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Abstract

The production of agricultural commodities faces increased risk of pests, diseases and other stresses due to climate change
and variability. This study assesses the potential distribution of agricultural pests under projected climatic scenarios using
evidence from the African coffee white stem borer (CWB), Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae), an
important pest of coffee in Zimbabwe. A species distribution modeling approach utilising Boosted Regression Trees (BRT)
and Generalized Linear Models (GLM) was applied on current and projected climate data obtained from the WorldClim
database and occurrence data (presence and absence) collected through on-farm biological surveys in Chipinge,
Chimanimani, Mutare and Mutasa districts in Zimbabwe. Results from both the BRT and GLM indicate that precipitation-
related variables are more important in determining species range for the CWB than temperature related variables. The CWB
has extensive potential habitats in all coffee areas with Mutasa district having the largest model average area suitable for
CWB under current and projected climatic conditions. Habitat ranges for CWB will increase under future climate scenarios
for Chipinge, Chimanimani and Mutare districts while it will decrease in Mutasa district. The highest percentage change in
area suitable for the CWB was for Chimanimani district with a model average of 49.1% (3 906 ha) increase in CWB range by
2080. The BRT and GLM predictions gave similar predicted ranges for Chipinge, Chimanimani and Mutasa districts compared
to the high variation in current and projected habitat area for CWB in Mutare district. The study concludes that suitable area
for CWB will increase significantly in Zimbabwe due to climate change and there is need to develop adaptation
mechanisms.
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Introduction

The agricultural sector, due to its size and sensitivity, is at risk

from global climate change with a projected average global yield

loss of up to 50% by 2050 [1,2]. Tropical countries, which already

have low productivity due to other development challenges are

vulnerable to the risks of climate change [3]. In Southern Africa,

agriculture is very important for economic development, poverty

alleviation, employment and food security, yet vulnerability to

climate risks is considered very high because of heavy reliance on

natural resources particularly water and rainfed traditional

agricultural systems [4,5]. Few studies have been conducted to

analyse the effect of biotic stresses on plantation crops such as

coffee, citrus, oil palm, rubber and others despite the fact that

these are important for domestic consumption and economic

growth [6,7]. Coffee (Coffea arabica L.) production is an important

economic activity in over 70 countries across 4 continents with an

estimated annual trade value of over twenty billion US dollars and

employing millions in the value chain [8–10].

Climate change is projected to have many effects on agricultural

productivity in the tropical areas [11–13]. The coffee value chain

will be affected from producers and farm workers to those involved

with coffee distribution and marketing [14,15]. Rainfall becoming

unreliable and temperature increases are expected to reduce the

suitability of many coffee producing zones as currently suitable

areas become marginal [14,16,17]. The incidence and severity of

some coffee pests and diseases such as the coffee berry borer

(Hypothenemus hampei (Ferrari)) and coffee leaf rust (Hemileia vastatrix

(B & Br)) are projected to increase, reducing yield and quality and

increasing production costs [8,18,19]. These effects will be

profound for the smallholder coffee farmers in Africa, Asia and

Latin America who supply up to 70% of global coffee, rely in

many cases solely on coffee as a unique and legal source of

livelihoods, and lack both coping and alternative economic options

[10,20].

In Zimbabwe, only Coffee arabica is produced mainly in the

eastern highlands districts of Chipinge, Chimanimani, Mutare and

Mutasa, and in the northern parts of the country in Guruve,

Harare and Mhangura [21,22]. Coffee is regarded as the second
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most profitable crop in Zimbabwe after flu-cured tobacco [13,23].

Pests of economic significance for both smallholder and large scale

coffee producers are the African coffee white stem borer

(Monochamus leuconotus (Pascoe)), the coffee leaf minor (Leucoptera

meyricki (Ghesquiére)) and the antestia bug (Antestiopsis orbitalis

(Kirk)); while major diseases include coffee leaf rust, Fusarium bark

disease (Fusarium lateritium) and the coffee berry disease (Colletorichum

kahawae (J.M.Waller & Bridge)) [21,24,25].

