous elevation in neuritic calcium, raising the possibility of differential

regulation of soma and axon activity (Sheffield et al., 2017). By analyzing regions of interest in the

statum oriens that included neurites and excluded somata, we found that SOM-int neurite activity

was similarly suppressed (Figure 2—figure supplement 4).

Our data show strong initial inhibition of SOM-int activity in new virtual environments, yet, at the

same time, behavior is altered in new environments. Could decreased interneuronal activity directly

result from changes in behavior rather than from network reorganization due to spatial exploration?

For example, many SOM-ints have activity that is positively correlated with locomotion (Arriaga and

Han, 2017; Turi et al., 2019), making it possible that decreased interneuron activity is due to

decreased locomotion in New. Although average locomotion was the same in New and FamAve (Fig-

ure 1—figure supplement 1F), we more closely investigated the relationship between neuronal

activity and several behavioral variables, such as locomotion (including speed and acceleration),

rewards, and location. As a first pass, we individually correlated these variables with cellular activity

and found that, in familiar environments, locomotion-related variables had relatively high correlation

with activity, on average. In new environments, these correlations were much lower, indicating a dis-

ruption in the relationship between behavioral variables and neuronal activity in new environments

(Figure 3—figure supplement 1). Similar to the recovery of calcium activity and behavioral perfor-

mance over time, correlation between behavior and SOM-int activity also recovered with increasing

experience in New.

To explore the relationship between behavior and SOM-int activity more thoroughly and quanti-

tatively, we turned to computational modeling using general linear models (GLM) to predict each

cell’s fluorescence based on behavior. Models were trained using fluorescence data from Fam and

fit using forward and rotational components of ball speed, the timing of rewards, and position and

speed in the VR environment. Modeled DF/F was very similar to actual DF/F in Fam, while in New,

the fit of modeled DF/F was much worse (six sample cells, Figure 3A). To quantify, we compared

modeled DF/F to actual DF/F in two ways: root mean square (RMS) error, which decreases with bet-

ter fit, and percent of variance explained (R2), which increases with better fit. Using both measures,

we found that model fit was significantly worse in New versus FamAve for all 5 days, suggesting that

Video 1. Activity suppression of SOM-ints in New

world. GCaMP6f fluorescence in SOM-ints in mouse

running in Fam, New (marked ‘New World’ in movie, 1st

day of exposure), and Fam0. Field of view is ~170 mm

x ~ 90 mm. Movie is binned into 2 s frames and played

at 57.9X speed (original movie is 29.8 min long).

DOI: https://doi.org/10.7554/eLife.47611.012
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Figure 3. Decreased SOM-int activity in New is not explained by altered behavior. (A) Gaussian general linear

models (GLMs) for individual SOM-ints were trained to predict calcium activity as a function of locomotion, VR

movement, and rewards in Fam. In New, modeled DF/F (black) is larger than actual DF/F (colored traces),

indicating that the suppression of activity is greater than that predicted from the model (using example mouse

[SOM 5]). Note that mice can move on the ball but not change their VR position, as seen here shortly after

transition into New. This occurs when animals ‘run’ directly into a VR wall so that they are stationary in VR but still

moving. (B) Model fits are significantly worse in New versus FamAve based on average Root Mean Square (RMS)

error (lower errors mean better model fit). (C) The average amount of variance (R2) capturedby model also shows

worse model fit in New (greater R2 means better model fit) (*p<0.001 by paired sample t-test Bonferroni-Holm

corrections, N = 10, n = 209).

DOI: https://doi.org/10.7554/eLife.47611.013

The following source data and figure supplements are available for figure 3:

Source data 1. Statistical tests and results for Figure 3.

DOI: https://doi.org/10.7554/eLife.47611.018

Figure supplement 1. Behavioral variables are poorly correlated with SOM-int activity in New.

DOI: https://doi.org/10.7554/eLife.47611.014

Figure supplement 2. SOM-int GLM performance in different environments.

DOI: https://doi.org/10.7554/eLife.47611.015

Figure 3 continued on next page
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changes in behavior, including locomotion, did not explain decreased DF/F in New (RMS error,

Figure 3B; R2, Figure 3C).

We also compared model fits in New to Fam and Fam0 individually (rather than as FamAve) and

found that model fit was worse in New relative to Fam; however, there was not always a significant

difference between the RMS errors of the New and Fam0 fits, and this difference became non-signifi-

cant on Day 2 in New (Figure 3—figure supplement 2B). By contrast, R2 values were consistently

worse in New vs. Fam0 (Figure 3—figure supplement 2C). Overall model fits appeared worse in

Fam0 relative to Fam. This probably results from multiple factors that contribute to worse fits in both

Fam0 and New. First, there is drift in neuronal representations over time, in this case, the relationship

between behavioral variables and cellular activity. Thus predicted activity will tend to be best in data

temporally close to the data used to train the model, in this case Fam (we note that we used cross

validation where training and test data are independent, although both within the Fam

epoch). Second, photobleaching over time contributes to decreased model fit. The model is trained

on brighter cells in Fam, resulting in predicted fluorescence changes that are larger than those seen

in the same dimmer, photobleached cells later on (photobleaching can be observed in the fluores-

cence traces shown in Figure 2—figure supplement 1). While we attempted to correct for photo-

bleaching using common approaches (such as fitting and correcting with double exponentials), no

single solution was appropriate for all cells, primarily because of variability in photobleaching across

cells. This confound preferentially impacts RMS error, which is more sensitive to the absolute differ-

ences between the actual and predicted fluorescence trace than the R2 value. Finally, there may be a

prolonged network effect of exposure to the New environment that crosses into the subsequent

Fam0 epoch, perhaps due to long lasting neuromodulatory effects. These time-varying factors will

also affect model fit in the New epoch, although with less effect because less time has elapsed since

model training. These incremental, time-dependent effects appear much weaker than the immediate

and drastic loss of model prediction in New.

To evaluate the contribution of individual behavioral variables to cellular activity, we quantified

model fits based on single variables (Figure 3—figure supplement 3). Overall, models based on all

variables had the best fits, while among the individual variables, those representing locomotion (for-

ward and rotational ball speed, and VR speed) contributed the most to model fits of cellular fluores-

cence. Finally, we investigated the relationship between behavior and neuronal activity by training

GLMs in different behavioral epochs. Earlier, we trained models in Fam and asked how well those

GLMs predicted activity in New. This assumes that cells have the same relationship between behav-

ior and activity in Fam as in New (otherwise the fit will be poor). By training the GLMs in New, we

should achieve a high model fit if there is any predictable relationship between behavior and neuro-

nal activity in New. In fact, GLMs trained on behavioral variables in New were still very poor at pre-

dicting activity in New (Figure 3—figure supplement 4), whereas in contrast, GLMs trained in either

Fam and Fam0 predicted activity in familiar environments well, but poorly in New. This suggests a

weakened influence of ongoing behavior on SOM-int activity, specifically in new environments.

Taken together, these data show that the strong suppression of SOM-int activity in new environ-

ments is not simply explained by changes in mouse behavior but is likely to be triggered by contex-

tual novelty itself.

Next, we tested whether soma-targeting PV-ints also show activity suppression in new environ-

ments, as shown in real-world experiments (Frank et al., 2004; Nitz and McNaughton, 2004;

Wilson and McNaughton, 1993), although not in previous VR experiments (Hainmueller and Bar-

tos, 2018; Sheffield et al., 2017). Similar to SOM-ints, PV-int somatic calcium activity was also

strongly suppressed in New and recovered with repeated exposure to New (Figure 4, Figure 4—fig-

ure supplement 1). Qualitatively, suppression of activity seemed even stronger in PV-ints, perhaps

reflecting decreased activity from a higher starting firing rate, as PV-ints generally have greater basal

firing rate in vivo (Royer et al., 2012; Varga et al., 2012). There was also a spectrum of activity

Figure 3 continued

Figure supplement 3. Locomotion variables strongly contribute to SOM-int model fits.

DOI: https://doi.org/10.7554/eLife.47611.016

Figure supplement 4. Behavioral variables poorly estimate SOM-int activity in New on Day 1.

DOI: https://doi.org/10.7554/eLife.47611.017
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Figure 4. PV+ interneuron (PV-int) activity suppression in new environments. (A) Example data from an individual mouse (PV 1). Top, position in the VR

track of an example mouse. Middle, DF/F of sample PV-ints showing activity suppression in New. (B) Histogram of percent change in DF/F of PV-ints

from all mice in New relative to FamAve on Day 1, showing initial activity suppression in New that decreases with exposure over days. (C) PV-int activity

is initially suppressed but recovers over days of exposure to New. (D) Performance in a New world increases over days. (E) Mice show a non-significant

Figure 4 continued on next page
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suppression in individual PV-ints, ranging from strong suppression to moderate activation in New

(Figure 4B). Behavioral performance (rew/min) was also impaired in New relative to Fam, although

in this batch of mice, performance was impaired over 4 days of exposure to New (Figure 4D). Decel-

eration before stops showed the same trend as SOM+ mice, with initially less deceleration and

then increasing deceleration with repeated exposures to New; however, this change in deceleration

was not significant (Figure 4E, note that N = 6 in this cohort). Using a GLM trained on behavioral

data and cell fluorescence in Fam, we found that model fit was significantly worse in New compared

to FamAve (Figure 4F,G,H), suggesting that changes in behavior were not responsible for decreased

cellular activity.

Firing fields of PV-ints were broad in both environments (Figure 4—figure supplement 2)

and, similar to cell somata, PV-int neurites were suppressed in New (Figure 4—figure supplement

3). To investigate the relationship between behavior and PV-int activity in Fam and New, we first cor-

related these variables with neuronal activity, again finding relatively high correlation between loco-

motion and activity in Fam and Fam0, but markedly decreased correlation in New (Figure 4—figure

supplement 4). GLMs trained on behavioral data in Fam and PV-int activity predicted significantly

better neuronal activity in Fam and Fam0 than in New (Figure 4—figure supplement 5), although

again GLM model fits were better in Fam than in Fam0, likely for the same reasons described for

SOM-ints. To further investigate the role of behavior on PV-int activity in New, we trained GLMs in

New, rather than in Fam. Similar to SOM-ints, GLMS trained in New were poor at predicting activity

in New (Figure 4—figure supplement 6), whereas GLMs trained in either Fam or Fam0 predicted

activity in familiar environments well, but again poorly in New.

Overall, the results from PV-ints were similar to those of SOM-ints when exposed to new environ-

ments, with strong suppression of activity that recovered with repeated exposure and paralleled the

recovery of task performance. Modeling of activity also suggests that changes in behavior in New

were not responsible for decreased activity. Taken together, these data from PV- and SOM-ints

show that two major classes of inhibitory neurons, targeting distinct subcellular targets, are inhibited

in new environments, consistent with a critical role for inhibition suppression in the reorganization of

network activity in new environments.

Another potential interpretation of interneuron activity suppression in new environments is that

suppression is driven by surprise at the context switch, with habituation to this surprise gradually

restoring interneuron activity, with no relationship between the return of interneuron activity and the

Figure 4 continued

trend toward decreased deceleration before reward in New. (F) Gaussian general linear models (GLMs) for individual PV-ints were trained as a function

of locomotion, VR movement, and rewards in Fam to predict calcium activity. In New, modeled DF/F (black) is larger than actual DF/F (colored traces),

indicating that suppression of activity is greater than that predicted by the model (in example mouse (PV 2)). (G) Model fits are significantly worse in

New versus FamAve based on average Root Mean Square (RMS) error (lower errors mean better model fit). (H) Average amount of variance (R2)

predicted by model also shows worse model fit in New (greater R2 means better model fit) (*p<0.001 by paired sample t-test Bonferroni-Holm

corrections, N = 6, n = 172).

DOI: https://doi.org/10.7554/eLife.47611.019

The following source data and figure supplements are available for figure 4:

Source data 1. Statistical tests and results for Figure 4.

DOI: https://doi.org/10.7554/eLife.47611.026

Figure supplement 1. PV-int activity suppression over 5 days of remapping into New.

DOI: https://doi.org/10.7554/eLife.47611.020

Figure supplement 2. Broad PV-int firing fields in Fam and New on Day 1.

DOI: https://doi.org/10.7554/eLife.47611.021

Figure supplement 3. Suppression of PV-int neurite activity.

DOI: https://doi.org/10.7554/eLife.47611.022

Figure supplement 4. Behavioral variables are poorly correlated with PV-int activity in New.

DOI: https://doi.org/10.7554/eLife.47611.023

Figure supplement 5. PV-int GLM performance in different environments.

DOI: https://doi.org/10.7554/eLife.47611.024

Figure supplement 6. Behavioral variables poorly estimate PV-int activity in New on Day 1.

DOI: https://doi.org/10.7554/eLife.47611.025
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recovery of task performance in the new context. To test this possibility, we dissociated surprise at

the context switch from task performance in the new environment by replacing the New environ-

ment with a no-task, no-reward epoch and a static visual scene (black screen). Under these condi-

tions, if surprise drives interneuron activity suppression and activity recovery is due to habituation,

we would see the same suppression and recovery over time as previously shown. On the other hand,

if performance recovery is necessary for the restoration of interneuron activity, we should see sus-

tained inhibitory suppression.

Taking advantage of the long-term recording stability of two-photon calcium imaging, we

recorded the same SOM-int cells from a subset of the mice (N = 6) used in the remapping experi-

ment, allowing us to compare directly the kinetics of activity recovery when performance recovery

was present or absent. The ‘No Task’ environment evoked strong suppression of SOM-int activity,

similar to the suppression seen when mice are switched into New (Figure 5A–D). However, over 5

days of exposure to the same ‘No Task’ environment, activity remained strongly suppressed

(Figure 5E, Figure 5—figure supplement 1). In marked contrast, the same cells from the same mice

showed strong recovery of activity over 5 days of exposure to New (Figure 5E, showing data from

six mice used in Figure 2 that were also, later, switched into the ‘No Task’ environment). Thus,

recovery of SOM-int activity is unlikely to be the result of habituation to surprise and may rather

depend on the recovery of task performance in the new context.

Our previous analyses examined the activity of individual interneurons. Next, we asked how inter-

neuron ensemble activity was altered in our experiments. Here, we measured short-time scale popu-

lation correlation by calculating all pairwise cell-cell activity correlations within 5 s non-overlapping

time bins, averaging those values to get a mean activity correlation for that time bin, then averaging

across all mice. The resulting correlation value reports how similar activity is across all cells for that

time bin, and the time series of all values shows how this short-time population correlation measure

evolves over time. SOM-ints show stable short-time population correlation in Fam that drops signifi-

cantly on the first day of New, with a return to high short-time population correlation on return to

Fam0. By the second day of New, population activity shows similar levels of correlation across Fam,

New, and Fam0 (Figure 5—figure supplement 2A,B). In contrast, SOM-ints in ‘No Task’ periods

show low short-time population correlation, which remains depressed throughout 5 days of exposure

(Figure 5—figure supplement 2C,D). PV-ints in new environments also showed loss of short-time

population correlation in New relative to Fam, although unlike SOM-ints, this decrease was signifi-

cant for all 5 days (Figure 5—figure supplement 2E,F). These results show that interneuron activity

at the population level is less similar in new environments than in familiar environments, likely due to

a combination of suppression of activity and decreased influence of locomotion on activity.

Consistent inhibitory structure across new contexts
On average, SOM-ints are suppressed in a new environment (Figure 2E), but the degree of activity

suppression is heterogeneous across neurons, ranging from strong inhibition to moderate activation

in individual cells (Figure 2D). It is clear that interneurons respond differently in new environments,

raising the question of whether individual interneurons show different activity dynamics in different

virtual worlds, similar to the way that hippocampal pyramidal neurons stochastically

remap. Alternatively, are these activity dynamics context-invariant, suggesting a consistent network

role for individual interneurons?

We tested whether the structure of SOM-int activity suppression was stochastic or consistent by

putting a subset of the animals previously described through a second remapping protocol, in which

they were exposed to another distinct and novel visual virtual environment, labeled ‘New 2,’ with

the original novel environment now labeled ‘New 1’ (performance recovery is similar between the

two New environments, Figure 1—figure supplement 1G). By recording the same cells across the

two remapping protocols, we could correlate the magnitude of each cell’s activity suppression in

New 1 vs. New 2. If SOM-ints are stochastically recruited by network activity, there should be no cor-

relation in activity suppression across New 1 vs. New 2. To the contrary, we found strong correlation

between activity suppression in New 1 vs. New 2 in individual SOM-ints. This correlation was strong

on Day 1, and strikingly, this correlation was significant across all days of the remapping protocol

(Figure 6A, Day 1, p<0.001; Day 2, p<0.001; Day 3, p<0.001; Day 5, p<0.001). We, and others,

have previously verified place cell global remapping across different virtual environments

(Arriaga and Han, 2017; Gauthier and Tank, 2018; Hainmueller and Bartos, 2018;
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Sheffield et al., 2017), strongly suggesting that this consistent functional inhibitory network struc-

ture occurs despite differing ensembles of activated pyramidal neurons.