The coffee white stem borer belongs to the family Ceramby-

cidae and sub-family Lamiinae [26]. The adult is a beetle up to

30 mm long with black patches on a brown back and has long

horns that are twice the body length in males [24,27]. Although

the adult’s feeding activities may damage buds, shoots and stem

bark, it is the feeding activities of the larvae on the core and lower

parts of the plant that are associated with reduced productivity and

economic losses. The adults lay eggs on the bark of the coffee plant

and when hatched the larvae bore into the bark causing ring

barking and choking of the plant system with frass, which disturbs

uptake of metabolites [27]. The presence of CWB is detected by

yellowing of leaves, signs of ring barking, exit holes and frass.

CWB attack leads to stunted growth, wilting, dieback and reduced

yields on affected plants [24,28]. The complete life cycle of the

CWB can be up to two years with the larval stage taking about 20

months [24,27].

The CWB is the most serious pest of coffee in Zimbabwe with

yield losses of up to 25% and its prevalence and severity has been

increasing in recent decades [28]. The CWB was noted to be more

prevalent on smallholder farms with incidence of up to 70% and

all coffee varieties grown in Zimbabwe were susceptible to the pest.

Factors such as age of the coffee plant, mulching and shade are

important in influencing both the incidence and severity of CWB

on coffee farms in Zimbabwe. The yield losses due to CWB were

highest in Chipinge district with 25%, which was above the

average national yield loss of 15% [28]. The common manage-

ment practices for the CWB in Zimbabwe are picking and killing

adults as well as uprooting and burning infested plants [28–30].

Chemical control measures for control of CWB include chlorpyr-

ifos, endosulphan, fipronil, methomyl and monochrotophos

[28,31]. These are applied as stem banding treatments by a

knapsack sprayer or paint brush up to 90 cm above the ground

targeting the female adults, early instar larvae and eggs [21,28,31].

However many of these chemicals are already either banned or

listed and will be phased out.

Adult emergence of the CWB begins in late November to

December, peaks in January and ends in April, closely matching

the rainfall and temperature patterns of Zimbabwe [27,29,30].

This indicates that there is a weather dependence on the life cycle

and emergence patterns of CWB. Since there are significant

relationships between the life cycles of insects and weather

variables, it is possible to predict population dynamics and

incidences of pests for production areas over long periods of times

[8,32]. For example, cold temperatures disrupt egg development,

survival of larvae and result in mortality of emerged adults [33,34].

On the other hand, warm temperatures are favourable for the

successful completion of the pest life cycle while increasing host

plant susceptibility to pest attack [8,18,32,33].

Species distribution modeling (SDM) is important in determin-

ing realized niches of species and is useful for planning and

understanding the impacts of climate on the habitat suitability

[35,36]. SDMs are also referred to as habitat models, niche-

models and/or climate envelope models. The major assumption of

these models is that the potential occurrence areas of a species can

be spatially predicted using characteristics of known occurrence or

non-occurrence within its range [36,37]. Over the years many

SDMs have been developed and they vary in terms of complexity

and in the environmental variables used to predict species

distributions. Among the most commonly used SDMs are Boosted

Regression Trees (BRT), Generalized Linear Models (GLM),

Generalized Additive Models, Random Forests (RF), and the

Maximum Entropy (Maxent) [37–39]. The applicability and utility

of SDMs has been widely reviewed and explored [35,37,39–42].

With the risks of climate change becoming more apparent in

some sectors, there is a need to develop and test tools that can be

useful in understanding the impact of global warming, climatic

variability and related phenomena on the potential of agricultural

systems to maintain or improve productivity and profitability,

sustain livelihoods and safeguard the integrity of landscapes [2,6].

This is especially important in understanding where, when and

how efficient and systematic response mechanisms can be

developed in advance. The purpose of this study was to use

species distribution models to understand the distribution of CWB

and factors that influence its distribution in Zimbabwe. In

addition, the study aims to apply the models to predict the

changes in the distribution of the pest under projected future

climatic conditions. We apply an SDM approach to understand

the distribution of CWB from known presence and absence points

under current and projected climatic conditions. The results are

important for planning efficient and systematic control of the pest

in coffee and as such two models are used in order to ascertain

reliability of the predictions. We consider this study important as a

baseline in giving indications of the impact of climate change on

distribution of invertebrate species of agricultural importance.