A trivial explanation for these results could be that this correlation results from general similarities

across the two behavioral epochs, such as having equivalent tasks or a shared layout of the virtual

worlds. To probe the structure of SOM-int activity suppression in a drastically different context, we

used the ‘No Task’ epoch described previously (Figure 5). Here, the visual scene is distinct and

static, and there is no behavioral task. Even here, when comparing activity suppression in New 1 vs.

‘No Task’ epochs, we found significant correlation for each cell on Day 1, indicating that the

Figure 5. SOM-int activity suppression remains high when performance recovery is blocked in a ‘No Task’ environment. (A–C) Example data from

an individual mouse (SOM 6). (A) Cells from the sample mouse are strongly suppressed during the ‘No Task’ epoch (static black screen, no rewards).

Top, position in VR track, middle, DF/F of sample cells, and bottom, ball speed. (B) DF/F of all cells from an example mouse on Day 1 of ‘No Task’

exposure showing activity suppression (mean of all cells in black). (C) Histogram of percent change in DF/F of SOM-ints from the example mouse on

Day 1 of ‘No Task’ showing strong suppression. (n = 18). (D) Interneurons remain suppressed over several days of ‘No Task’ exposure. Histogram of

percent change of all cells. (E) In ‘No Task’ exposure, SOM-ints remain suppressed in contrast to recovery during exposure to New. ( The same six mice,

which are a subset of the ten mice used in Figure 2E, were exposed to No Task and New). (F) Average speed in ‘No Task’ environment increases

relative to Familiar, in contrast to New. (n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001 by paired sample t-test or one-sample t-test with Bonferroni-Holm

corrections, N = 6, n = 116).

DOI: https://doi.org/10.7554/eLife.47611.027

The following source data and figure supplements are available for figure 5:

Source data 1. Statistical tests and results for Figure 5.

DOI: https://doi.org/10.7554/eLife.47611.030

Figure supplement 1. SOM-int activity suppression in the No Task environment.

DOI: https://doi.org/10.7554/eLife.47611.028

Figure supplement 2. Short-time correlation declines in new environments.

DOI: https://doi.org/10.7554/eLife.47611.029
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functional inhibitory network structure for these two very different behavioral epochs is very similar.

We also measured correlation in activity suppression throughout the 5-day protocol. Although the

correlation was significant on Day 1 (Figure 6B, p<0.001), it was not on Days 2–5. This was not sur-

prising because inhibitory activity in New 1 recovers with increasing task performance, whereas sup-

pression remains strong in ‘No Task’ epochs.

Figure 6. Consistent SOM-int activity responses across different new environments and in ‘No Task’ epoch. (A) Individual SOM-ints show correlation in

activity modulation in two distinct New environments. (B) Similar correlation of activity modulation is seen between New 1 and ‘No Task’ exposures for

Day 1. On subsequent days, correlation disappears as SOM-int activity begins to return in New 1 while remaining suppressed in ‘No Task’. (C) Summary

of correlation data from (A) and (B). Correlation between percent change of cells between two remapping sessions or between remapping session one

and the ‘No Task’ exposure session. (D) Mean difference in percent change in activity in cells between remapping and ‘No Task’ exposure settings

(*p<0.01, **p<0.001, one-sample t-test with Bonferroni-Holm correction N = 6, n = 116).

DOI: https://doi.org/10.7554/eLife.47611.031

The following source data and figure supplements are available for figure 6:

Source data 1. Statistical tests and results for Figure 6.

DOI: https://doi.org/10.7554/eLife.47611.035

Figure supplement 1. Characterization of suppressed SOM-ints.

DOI: https://doi.org/10.7554/eLife.47611.032

Figure supplement 2. SOM-int network activity structure is stable across environments.

DOI: https://doi.org/10.7554/eLife.47611.033

Figure supplement 3. SOM-int network activity structure is stable across days in the same environment.

DOI: https://doi.org/10.7554/eLife.47611.034
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The rapid time-dependent loss of correlation between the New 1 and ‘No Task’ epochs reinforces

how striking the correlation structure is for New 1 vs. New 2, indicating not only that initial suppres-

sion is correlated but that there is also consistency in the temporal dynamics of this structure in time

across 5 days (Figure 6C). Similarly, the mean difference in percent change for each cell between

New 1 and New 2 remains stable across the remapping paradigm, whereas the difference between

New 1 and the ‘No Task’ epoch steadily increases over the 5-day course of exposure to each envi-

ronment (Figure 6D).

These results show that each cell exhibits a consistent degree of activity suppression across multi-

ple new environments. To understand more about how this structure arises, we looked for other fac-

tors that were associated with each cell’s magnitude of activity suppression. First, we examined the

recovery of activity in cells as a function of initial level of activity suppression on Day 1 of remapping

into New 1. Cells stratified by the magnitude of their initial suppression continue to be stratified by

activity suppression across the 5-day remapping protocol, with the most strongly suppressed on Day

1 remaining the most suppressed on Day 5, while the least suppressed remain the least suppressed

(Figure 6—figure supplement 1A). This finding indicates that each cell’s initial activity suppression

is predictive of future activity throughout the protocol, suggesting that neurons may not be drawn

from the same population of functionally homogeneous interneurons. Similarly, cells that were most

suppressed in the ‘No Task’ epoch remained the most suppressed through subsequent days of

exposure to this epoch (Figure 6—figure supplement 1B).

Does the degree of activity suppression differentially map onto distinct SOM-int cell types? SOM-

ints labeled by cre-driver lines are primarily composed of two functionally and anatomically distinct

types, OLM and bistratified interneurons (Klausberger et al., 2004; Royer et al., 2012). The somata

of OLM neurons lie in stratum oriens (SO) extending into stratum pyramidale (SP), whereas bistrati-

fied interneurons are mostly in SP. We found no difference in activity suppression between cells with

somata in SO vs. SP (Figure 6—figure supplement 1C, p=0.38), suggesting that each cell’s magni-

tude of activity suppression was not defined by cell-type, at least at the level of classification of OLM

and bistratified interneurons. It remains possible that even more specific cell-type classification, per-

haps through single-cell sequencing methods, may identify such a distinction (Harris et al., 2018).

We also found that baseline fluorescence (which could be indicative of basal firing rate, with strong

caveats) exhibited no relationship to activity suppression (Figure 6—figure supplement 1D). There

was no relationship between soma area and activity suppression (Figure 6—figure supplement 1E,

p>0.99).

We previously identified two distinct populations of SOM-ints, one whose activity was positively

correlated with locomotion and another whose activity was anti-correlated (Arriaga and Han, 2017).

These two populations, as measured by the phase angle of the hilbert transform of the cell’s correla-

tion between stop-triggered mean activity and running speed, were also present in these data. How-

ever, there was no difference in activity suppression between the two (Figure 6—figure supplement

1F, p>0.99). Thus, the degree of activity suppression was not readily explained by these previously

identified cell classes or cellular properties.

Across the cell population, there was variability in the goodness of model fit, so we investigated

whether model fit in Fam was predictive of activity suppression in New. Using both RMS error and

R2, we found no relationship between the two variables (Figure 6—figure supplement 1G,H). It is

also possible that activity suppression is locally organized, or otherwise distance-dependent, with

nearby cells having similar magnitudes of fluorescence changes in New. However, there was no rela-

tionship between cell-cell distance and activity suppression (Figure 6—figure supplement 1I). We

did, however, find that closer cells have more similar activity, although the relationship was weak

(Figure 6—figure supplement 1J).

Our results identify stable SOM-int activity dynamics across different environmental contexts. Is

this stability restricted to activity dynamics or is the general population activity structure similarly sta-

ble? Earlier we found that overall SOM-int population activity becomes less coordinated when com-

paring average population correlation between familiar and new or ‘No Task’ environments

(Figure 5—figure supplement 2). Here we examined population activity structure by calculating

cell-cell activity correlations and asking whether these pairwise activity relationships were stable

across environments. In an example animal, in the matrix of cell-cell activity comparisons, there is

general preservation of activity relationships between cells in Fam and New (Figure 6—figure sup-

plement 2A,B). This can also be seen directly in activity traces, in which cells that have similar activity
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in Fam also have similar activity in New (Figure 6—figure supplement 2C, cells 1 and 2), whereas

cells that have dissimilar activity in Fam are also dissimilar in New (cells 4 and 5). Indeed, we found

correlation in cell-cell activity when looking at Fam vs. New, New 1 vs. New 2, Fam vs. No Task, and

New vs. No Task (Figure 6—figure supplement 2D–G). This finding of stable activity structure

across environments is seemingly at odds with our earlier finding of decreased short-time population

correlation between Fam and New (Figure 5—figure supplement 2). However, our measure of

short-time population correlation is an average of all correlation values across the population, while

activity structure relies on individual cell-pair correlations. Thus on average, short-time population

correlation goes down in New (as can be seen by the overall decrease in correlation values in Fig-

ure 6—figure supplement 2B relative to Figure 6—figure supplement 2A), while cell-pair correla-

tions are maintained (Figure 6—figure supplement 2D–G)).

Having identified overall stability in cell-cell activity correlation in different environments, we

asked whether there was a relationship between each pair’s correlation level and activity suppression

in New. To assign a single activity suppression number to each cell pair, we used the absolute differ-

ence between activity suppression values for individual cells; thus pairs with similar activity suppres-

sion will have a low difference, whereas pairs with dissimilar suppression will have a larger value. We

found that cell pairs with dissimilar amounts of activity suppression in New also had lower activity

correlations in Fam (Figure 6—figure supplement 2H). In particular, this relationship seemed driven

by cell pairs with low activity correlation that also have strongly differing amounts of activity suppres-

sion (left side of graph). We also asked whether there was a bias toward higher or lower mean activ-

ity suppression on the basis of the cell-pair correlation value. We found that cell pairs with more

similar activity had significantly less activity suppression, although this relationship was relatively

weak (Figure 6—figure supplement 2I). Finally, we found that activity structure based on cell-pair

activity correlation was stable across 5 days of exposure in Fam, New, and ‘No Task’ (Figure 6—fig-

ure supplement 3). These data identify overall preserved SOM-int activity structure, in addition to

consistent activity dynamics, across different environments.

Discussion
In this work, we addressed critical questions in neuronal network function: how is interneuron activity

dynamically regulated during spatial exploration, and is there a persistent structure in the resulting

functional interneuron activity dynamics? We found that the activity of SOM- and PV-ints was initially

strongly suppressed upon exposure to a novel virtual environment, and that activity recovered as

animals learned to adapt a goal-directed spatial navigation task to this new environment. Further-

more for SOM-ints, there was a persistent functional network structure in the transition from familiar

to novel environments. Each SOM-int exhibited a characteristic amount of activity suppression in

multiple new environments, as well as in a drastically different ‘No Task’ environment where there

was no recovery of task performance.

Our findings are consistent with a model in which entering new environments triggers decreased

network inhibition, which then gradually recovers over the course of learning to stabilize the network

(Frank et al., 2004; Wilson and McNaughton, 1993). We found suppression of both dendrite- and

soma-targeting interneurons (SOM- and PV-ints, respectively), suggesting general disinhibition of

postsynaptic pyramidal neurons during spatial exploration in this task, rather than subregion-specific

changes (Chen et al., 2015; Hainmueller and Bartos, 2018; Sheffield et al., 2017). This loss in inhi-

bition may act as a permissive gate for learning by enhancing synaptic plasticity in the pyramidal

neurons. However, an important limitation of our data is that, while we measured calcium activity in

interneuronal somata and neurites (axonal and dendritic), the actual inhibitory drive onto pyramidal

neurons during spatial exploration remains unknown.

We hypothesized that the recovery of interneuron activity in new environments was dependent

on task performance recovery and tested this by switching mice into a ‘No Task’ environment.

Indeed SOM-int activity then remained suppressed rather than recovering, consistent with a role for

task performance in modulating interneuron activity dynamics. However, although we eliminated

task recovery, multiple variables change in the ‘No Task’ epoch, including the loss of virtual world,

water rewards, and clear task rules. These other factors rather than any dependence on behavioral

performance, either singly or in combination, could be responsible for the extended suppression of

interneuron activity. More controlled manipulations of rewards and task rules in novel VR

Arriaga and Han. eLife 2019;8:e47611. DOI: https://doi.org/10.7554/eLife.47611 16 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.47611


environments should be able to isolate the contribution of these variables to the recovery of inter-

neuron activity. One factor that merits more in-depth investigation is the role of task engagement in

controlling network activity. It was striking that, in the ‘No Task’ epoch, the normal positive correla-

tion between locomotion and interneuronal activity was greatly weakened: even though mice ran on

the ball at high speed, SOM- and PV-int activity remained low. This is in marked contrast to head-

fixed animals running on a track that have never been trained in a VR task, which show a customary

positive correlation (Katona et al., 2014). In our mice, it is likely that even the expectation of some

VR world and task is sufficient to engage a state-dependent change in network activity. Thus, the

low interneuron activity state may signify a network that is primed for learning, rather than an indica-

tion of novelty.

We have shown long-lived SOM- and PV-int suppression that is temporally distinct from transient

suppression of SOM- and PV-ints during place cell global remapping (Nitz and McNaughton, 2004;

Sheffield et al., 2017; Wilson and McNaughton, 1993). How much interneuron activity suppression

is associated with novelty-induced place cell global remapping and how much is due to task perfor-

mance? In both real world and VR experiments, switching animals to new environments triggers a

few minutes of activity suppression and the formation of new place cell maps on the same timescale

(Frank et al., 2004; Hainmueller and Bartos, 2018; Muller and Kubie, 1987; Nitz and McNaugh-

ton, 2004; Sheffield and Dombeck, 2015; Wilson and McNaughton, 1993). By contrast, in a learn-

ing task with no global remapping where freely moving rats learned new goal locations in a familiar

environment, fast-spiking putative interneurons both increased and decreased activity as perfor-

mance increased (Dupret et al., 2013). This reflected dissolution of ensembles encoding old reward

maps and the formation of new cell assemblies, comprising pyramidal and interneurons,

that represent new reward locations. Taken together, it is likely that the initial SOM-int activity sup-

pression in our experiments is triggered by the switch into a new context and that associated global

remapping, while slowly increasing interneuron activity thereafter, is associated with additional map

refinement related to task performance. Further experiments using more detailed simultaneous

recordings of pyramidal and interneuronal activity will refine this picture, whereas more subtle envi-

ronmental manipulations will help to dissociate global remapping effects from learning.

Another crucial contribution of this study was the discovery of stable inhibitory interneuron activ-

ity structure in different environments, which was enabled by our long-term recording of identified

cell-types. First, network activity structure (measured as pairwise cell-cell activity) is stable across dif-

ferent contexts, including the drastically different ‘No Task’ epoch. This suggests that the SOM-int

network either continues to receive similar afferent inputs in familiar and new environments, or

that network activity structure is locally stabilized, perhaps by gap junctional coupling in the inter-

neuronal network. Second, interneuron activity dynamics were stable on a cell-by-cell basis, with

each interneuron having a consistent level of activity suppression, both across multiple new environ-

ments and in the ‘No Task’ epoch. These findings reveal an underlying inhibitory circuit infrastructure

that may serve to shape information encoding in the local pyramidal cell network. Future work will

investigate whether PV-ints and other interneuron types show similar stability in activity dynamics

across multiple environments or whether SOM-ints are unique in this regard.