Despite indications from other studies, this study was carried out

on the assumption that with successful adaptation technologies

such as irrigation, moisture conservation and climate-ready

varieties, the current coffee zones in Zimbabwe will not change

and therefore focuses only on the CWB risk in these areas.

Materials and Methods

Study area
The study was carried out in four agricultural districts in the

Manicaland province of Zimbabwe (Chipinge, Chimanimani,

Mutare and Mutasa), also known as the eastern highlands of

Zimbabwe (Figure 1). These districts also cover mainly agro-

ecological region 1, which is highly valued for its contribution to

agricultural productivity in Zimbabwe. These districts represent

the main coffee production zone in Zimbabwe in terms of

numbers of farmers and area under production. The eastern

highlands area is characterized by high rainfall (over 1000 mm per

anum). The highest elevation for a coffee farm in this study was at

an altitude of 1661 masl in the Chipinge district while the lowest

was at 631 masl in Mutasa District. The main coffee production

system is sun-coffee under intensive management and different

degrees of shading and cover cropping especially in the

smallholder sector.

Ethics
While no specific permits were required to carry out the field

surveys, permission was sought from each resident coffee farmer

before field sampling. Farms where the resident farmer or his/her

representative was not available at the time of the survey were

skipped. No field studies involved endangered or protected species.

Occurrence data
Data on the occurrence (presence/absence) of the CWB were

collected from all coffee producing districts in 2003 through

biological field surveys of coffee farms. At each farm the xy

Climate Change Impact on Coffee White Stem Borer
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coordinates (in WGS84 datum) were collected using a global

position system (Garmin eTrex VistaH) together with the presence

or absence of CWB on 30 coffee trees selected at random. This

dataset was converted to presence and absence data for each of the

sites. The presence of CWB was determined by checking signs of

CWB damage (larval damage frass, adult emergence holes and

adult feeding wounds) and/or the presence of adults in the coffee

trees between December and March. A total of 929 points were

collected during field surveys but 259 points were rejected for the

purpose of this study because they fell within the same

environmental data pixel (1 km61 km). A total of 670 unique

points were used in this study with 70% (N = 469) of the points

randomly subset for use in model calibration and the remaining

30% (N = 201) for accuracy assessment. The training data gave a

model that was then used to predict the occurrence of the CWB

across sites that had not been sampled. Only actual field collected

data were used in evaluating the performance of the modeling.

The occurrence data represented the occurrence of CWB in

coffee farms but were assumed to represent suitability of CWB for

both farms and surrounding natural habitats. All data were used

because the effect of current chemical and physical control

measures was considered insignificant since a number of indicators

were used to determine presence or absence of CWB. Chemical

control is done in November (before the rains) [24,30] and thus

some of the adult CWB that determined presence on coffee farms

could be from wild hosts and independent of any on-farm

management practices. In many of the sites (especially in

smallholder coffee farms), the application of chemical control

methods is not always effective because of use of incorrect rates

and mistiming of applications.

Figure 1. Map of the study areas showing the districts and coffee zones in Zimbabwe. The closed and open circles indicate locations
where CWB was sampled as present and absent respectively. A context map is given to provide location of the study area in Zimbabwe.
doi:10.1371/journal.pone.0073432.g001
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Environmental layers
For the current and projected climate conditions, six BIOCLIM

layers were obtained from the WorldClim database (http://www.

worldclim.org) [43]. These six layers were chosen based on their

potential relationship to coffee production as well as to the CWB

emergence patterns (Table 1) [30]. The data were available in

1 km2 grids and are interpolated from weather station recordings.

For the predicted scenario for 2080, this study used the predictions

from the Hadley Centre Coupled Model version 3 (HadCM3)

A2A scenario developed by the Hadley Centre for Climate

Prediction and Research WorldClim database (http://www.

worldclim.org/futdown.htm). This scenario assumes an above

average increase in atmospheric CO2 but not as much as the worst

case scenario [33].

The HadCM3 model was chosen for this analysis because it was

reported to have reliable ranges in climate predictions for Africa

when tested against observed data [7,8]. The environmental layers

were clipped to the coffee producing districts of Zimbabwe in

ArcGIS Desktop Release 10 [44]. The Variance Inflation Factor

(VIF) was used to determine whether there were correlations

between the predictor variables whose correlations were above 0.5

[45]. Only one variable had a correlation coefficient less than 0.5

(precipitation seasonality (Bio15)) with other variables. However,

VIF showed that there was no serious multicollinearity between

the variables except annual mean temperature (Bio1) and mean

temperature of the wettest month (Bio8) whose VIF were above 10

but were deemed ecologically important for the CWB distribution

[46].

Modeling approach
In order to obtain the current and projected distribution of a

species, many modeling techniques can be used depending mainly

on the availability of data and applicability of the output to the

biology of the species being modelled [35]. In this study, BRT and

GLM model calculations were performed in R environment 2.13.0

with the ‘dismo’, ‘raster’, ‘maptools’ ‘PresenceAbsence’, ‘gbm’ and

associated packages [47] to obtain the current and projected

distribution of CWB within the four districts using the selected

environmental variables [48].

The BRT model (also referred to as stochastic gradient

boosting) is considered among the most reliable spatial distribution

models compared to other approaches especially where presence

and absence data are available [39,49,50]. The BRT fits complex

non-linear functions to data by combining regression trees (linking

the response variable to predictor variables through recursive

binary splits) and boosting (additive combinations of models for

improved performance) [38,49]. The strength of BRT is in

capturing interactions of prediction layers and dealing with sharp

discontinuities [40,49]. The BRT has an improved predictive

performance as it reduces over-learning or over-fitting common in

other approaches as it can assume a linear, curvilinear or non-

linear function where the choice of error distribution includes

normal, binomial or Poisson distribution [49,50]. It is also robust

to the effects of multicollinearity as it can handle data with outliers,

a large number of predictors and missing predictor values [49,51].

A learning rate (contribution of each tree to the growing model) of

0.01 and a bag fraction (the percentage of data that the model uses

for each step) of 0.5 was used for the BRT function.

The GLM was used comparatively with the BRT because it is

among the most common approaches to species distribution

modeling [35,37]. GLM uses parametric functions to predict the

dependent variable from linear, quadratic or cubic combinations

of explanatory variables [38,52]. In this study, stepwise model

selection using the Akaike Information Criterion (AIC) was used

[48,53]. The GLM is widely used in ecological modeling because it

is able to deal with data with different error structures associated

with presence-absence data [35,52]. Diagnostic plots were used to

assess conformity of residuals to parametric assumptions.

Spatial autocorrelation, a major issue in regression based

modeling, was assessed using the Moran’s I correlogram to

determine whether there was a spatial pattern in the residuals of

models with distance [38]. The relative influence (RI) was

calculated for each of the predictor variables (bx) in the model

through deviance decomposition per degree of freedom ([51],

Equation 1)

RI(bx)~

(reduction in deviance=df)=total explained deviance)
ð1Þ

The outcome of the modeling was the probability of CWB

occurrence for each pixel ranging between 0 (less likely to occur)

and 1(most likely to occur). This outcome provided the spatial

distribution of the current and future distribution of CWB in the

study area. In addition to the probability maps, it was considered

important to have a categorical map that can be used to evaluate

model prediction and delineate areas as being suitable or not

suitable habitats of CWB [37,54]. This is achieved by setting a

threshold probability value above which the species will be

predicted to occur and below which it is predicted not to occur.

Although there are discussions about how this threshold should be

selected [37,53–56], we found it most appropriate to use a fixed

value of 0.5 (50%) as our threshold. This was because optimising

thresholds produced different optimal thresholds for the BRT and

the GLM which made model comparison appear unfair. In

addition, none of the methods of selecting a threshold tested

provided a consistent statistically better outcome than the 0.5

threshold in terms of sensitivity, specificity, Kappa and percent

correctly classified (PCC). The 50% threshold is also commonly

used as a threshold in species distribution modeling [57].

Results

Relative importance of environmental predictors
The CWB distribution was shown to have a greater response to

precipitation factors than to temperature-related factors in both

the BRT and the GLM. For the BRT model, average precipitation

of the wettest quarter was the best predictor of the distribution of

CWB (45.6%) followed by precipitation seasonality with a relative

importance of 24.2%. In the BRT model temperature seasonality

was also a significant predictor of CWB distribution with an RI of

Table 1. Environmental layers used for current and predicted
climate in the study.