Our finding of stable interneuron activity dynamics suggests that inhibition may play an active

role in encoding information in the network, perhaps by regulating activity in connected ensembles

of pyramidal neurons. Pyramidal neurons downstream of strongly suppressed interneurons are more

likely to express plasticity, as a direct result of increased activity due to release of inhibition. Con-

versely pyramidal neurons downstream of less suppressed interneurons will receive relatively normal

levels of inhibition, perhaps limiting plasticity. Thus, this functionally diverse, but consistent, inhibi-

tory structure may act as a mechanism to address a fundamental tradeoff in neuronal network func-

tion: balancing stability with plasticity (Abraham and Robins, 2005; McClelland et al., 1995;

McCloskey and Cohen, 1989). By modulating the functional properties of downstream neurons,

inhibition can create plastic and stable pyramidal ensembles, allowing the integration of new infor-

mation while preserving existing network function. The regulation of specific pyramidal neuron

ensembles through interneuron control has not been well-studied (Rao-Ruiz et al., 2019); however,

intriguing evidence finding distinct pyramidal neuron populations, which code either for learning

(engram cells) or for stable place coding over learning, support the existence of hippocampal micro-

circuits that specialize in plasticity or stability (Tanaka et al., 2018).
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One requirement of this model is preferential or targeted connectivity in the outputs of SOM-ints

onto pyramidal neurons. Such a scenario is at odds with ‘pooled’ or ‘blanket’ inhibition, where inter-

neurons make promiscuous and non-selective synapses (Fino and Yuste, 2011; Packer and Yuste,

2011), but significant evidence exists for preferential connectivity in both the hippocampus and cor-

tex. In the hippocampus, PV-expressing basket cells preferentially inhibit deep pyramidal neurons

projecting to the amygdala, while also being more likely to receive excitation from superficial pyra-

midal neurons or from deep pyramidal neurons projecting to the prefrontal cortex (Lee et al.,

2014). In the medial entorhinal cortex, cholecystokinin-expressing basket cells selectively target

pyramidal neurons that project extra-hippocampally (Varga et al., 2010). Furthermore, in the hippo-

campus, interneurons participate in cell assemblies with pyramidal neurons and can share coding

properties such as place fields (Ego-Stengel and Wilson, 2007; Kubie et al., 1990; Marshall et al.,

2002). Similarly, functional subnetworks of interneurons and pyramidal neurons have been identified

in the cortex (Khan et al., 2018; Najafi et al., 2019; Znamenskiy et al., 2018). Finally, this work

identifying the specialization of interneuron function is complemented by evidence of functionally

distinct subsets of CA1 pyramidal neurons (Danielson et al., 2016; Graves et al., 2012;

Mizuseki et al., 2011; Soltesz and Losonczy, 2018).

We identified structured activity dynamics in the functional responses of interneurons as animals

adapted a goal-oriented spatial navigation task to novel virtual environments. What mechanisms

might generate the activity dynamics and structure within the interneuron population? Neuromodu-

latory transmitters targeting G-protein coupled receptors are likely to play a significant role. Novelty

or arousal produce strong changes in neuromodulation, with sharp increases in acetylcholine

(Acquas et al., 1996; Vinck et al., 2015), norepinephrine (Sara et al., 1995), and dopamine

(Kempadoo et al., 2016; McNamara et al., 2014; Takeuchi et al., 2016). Differing levels of inhibi-

tory activity suppression could be set by the expression levels of neuromodulatory receptors in each

cell. For example, interneurons show markedly divergent responses to acetylcholine depending on

the composition and expression of their receptors (McQuiston and Madison, 1999). In vivo, hippo-

campal SOM-ints are activated by air puffs and this activation depends on muscarinic acetylcholine

receptor signaling (Lovett-Barron et al., 2014; Schmid et al., 2016). Furthermore, synapse gain on

SOM-ints after fear conditioning depends on cholinergic input, suggesting additional neuromodula-

tory effects on SOM-int plasticity (Schmid et al., 2016). Finally, recent work investigating the mecha-

nisms of locomotion activation and the suppression of PV-ints in the visual cortex identified

norepinephrine and acetylcholine, respectively, as critical effectors (Garcia-Junco-Clemente et al.,

2019).

Another possible mechanism for suppressing interneuron activity is disinhibitory connections from

other interneurons targeting SOM-ints. In the hippocampus, this disinhibitory input can come from

local VIP, PV, and SOM interneurons (Francavilla et al., 2015; Lovett-Barron et al., 2012). Indeed,

in our experiments, some SOM- and PV-ints were activated in novel environments, although it

remains unclear whether these interneurons provide disinhibitory input. VIP interneurons are strongly

associated with disinhibition, and previous work showed that these neurons are necessary for hippo-

campal-dependent learning (Donato et al., 2013; Turi et al., 2019).

Finally, it is possible that decreased SOM-int activity is inherited from reduced upstream excit-

atory input. In this case, feed-forward inhibition is driven by EC and CA2/3 input while feed-back

excitation is driven by local CA1 neurons. However, during learning or novelty, CA3 and EC pyrami-

dal neurons don’t change their firing rates, while CA1 pyramidal neurons increase activity

(Barry et al., 2012; Karlsson and Frank, 2008; Nitz and McNaughton, 2004; Wilson and

McNaughton, 1993), making it unlikely that suppression of inhibitory cell activity is purely a function

of reduced excitatory drive.

Our work identifies inhibitory activity dynamics while revealing that individual interneurons have a

consistent functional role across multiple new environments. Together, this work and the work of

others highlight functional specialization within defined sets of neurons, which may serve to allow

efficient incorporation of new information while maintaining overall network stability.
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Materials and methods

Animals
All experiments were approved by the Washington University Animal Care and Use Committee. Het-

erozygotes (+/–) from two cre-driver mice lines on a C57Bl/6J genetic background were used to

label parvalbumin-expressing and somatostatin-expressing inhibitory interneurons: SSTtm2.1(cre)Zjh/J

(SOM-cre) and Pvalbtm1(cre)Arbr/J (PV-cre; Jackson Labs). All imaging data were from SOM-ints while

behavioral data in Figure 1 were from PV- and SOM-ints.

Viral injections and hippocampal window implantation
Surgical procedures, VR track running behavior, and two-photon imaging have been described previ-

ously (Arriaga and Han, 2017). Briefly, mice were injected with adeno-associated virus (AAV) at 2–4

months of age. Mice were anesthetized with isoflurane, and a small (0.5 mm) craniotomy was

opened above the left cortex. Virus (AAV1.Syn.Flex.GCaMP6f.WPRE.SV40, Penn Vector Core, Uni-

versity of Pennsylvania, 1.71 � 1013 genome copies, diluted 1:1–1:4 with PBS,~50 nL total volume)

was pressure injected through a beveled micro-pipette targeting CA1 (�1.8 ML, �2.0 AP, �1.3 DV).

After virus injection, mice were water-scheduled for 1–3 weeks and an imaging cannula (2.8 mm

diameter) was implanted above the hippocampus by aspirating the overlying cortex. Mice recovered

for at least two weeks after surgery before beginning training.

VR track running behavior
The virtual reality display used a custom-built semi-cylindrical projection screen (1 ft radius) and two

rear projectors (Optima 750 ST). The projection screen was positioned ~30 cm in front of the mouse

and occupied 180˚ of the horizontal view, 16˚ below the horizon and 35˚ above. VR world brightness

was kept low, both to minimize behavioral inhibition and because stray VR light contributes to noise

during calcium imaging. Projectors were set at minimal brightness with an additional darkening film

applied to the rear projection screen (Gila Glare Control, Smoke). To measure brightness directly,

we used a chromameter (Minolta CS100A). On the basis of the lens configuration of the instrument,

we could not measure total brightness to compare luminance across environments, but we could

measure smaller visual features (diameter ~1.4 cm). The luminance of all features fell between 0.03

and 3 candela/m2, within the mesopic range of visual function, in which mice are frequently behavior-

ally active (Denman et al., 2018).

Mice were head-fixed on a spherical Styrofoam treadmill supported on a cushion of air from a 3D

printed base, which allowed free ball rotation with mouse locomotion. Treadmill movement was

tracked using a G400 Logitech mouse configured in LabView (National Instruments). The VR environ-

ment was rendered using ViRMEn (Virtual Reality Matlab Engine; Aronov and Tank, 2014). Mice

were trained to run to alternating ends of a linear VR track (180 cm) for 2–5 weeks until they consis-

tently achieved target performance (>2 rewards/min for one week). After training, mice were imaged

during exposure to a new visual virtual world. Remapping experiments consisted of 7 min

of behavior in the familiar track (Fam), an instantaneous switch to a novel track of the same length

with different visual textures and landmarks (New) for 14 min, and then a return to the familiar (Fam0)

environment for 7 min. This remapping protocol was repeated for five successive days with the

same, decreasingly novel, New world. In a subset of animals, a second remapping task was also per-

formed. This task was identical to the first with the exception of a different New environment (New

2). In addition, this same subset of animals was imaged in a ‘No Task’ session. This session consisted

of 7 min of navigation in the familiar track, 14 min of exposure to a dark screen with no rewards, and

a return to the initial familiar environment for 7 min.

Two-photon imaging
Calcium imaging was performed on a Neurolabware laser-scanning two-photon microscope, with

the addition of an electric tunable lens (ETL; Optotune, EL-10–30-NIR-LD) and an f=–100 mm offset

lens to change axial focal length rapidly. We imaged 4–6 axial planes spanning up to 250 mm in the

z-axis at a total frame rate of 31 Hz, resulting in a per plane sampling rate of 5.2 Hz for a six plane

recording and 7.8 Hz for a four plane recording. Field of view in x-y was 500 � 500 mm. Laser power

(at 920 nm) was ~25–50 mW after the objective and was set independently for each plane imaged.
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Data analysis
Data were analyzed using custom programs written in Matlab (RRID:SCR_001622) available at

GitHub (Arriaga and Han, 2019, https://github.com/Han-Lab-WUSM/MA-scripts; copy archived at

https://github.com/elifesciences-publications/MA-scripts). Images were motion-corrected using

cross-correlation registration and rigid translation of individual frames. Slow fluctuations in fluores-

cence were removed from calculations of DF/F0 by calculating F0 using the eighth percentile of fluo-

rescence intensity from a sliding window 300 s around each time point. ROIs were selected using a

semi-automated process. Possible ROIs were identified as contiguous regions with SD >1.5 and an

area >90 mm2. Overlapping ROIs were manually separated, ROIs were redrawn by hand to separate

adjacent cells into distinct ROIs. Unresponsive puncta, or those with low signal-to-noise ratios (ini-

tially identified as having a skewness of DF/F in the first familiar environment less than 0.3) were

dropped from further analysis. When the same cell was recorded in multiple planes, the brightest

ROI was used. Neuropil contamination was removed by subtracting a perisomatic fluorescence sig-

nal from an annulus between 5 and 20 mm from each ROI, excluding any other possible ROIs (FCor-

rected–ROI = FROI – 0.8 * FNeuropil).

The percent change in the New environment was calculated on each day for each cell as the ratio

between the mean fluorescence in the 14 min New world exposure and the mean of the fluores-

cence from the two 7 min familiar worlds exposures, normalized by the sum of these

means: Percent Change ¼ 1� �New

�
FamþFam0ð Þ

.

Cell activity correlation with behavioral variables was calculated by taking the maximum value of

the cross-correlation of demeaned time series within a 2 s window of lag. We followed the evolution

of cell ensemble correlation over time by taking short-time cell-cell correlation of cell activity using

the mean Pearson correlation of all pairwise comparisons in non-overlapping 5 s windows.

Behavior analysis
Ball movement data, sampled at 1 kHz, was downsampled to match the imaging frame rate. All nor-

malized behavioral metrics were normalized by taking the ratio of the metric in the New world to

FamAve (mean of Fam and Fam0). Task performance was calculated as the rewards received per min-

ute. Speed was calculated as the Euclidean sum of the forward and rotation components of ball

velocity. Deceleration was calculated as the first derivative of the forward component of the ball

speed during a 3 s window prior to reward. Deceleration before all rewards in the epoch were aver-

aged (ranging from 13 to 30 rewards/epoch on average). The location of trial failure was identified

as the distance from the correct destination end zone at which the animal turns around before reach-

ing the end zone.

Lick behavior was detected using a two-transistor lick detection circuit (Slotnick, 2009). Individual

licks were not resolvable, so lick responses were binned into lick bouts, defined as a period of

repeated lick responses with less than 200 ms between repeated lick signals. The lick rate was calcu-

lated as the number of these licking bouts per minute. The fraction of ‘correct’ licks was calculated

as the fraction of licking bouts that occur within ± 500 ms of reward delivery (marked by an audible

solenoid click to dispense water). The fraction of licks in unrewarded end zones was calculated as

the fraction of incorrect, unrewarded, entries into the track end zone that elicited a bout of licking.

Mouse location residency was calculated by binning the track in 20 cm bins and by measuring the

amount of time that the animals spent in each bin of the track in each environment.

General linear model of activity
A general linear model was used to estimate fluorescence as a function of the behavioral parameters

that are correlated with cell activity. The model predicts fluorescence as the linear combination of

weighted, time-lagged behavior components. The lag used for each component was determined by

the time of the peak of its cross-correlation with cell activity. Modeling of interneuron fluorescence

was done using the glmfit function in Matlab with a normal distribution and an identity link function.

The oscillatory nature of interneuron fluorescent activity series, without the large transients typical in

pyramidal cells, were better fitted using a normal distribution than using the Poisson distribution

commonly used in generalized linear models of pyramidal cell activity. Models were trained using

fluorescence data from Fam and fitted using the forward and rotation components of ball speed,

the timing of rewards, and the position and speed in the virtual reality environment. Behavioral data
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were included at a lag of up to 2 s, as determined by the maximum value of the cross-correlation

between each parameter and cell activity. Root mean square (RMS) error and model correlation, for

models tested in the environment in which they were trained, were calculated using 10-fold cross

validation. Successive models were trained on 9/10 of the data set and tested on 1/10 of the data.

The average model performance across these ten sessions was used as the performance of the

model. Performance in environments other than the one in which the model was trained was calcu-

lated by directly applying the model behavioral data from test epochs, and by calculating RMS and

model correlation on the entire resultant time series. Correlation was measured as the Pearson cor-

relation between modeled traces and DF/F in each context, and R2 was taken as the square of the

Pearson correlation.

Experimental design and statistical analysis
Behavior data are reported from 14 mice (seven male, seven female). We recorded 209 somato-

statin-cre positive cells (mean = 20.9 ± 5.45) from ten mice (eight male, two female) across all 5 days

of the initial remapping experiment. For the second remapping and ‘No Task’ paradigms, we

recorded from six of these mice (five male, one female), tracking 107 cells across all three contexts.

We recorded from 176 parvalbumin-cre cells (mean = 28.67 ± 15.02) from six animals (two male,

four female).

The significance of normalized data metrics was calculated using one-sample t-tests of mean

values. Differences between familiar and new epochs were calculated using paired sample t-tests of

mean values, RMS error values were calculated on each cell in each epoch with paired-sample

t-tests.

Significance of RMS error and R2 values were calculated on each cell in each epoch with paired-

sample t-tests with Bonferroni-Holm corrections. Correlations of percent change across paradigms

were calculated using Pearson correlation. Pearson correlations were used to calculate the correla-

tion between percent change in each New world or No Task epoch. All multiple comparisons were

corrected with Bonferroni-Holm corrections.

Locomotion and immobility associated interneurons were identified using the phase angle of the

cross-correlation of interneuron activity and running speed, as described previously (Arriaga and

Han, 2017).

Statistical analyses were performed in Matlab.

Acknowledgements
This work was supported by the McDonnell Centers for Systems Neuroscience, and Cellular and

Molecular Neurobiology, and through the Cognitive, Computational, Systems Neuroscience Pathway

at Washington University in St. Louis. We thank Martha Bagnall and Suyash Harlalka for comments.

Additional information

Funding

Funder Grant reference number Author

McDonnell Center for Systems
Neuroscience

Edward B Han

McDonnell Center for Cellular
and Molecular Neurobiology

Edward B Han

Washington University in St.
Louis

Cognitive, Computational,
Systems Neuroscience
Pathway (Graduate Student
Fellowship)

Moises Arriaga

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Arriaga and Han. eLife 2019;8:e47611. DOI: https://doi.org/10.7554/eLife.47611 21 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.47611


Author contributions

Moises Arriaga, Resources, Data curation, Software, Formal analysis, Validation, Investigation,

Visualization, Methodology, Writing—review and editing; Edward B Han, Conceptualization,

Supervision, Investigation, Methodology, Writing—original draft, Writing—review and editing

Author ORCIDs

Edward B Han https://orcid.org/0000-0002-1009-2186

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of

the animals were handled according to approved institutional animal care and use committee

(IACUC) protocols of Washington University (Animal Welfare Assurance # A-3381-01). The protocol

was approved by the Washington University School of Medicine IACUC (#20170230). All surgery was

performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.47611.040

Author response https://doi.org/10.7554/eLife.47611.041

Additional files

Supplementary files
. Transparent reporting form DOI: https://doi.org/10.7554/eLife.47611.036

Data availability

Source data are available at https://doi.org/10.5061/dryad.f83kt85.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Arriaga M, Han E 2019 Data from: Structured Inhibitory
Activity Dynamics During Learning

https://doi.org/10.5061/
dryad.f83kt85

Dryad Digital
Repository, 10.5061/
dryad.f83kt85

References
Abraham WC, Robins A. 2005. Memory retention–the synaptic stability versus plasticity dilemma. Trends in
Neurosciences 28:73–78. DOI: https://doi.org/10.1016/j.tins.2004.12.003, PMID: 15667929