Code Factor Units

Bio1 Annual mean temperature uC

Bio4 Temperature seasonality uC (6100)

Bio5 Maximum temperature of warmest month uC

Bio8 Mean temperature of the wettest month uC

Bio15 Precipitation seasonality mm

Bio16 Precipitation of wettest quarter mm

doi:10.1371/journal.pone.0073432.t001
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18.1% (Table 2). In the GLM model however, precipitation

seasonality was the best predictor of CWB distribution. Precipi-

tation seasonality accounted for 75.7% of the CWB distribution

for the GLM model, with the variables precipitation seasonality

and precipitation of the wettest quarter combined accounting for

88.2%. For both the BRT and the GLM, mean temperature of the

wettest month was the least important parameter (Table 2).

The optimum numbers of trees for the BRT model were 300

and they had a training data correlation of 0.652, a ROC of 0.876

and a discrimination mean of 0.815. The final GLM model from

the stepwise regression had three parameters; precipitation

seasonality, precipitation of the wettest quarter and annual mean

temperature. Precipitation seasonality was highly significant

(P,0.001) while the other variables were significant (P,0.05) in

predicting CWB distribution.

Current distribution of CWB
The BRT and GLM models showed the potential distribution of

the CWB under current climatic conditions in Zimbabwe. Mutasa

and Chipinge districts have the largest coffee producing areas

suitable for CWB while Chimanimani has the least. The models

showed that northern parts of the eastern highlands (Mutasa and

Mutare districts) have areas that are more suitable for the CWB

than the southern districts of Chimanimani and Chipinge

(Figure 2a and 2b).

The current suitable areas for CWB according to the BRT

model are shown in Figure 3a while the CWB suitable areas

according to the GLM are in Figure 4a. Mutasa district had the

largest highly suitable area for CWB under current climatic

conditions according to both the BRT and the GLM with 88

999 ha and 107 877 ha respectively (Table 3). High risk areas are

concentrated on the northern parts of the districts (Figure 3a and

4a). For Mutasa district, 58.9% and 71.4% of the area under

coffee were found to be highly suitable for CWB by the BRT and

the GLM models respectively. This was the highest area suitable

for CWB in all the four districts (Table 4). The BRT and the GLM

concurred on the area and spatial distribution of CWB risk for

Chipinge district with BRT predicting 26 969 ha (14.3%) while

the GLM showed 26 878 ha (14%). The western parts of Chipinge

district had better conditions suitable for CWB compared to the

eastern parts in both models. However, the BRT showed that the

area around Jersey had a high risk of CWB (Figure 3a) while the

GLM considered that area to have low risk (Figure 4a).

The models disagreed on the distribution of CWB in Mutare

district with the GLM showing 47.1% more area suitable for CWB

than the BRT under current climate conditions (Figure 3a and 4a).

Chimanimani district had a relatively small area currently under

coffee and the risk of CWB was low for the 80% and 90% of that

area according to BRT and the GLM respectively (Figure 3a and

4a). Notably, the area that was considered to have a high risk

according to the BRT was different from the area that was

considered to have a high risk by the GLM in Chimanimani

district while for other districts the areas generally corresponded.

In total, 31.0% (145 634 ha) of the area in Zimbabwe was

considered to have a high risk of CWB under current conditions

by the BRT model compared to 39.5% (183 300 ha) according to

the GLM.

Model accuracy assessment
Evaluation of the model performance using occurrence data

under the current climate scenario showed that both models had a

good performance in predicting the distribution of CWB

(AUC.0.75). The performance statistics of the two models were

close for specificity and Area under the Curve (AUC) while they

differed for model sensitivity and kappa with the GLM being

inferior to the BRT in both cases (Table 5). There was high

agreement between the GLM and BRT predictions of areas

suitable for CWB under current and predicted climatic conditions

(r2 = 0.98, Figure 5). The BRT predictions were below GLM

predictions in area suitable for CWB under projected climate.

Projected distribution of CWB by 2080
The distribution of CWB under projected climatic conditions in

the Chipinge district showed that 16.2% of the district (30 252 ha)

will have a high risk of CWB infestation according to the BRT

(Figure 3b). The GLM predicted 18.3% (35 060 ha) to become

suitable for CWB in 2080 for Chipinge district, an increase of

2.1% compared with the BRT prediction (Figure 3b). A total area

of 7 806 ha (29.3%) and 8 098 ha (27.3%) were projected to be

highly suitable for CWB infestation by the BRT and the GLM

respectively in Chimanimani district (Figure 3b and 4b). For the

Mutare district, projections by the BRT were that 62.3% of the

area will be at risk of CWB under future climatic conditions while

the GLM projected 55.4% of the area.

The Mutare district is the only district where the BRT projected

that more than half the area would be at high risk for infestation.

Forty-five per cent of Mutasa district (66 142 ha) will be highly

suitable for CWB infestation under projected climatic conditions

for 2080 according to the BRT compared to 83 605 ha (55.4%)

according to the GLM. Using the BRT, a total of 166 547 ha

(36.2%) are projected to have a high risk and this agrees with

37.8% predicted by the GLM. For the Chipinge, Chimanimani

and Mutasa districts, the GLM predicted more area to be at risk of

CWB while for Mutare district the BRT projected more area than

the GLM (Figure 3b and 4b).

The BRT model predicted high risk of infestation in both the

east and west of Chipinge (Figure 3b), while the GLM predicted

high risk exclusively in the west (Figure 4b). According to the BRT

model, the western parts and some areas in the eastern parts of

Chipinge district will have a higher risk of CWB (Figure 4b) In the

Chimanimani district, the BRT and the GLM predict that

southern parts of the district will have high risk of CWB, although

the BRT extended the area to central parts of the coffee areas in

the district. The eastern, western and pockets of the northern parts

of the Mutare district will be at high risk of CWB according to

both models. For Mutasa district, the models agree on the

distribution of CWB in the northern parts and eastern-central

parts of the district while they differ on the distribution of CWB in

south-western parts under projected climatic conditions (Figure 3b

and 4b).

Table 2. Relative importance of factors in each model.

Variable BRT GLM

Bio16 45.6 12.5

Bio15 24.2 75.7

Bio4 18.1 0.3

Bio5 6.0 4.9

Bio1 3.2 6.3

Bio8 2.9 0.2

doi:10.1371/journal.pone.0073432.t002

Climate Change Impact on Coffee White Stem Borer

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e73432



Changes in the risk of CWB
The models predict that there will be increases in area suitable

for CWB infestation in Chipinge, Chimanimani and Mutare

districts by 2080 (Table 4). The greatest increase was found in the

Chimanimani district where the GLM projections indicated that

the area suitable for CWB will increase by over 200% from 2

697 ha to 8 098 ha. Alternatively, the BRT showed only a 44.7%

increase in area for Chimanimani district but projected more than

150% increase in area favoured by CWB in Mutare district. For

Chipinge district, the GLM and BRT projected an increase of

30.4% and 12.2% in area favourable for CWB in 2080

respectively. Both models agreed that the suitable area will

decrease by 2080 for Mutasa district (Table 4). The GLM showed

that the total area with high risk of CWB will decrease in 2080 by

3.9% while the BRT showed that the total area will increase by

14.4%.

Discussion

Biotic factors affecting distribution of CWB in Zimbabwe
Precipitation-related factors have been found to be most

important in determining the distribution of the CWB with

precipitation of the wettest quarter (Bio16) and precipitation

seasonality (Bio15) being the most important. The wettest quarter

is often January to March in Zimbabwe’s tropical savannah

climate. These findings agree with Kutywayo [30] who observed

that the emergence patterns of adult CWB in Zimbabwe

correspond with rainfall, peaking in January. This suggests that

areas that have more rainfall are likely to have more CWB as

rainfall induces the pest’s emergence and beginning of breeding.

Precipitation seasonality, which is determined by patterns in the

distribution of precipitation such as beginning or end of the

season, was also found to be important especially for the GLM.

Figure 2. Probability of occurrence of CWB that determines its distribution surface in the four Districts. Figure 2(a) shows the
probability of CWB occurrence for each area obtained from BRT model. Figure 2(b) shows the probability of CWB occurrence for each area obtained
from GLM.
doi:10.1371/journal.pone.0073432.g002
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Since the CWB lifecycle can last up to 24 months [24], the

biotic factors that are related to its distribution have to be

conducive for CWB for at least two seasons. In light of this, the

seasonality of rainfall becomes important as it determines the

variation of the supportive environment of the pest over a longer

time period. The relationship between weather variables such as

temperature and precipitation with the occurrence of CWB could

be clearly determined in long-term time series data, which are

difficult to obtain or maintain making model based estimation

more practical.