Acquas E, Wilson C, Fibiger HC. 1996. Conditioned and unconditioned stimuli increase frontal cortical and
hippocampal acetylcholine release: effects of novelty, habituation, and fear. The Journal of Neuroscience 16:
3089–3096. DOI: https://doi.org/10.1523/JNEUROSCI.16-09-03089.1996, PMID: 8622138

Alle H, Jonas P, Geiger JR. 2001. PTP and LTP at a hippocampal mossy fiber-interneuron synapse. PNAS 98:
14708–14713. DOI: https://doi.org/10.1073/pnas.251610898, PMID: 11734656

Andersen P, Eccles JC, LøYning Y. 1963. Hippocampus of the brain: recurrent inhibition in the Hippocampus with
identification of the inhibitory cell and its synapses. Nature 198:540–542. DOI: https://doi.org/10.1038/
198540a0, PMID: 14012800

Aronov D, Tank DW. 2014. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual
reality system. Neuron 84:442–456. DOI: https://doi.org/10.1016/j.neuron.2014.08.042, PMID: 25374363

Arriaga M, Han EB. 2017. Dedicated hippocampal inhibitory networks for locomotion and immobility. The
Journal of Neuroscience 37:9222–9238. DOI: https://doi.org/10.1523/JNEUROSCI.1076-17.2017, PMID: 2
8842418

Arriaga M, Han EB. 2019. Interneuron_calcium_imaging_scripts. GitHub. feeb537. https://github.com/Han-Lab-
WUSM/MA-scripts

Artola A, Singer W. 1987. Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330:649–652.
DOI: https://doi.org/10.1038/330649a0, PMID: 2446147

Barry C, Ginzberg LL, O’Keefe J, Burgess N. 2012. Grid cell firing patterns signal environmental novelty by
expansion. PNAS 109:17687–17692. DOI: https://doi.org/10.1073/pnas.1209918109, PMID: 23045662

Arriaga and Han. eLife 2019;8:e47611. DOI: https://doi.org/10.7554/eLife.47611 22 of 26

Research article Neuroscience

https://orcid.org/0000-0002-1009-2186
https://doi.org/10.7554/eLife.47611.040
https://doi.org/10.7554/eLife.47611.041
https://doi.org/10.7554/eLife.47611.036
https://doi.org/10.5061/dryad.f83kt85
https://doi.org/10.5061/dryad.f83kt85
https://doi.org/10.5061/dryad.f83kt85
https://doi.org/10.1016/j.tins.2004.12.003
http://www.ncbi.nlm.nih.gov/pubmed/15667929
https://doi.org/10.1523/JNEUROSCI.16-09-03089.1996
http://www.ncbi.nlm.nih.gov/pubmed/8622138
https://doi.org/10.1073/pnas.251610898
http://www.ncbi.nlm.nih.gov/pubmed/11734656
https://doi.org/10.1038/198540a0
https://doi.org/10.1038/198540a0
http://www.ncbi.nlm.nih.gov/pubmed/14012800
https://doi.org/10.1016/j.neuron.2014.08.042
http://www.ncbi.nlm.nih.gov/pubmed/25374363
https://doi.org/10.1523/JNEUROSCI.1076-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28842418
http://www.ncbi.nlm.nih.gov/pubmed/28842418
https://github.com/Han-Lab-WUSM/MA-scripts
https://github.com/Han-Lab-WUSM/MA-scripts
https://doi.org/10.1038/330649a0
http://www.ncbi.nlm.nih.gov/pubmed/2446147
https://doi.org/10.1073/pnas.1209918109
http://www.ncbi.nlm.nih.gov/pubmed/23045662
https://doi.org/10.7554/eLife.47611


Basu J, Zaremba JD, Cheung SK, Hitti FL, Zemelman BV, Losonczy A, Siegelbaum SA. 2016. Gating of
hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science 351:aaa5694.
DOI: https://doi.org/10.1126/science.aaa5694, PMID: 26744409

Bear MF, Press WA, Connors BW. 1992. Long-term potentiation in slices of kitten visual cortex and the effects of
NMDA receptor blockade. Journal of Neurophysiology 67:841–851. DOI: https://doi.org/10.1152/jn.1992.67.4.
841, PMID: 1350308

Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC. 2015. Conjunctive
input processing drives feature selectivity in hippocampal CA1 neurons. Nature Neuroscience 18:1133–1142.
DOI: https://doi.org/10.1038/nn.4062, PMID: 26167906

Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC. 2017. Behavioral time scale synaptic plasticity
underlies CA1 place fields. Science 357:1033–1036. DOI: https://doi.org/10.1126/science.aan3846, PMID: 2
8883072

Bliss TV, Lomo T. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the
anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology 232:331–356.
DOI: https://doi.org/10.1113/jphysiol.1973.sp010273, PMID: 4727084

Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V,
Looger LL, Svoboda K, Kim DS. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature
499:295–300. DOI: https://doi.org/10.1038/nature12354, PMID: 23868258

Chen SX, Kim AN, Peters AJ, Komiyama T. 2015. Subtype-specific plasticity of inhibitory circuits in motor cortex
during motor learning. Nature Neuroscience 18:1109–1115. DOI: https://doi.org/10.1038/nn.4049

Cichon J, Gan W-B. 2015. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature 520:
180–185. DOI: https://doi.org/10.1038/nature14251

Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R,
Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS. 2016.
Sensitive red protein calcium indicators for imaging neural activity. eLife 5:e12727. DOI: https://doi.org/10.
7554/eLife.12727

Danielson NB, Zaremba JD, Kaifosh P, Bowler J, Ladow M, Losonczy A. 2016. Sublayer-Specific coding dynamics
during spatial navigation and learning in hippocampal area CA1. Neuron 91:652–665. DOI: https://doi.org/10.
1016/j.neuron.2016.06.020, PMID: 27397517

Denman DJ, Luviano JA, Ollerenshaw DR, Cross S, Williams D, Buice MA, Olsen SR, Reid RC. 2018. Mouse color
and wavelength-specific luminance contrast sensitivity are non-uniform across visual space. eLife 7:e31209.
DOI: https://doi.org/10.7554/eLife.31209

Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW. 2010. Functional imaging of hippocampal place cells at
cellular resolution during virtual navigation. Nature Neuroscience 13:1433–1440. DOI: https://doi.org/10.1038/
nn.2648, PMID: 20890294

Donato F, Rompani SB, Caroni P. 2013. Parvalbumin-expressing basket-cell network plasticity induced by
experience regulates adult learning. Nature 504:272–276. DOI: https://doi.org/10.1038/nature12866

Dupret D, O’Neill J, Csicsvari J. 2013. Dynamic Reconfiguration of Hippocampal Interneuron Circuits during
Spatial Learning. Neuron 78:166–180. DOI: https://doi.org/10.1016/j.neuron.2013.01.033

Ego-Stengel V, Wilson MA. 2007. Spatial selectivity and theta phase precession in CA1 interneurons.
Hippocampus 17:161–174. DOI: https://doi.org/10.1002/hipo.20253, PMID: 17183531

Fino E, Yuste R. 2011. Dense inhibitory connectivity in neocortex. Neuron 69:1188–1203. DOI: https://doi.org/
10.1016/j.neuron.2011.02.025, PMID: 21435562

Francavilla R, Luo X, Magnin E, Tyan L, Topolnik L. 2015. Coordination of dendritic inhibition through local
disinhibitory circuits. Frontiers in Synaptic Neuroscience 7:5. DOI: https://doi.org/10.3389/fnsyn.2015.00005

Frank LM, Stanley GB, Brown EN. 2004. Hippocampal plasticity across multiple days of exposure to novel
environments. Journal of Neuroscience 24:7681–7689. DOI: https://doi.org/10.1523/JNEUROSCI.1958-04.
2004, PMID: 15342735

Garcia-Junco-Clemente P, Tring E, Ringach DL, Trachtenberg JT. 2019. State-Dependent subnetworks of
Parvalbumin-Expressing interneurons in neocortex. Cell Reports 26:2282–2288. DOI: https://doi.org/10.1016/j.
celrep.2019.02.005, PMID: 30811979

Gauthier JL, Tank DW. 2018. A dedicated population for reward coding in the Hippocampus. Neuron 99:179–
193. DOI: https://doi.org/10.1016/j.neuron.2018.06.008, PMID: 30008297

Gentet LJ, Kremer Y, Taniguchi H, Huang ZJ, Staiger JF, Petersen CC. 2012. Unique functional properties of
somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nature Neuroscience 15:607–612.
DOI: https://doi.org/10.1038/nn.3051, PMID: 22366760