Temperature-related factors such as maximum temperature of

warmest month (Bio5) and temperature seasonality (Bio4) were

found to not be important in determining CWB distribution. This

is likely due to the fact that variation in temperature across the

coffee zones is relatively small, as temperature (especially range) is

one of the most important factors in determining areas that are

suitable for coffee production in Zimbabwe [24,58]. Interestingly,

previous studies have found that temperature variability is the

most important factor for the distribution of other important pests

of coffee such as the coffee berry borer [8,18]. The observation

that precipitation factors are more important than temperature-

related factors could indicate that the current and projected

temperature ranges are both within range required for CWB

survival and propagation. More work is therefore required to

determine the thresholds and response of CWB to temperature

ranges through behavioural bioassays.

Projected distribution of CWB and implications on coffee
production

Given the projected future climatic conditions, the BRT and

GLM models predicted that the risk of CWB will increase in many

districts of Zimbabwe; a finding that is consistent with other

Figure 3. Distribution of CWB in coffee zones from BRT Model. Figure 3(a) shows the current distribution of CWB from the BRT model.
Figure 3(b) shows the projected distribution of CWB from the BRT. The red zones are areas with a probability of occurrence above 0.5 indicating CWB
is likely to occur and the yellow zones are areas that have a probability below 0.5 indicating CWB is less likely to occur.
doi:10.1371/journal.pone.0073432.g003
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studies about the impact of climate change on pests in coffee and

other crops [2,7,11,12,15,16,59]. Studies on the impact of climate

change on the coffee berry borer (Hypothenemus hampei) for example,

showed that the impact of the pest is likely to increase due to

projected increase in temperature from climate change [8,18].

Some studies that looked at the general suitability of coffee

production based on biotic factors projected that the areas suitable

for coffee in many countries will decrease due to climate change

[12,14,16,60]. These studies did not specify exactly what biotic or

abiotic factors will make coffee unsuitable in the studied areas and

probably, increased pest pressure could be among the most

limiting factor to coffee under projected future climatic conditions

production. Our findings concur with general observations that

the CWB is increasingly becoming the most important pest of

coffee in Zimbabwe and other African countries [28].

Figure 4. Distribution of CWB in coffee zones from GLM. Figure 4(a) shows the current distribution of CWB from the GLM. Figure 4(b) shows
the projected distribution of CWB from the GLM. The red zones are areas with a probability of occurrence above 0.5 indicating CWB is likely to occur
and the yellow zones are areas that have a probability below 0.5 indicating CWB is less likely to occur.
doi:10.1371/journal.pone.0073432.g004

Table 3. Current and projected area suitable for CWB
obtained from the BRT and the GLM model (ha).

District BRT GLM

Current 2080 Current 2080

Chipinge 26969 30252 26878 35060

Chimanimani 5394 7806 2697 8098

Mutare 24272 62347 45848 49423

Mutasa 88999 66142 107877 83605

doi:10.1371/journal.pone.0073432.t003
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It is surprising that both the BRT and the GLM projected that

the CWB risk for Mutasa district will decline with some areas that

currently have high risks projected to have reduced risk by 2080.

Mutasa district had the highest incidence (70.2%) and severity

(20.9%) of CWB in biological surveys [28] and is the hub of

smallholder farmers in the country. Given that the coffee area in

Mutasa is only in Honde Valley, it could be possible that the

conditions in the area that are currently supporting the high

incidences will become less favourable for the CWB. Although

impacts of climate change on agriculture will largely be negative,

some areas will become more productive in the wake of climate

change due to increased carbon dioxide levels which in turn

increases the photosynthetic rates of plants and ability of the plant

to produce enough for pests without affecting yields [61]. For

example, while some places will have less and unevenly distributed

rainfall, some areas will have more rainfall and more conducive

environments [59] and this could be the case for Mutasa district.

Conversely, climate change could have exceeded the precipitation

and temperature thresholds required for survival and spread of the

pest leading to the area not being favourable for the pest to thrive

and hence reduced risk.