Golding NL, Staff NP, Spruston N. 2002. Dendritic spikes as a mechanism for cooperative long-term
potentiation. Nature 418:326–331. DOI: https://doi.org/10.1038/nature00854, PMID: 12124625

Graves AR, Moore SJ, Bloss EB, Mensh BD, Kath WL, Spruston N. 2012. Hippocampal pyramidal neurons
comprise two distinct cell types that are countermodulated by metabotropic receptors. Neuron 76:776–789.
DOI: https://doi.org/10.1016/j.neuron.2012.09.036, PMID: 23177962

Hainmueller T, Bartos M. 2018. Parallel emergence of stable and dynamic memory engrams in the hippocampus.
Nature 558:292–296. DOI: https://doi.org/10.1038/s41586-018-0191-2, PMID: 29875406

Harris KD, Hochgerner H, Skene NG, Magno L, Katona L, Bengtsson Gonzales C, Somogyi P, Kessaris N,
Linnarsson S, Hjerling-Leffler J. 2018. Classes and continua of hippocampal CA1 inhibitory neurons revealed by
single-cell transcriptomics. PLOS Biology 16:e2006387. DOI: https://doi.org/10.1371/journal.pbio.2006387,
PMID: 29912866

Arriaga and Han. eLife 2019;8:e47611. DOI: https://doi.org/10.7554/eLife.47611 23 of 26

Research article Neuroscience

https://doi.org/10.1126/science.aaa5694
http://www.ncbi.nlm.nih.gov/pubmed/26744409
https://doi.org/10.1152/jn.1992.67.4.841
https://doi.org/10.1152/jn.1992.67.4.841
http://www.ncbi.nlm.nih.gov/pubmed/1350308
https://doi.org/10.1038/nn.4062
http://www.ncbi.nlm.nih.gov/pubmed/26167906
https://doi.org/10.1126/science.aan3846
http://www.ncbi.nlm.nih.gov/pubmed/28883072
http://www.ncbi.nlm.nih.gov/pubmed/28883072
https://doi.org/10.1113/jphysiol.1973.sp010273
http://www.ncbi.nlm.nih.gov/pubmed/4727084
https://doi.org/10.1038/nature12354
http://www.ncbi.nlm.nih.gov/pubmed/23868258
https://doi.org/10.1038/nn.4049
https://doi.org/10.1038/nature14251
https://doi.org/10.7554/eLife.12727
https://doi.org/10.7554/eLife.12727
https://doi.org/10.1016/j.neuron.2016.06.020
https://doi.org/10.1016/j.neuron.2016.06.020
http://www.ncbi.nlm.nih.gov/pubmed/27397517
https://doi.org/10.7554/eLife.31209
https://doi.org/10.1038/nn.2648
https://doi.org/10.1038/nn.2648
http://www.ncbi.nlm.nih.gov/pubmed/20890294
https://doi.org/10.1038/nature12866
https://doi.org/10.1016/j.neuron.2013.01.033
https://doi.org/10.1002/hipo.20253
http://www.ncbi.nlm.nih.gov/pubmed/17183531
https://doi.org/10.1016/j.neuron.2011.02.025
https://doi.org/10.1016/j.neuron.2011.02.025
http://www.ncbi.nlm.nih.gov/pubmed/21435562
https://doi.org/10.3389/fnsyn.2015.00005
https://doi.org/10.1523/JNEUROSCI.1958-04.2004
https://doi.org/10.1523/JNEUROSCI.1958-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15342735
https://doi.org/10.1016/j.celrep.2019.02.005
https://doi.org/10.1016/j.celrep.2019.02.005
http://www.ncbi.nlm.nih.gov/pubmed/30811979
https://doi.org/10.1016/j.neuron.2018.06.008
http://www.ncbi.nlm.nih.gov/pubmed/30008297
https://doi.org/10.1038/nn.3051
http://www.ncbi.nlm.nih.gov/pubmed/22366760
https://doi.org/10.1038/nature00854
http://www.ncbi.nlm.nih.gov/pubmed/12124625
https://doi.org/10.1016/j.neuron.2012.09.036
http://www.ncbi.nlm.nih.gov/pubmed/23177962
https://doi.org/10.1038/s41586-018-0191-2
http://www.ncbi.nlm.nih.gov/pubmed/29875406
https://doi.org/10.1371/journal.pbio.2006387
http://www.ncbi.nlm.nih.gov/pubmed/29912866
https://doi.org/10.7554/eLife.47611


Hartzell AL, Martyniuk KM, Brigidi GS, Heinz DA, Djaja NA, Payne A, Bloodgood BL. 2018. NPAS4 recruits CCK
basket cell synapses and enhances cannabinoid-sensitive inhibition in the mouse hippocampus. eLife 7:e35927.
DOI: https://doi.org/10.7554/eLife.35927

Harvey CD, Collman F, Dombeck DA, Tank DW. 2009. Intracellular dynamics of hippocampal place cells during
virtual navigation. Nature 461:941–946. DOI: https://doi.org/10.1038/nature08499

Karlsson MP, Frank LM. 2008. Network dynamics underlying the formation of sparse, informative representations
in the Hippocampus. Journal of Neuroscience 28:14271–14281. DOI: https://doi.org/10.1523/JNEUROSCI.
4261-08.2008, PMID: 19109508

Karnani MM, Jackson J, Ayzenshtat I, Hamzehei Sichani A, Manoocheri K, Kim S, Yuste R. 2016. Opening holes
in the blanket of inhibition: localized lateral disinhibition by VIP interneurons. Journal of Neuroscience 36:3471–
3480. DOI: https://doi.org/10.1523/JNEUROSCI.3646-15.2016, PMID: 27013676

Katona L, Lapray D, Viney TJ, Oulhaj A, Borhegyi Z, Micklem BR, Klausberger T, Somogyi P. 2014. Sleep and
Movement Differentiates Actions of Two Types of Somatostatin-Expressing GABAergic Interneuron in Rat
Hippocampus. Neuron 82:872–886. DOI: https://doi.org/10.1016/j.neuron.2014.04.007

Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. 2016. Dopamine release from the locus coeruleus to
the dorsal Hippocampus promotes spatial learning and memory. PNAS 113:14835–14840. DOI: https://doi.
org/10.1073/pnas.1616515114, PMID: 27930324

Khan AG, Poort J, Chadwick A, Blot A, Sahani M, Mrsic-Flogel TD, Hofer SB. 2018. Distinct learning-induced
changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nature
Neuroscience 21:851–859. DOI: https://doi.org/10.1038/s41593-018-0143-z, PMID: 29786081

Kim SM, Frank LM. 2009. Hippocampal lesions impair rapid learning of a continuous spatial alternation task.
PLOS ONE 4:e5494. DOI: https://doi.org/10.1371/journal.pone.0005494, PMID: 19424438

Klausberger T, Márton LF, Baude A, Roberts JD, Magill PJ, Somogyi P. 2004. Spike timing of dendrite-targeting
bistratified cells during hippocampal network oscillations in vivo. Nature Neuroscience 7:41–47. DOI: https://
doi.org/10.1038/nn1159, PMID: 14634650

Klausberger T, Somogyi P. 2008. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit
operations. Science 321:53–57. DOI: https://doi.org/10.1126/science.1149381, PMID: 18599766

Kubie JL, Muller RU, Bostock E. 1990. Spatial firing properties of hippocampal theta cells. The Journal of
Neuroscience 10:1110–1123. DOI: https://doi.org/10.1523/JNEUROSCI.10-04-01110.1990, PMID: 2329371

Lamsa K, Heeroma JH, Kullmann DM. 2005. Hebbian LTP in feed-forward inhibitory interneurons and the
temporal fidelity of input discrimination. Nature Neuroscience 8:916–924. DOI: https://doi.org/10.1038/
nn1486, PMID: 15937481

Larkum ME, Kaiser KM, Sakmann B. 1999. Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal
cells at a critical frequency of back-propagating action potentials. PNAS 96:14600–14604. DOI: https://doi.org/
10.1073/pnas.96.25.14600, PMID: 10588751

Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B. 2013. A disinhibitory circuit mediates motor integration in the
somatosensory cortex. Nature Neuroscience 16:1662–1670. DOI: https://doi.org/10.1038/nn.3544, PMID: 240
97044

Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A, Soltesz I. 2014.
Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82:1129–1144.
DOI: https://doi.org/10.1016/j.neuron.2014.03.034, PMID: 24836505

Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Lüthi A. 2011. A disinhibitory microcircuit for
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