Although the BRT and GLM agreed about the areas and spatial

distribution of CWB under both the current and projected climatic

conditions, the fact that they differed and in some respects widely

show that the assumptions of these models should be examined

and tested so that we can confidently develop effective manage-

ment and mitigation programs. There are fundamental differences

in the assumptions and fitting of data between the BRT and the

GLM which could partly explain some of the differences in

obtained distribution of CWB. The GLM is in the group of

traditional straightforward regression based approaches that have

been modified for analysis of data with non-normally distributed

errors such as presence-absence data [49]. The GLM allows non-

linearity in the model structure and thus accommodates the

exponential family of distributions such as Poisson, Gaussian,

binomial and gamma using link functions. It assumes linear effects

on the transformation of the response variable with predictor

variables being either discrete or continuous [52,62,63]. The BRT

model is significantly different from the GLM in approach. Unlike

the GLM which is based on statistical methods, the BRT borrows

its approach from statistics, data mining and machine learning

[40,49]. Therefore, by design, the BRT is superior in approach

than the GLM because the final BRT model is learned from the

data and not predetermined as in the GLM. This may therefore

explain the partial differences in CWB suitable area and spatial

distribution from the two models and the superiority of BRT in

performance in this study.

The disagreement of the models in predicting the current

distribution of CWB was greatest for the Mutare district. This

discrepancy could be the result of the topology of the area. That is,

the coffee production zone for Mutare district is on mountainous

areas and valleys (Vumba and Burma Valley) where the local

rather than the general climate is most significant, sometimes over

very small areas. In addition, the district is dominated by large

scale corporate farmers who, despite climatic factors being

conducive for CWB, have resources for its control and for creating

an environment discouraging it through irrigation and other

management practices. This is because the CWB was previously

regarded as a pest of mismanaged or stressed coffee and thus can

Table 4. Area and percentage change in area suitable for CWB with climate change. The mean is the average of the GLM and BRT
models.

Current area(ha) Projected area(ha): 2080 % Change

District GLM BRT Mean GLM BRT Mean GLM BRT Mean

Chipinge 26878 26969 26924 35060 30252 32656 30.4 12.2 17.6

Chimanimani 2697 5394 4045 8098 7806 7952 200.3 44.7 49.1

Mutare 45848 24272 35060 49423 62347 55885 7.8 156.9 37.3

Mutasa 107877 88999 98438 83605 66142 74873 222.5 225.7 231.5

National 183300 145634 164467 176186 166547 171366 23.9 14.4 4.0

doi:10.1371/journal.pone.0073432.t004

Figure 5. Comparison of area suitable for CWB for each district
as determined by BRT and GLM under current (N) and projected
(¤) climatic conditions.
doi:10.1371/journal.pone.0073432.g005

Table 5. Evaluation of model performance.

Statistic BRT GLM

Sensitivity 0.81 0.76

Specificity 0.72 0.71

AUC 0.79 0.78

Kappa 0.53 0.47

doi:10.1371/journal.pone.0073432.t005
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distort the relationship between CWB and biotic factors used in

the predictions and thus the accuracy of the models.

Climate change adaptation mechanisms for the CWB
management

Given the general increased risk from CWB in the face of

climate change, there is a need to develop adaptation strategies in

order to minimize the impact of the pest on coffee production and

on those who rely on coffee production. Research should focus

more on understanding the host preferences of the pest in terms of

varieties and agronomic conditions. It has been suggested that

coffee agroforestry systems may be an option to counter the

impacts of climate change including reducing the risk of pests

[3,8,17,64]. Further studies are required to verify the impact of

coffee agroforestry systems in reducing the risk of CWB. Crop

improvement programmes for coffee could focus on developing

varieties that are less preferable to the pest or whose yield and

survival are not significantly reduced by pest attack. Our

assumption that current coffee production areas will not change

may need to be re-examined in the context of these results given

that the pressure of serious pests such as CWB may determine

sustainability of coffee production, especially for smallholders who

owned the majority of the farms sampled.

Other cost-effective and environmentally safe management

options should also be looked at, with a focus on areas whose risk

will increase due to climate change. For example, research on the

potential use of pheromones for monitoring and trapping CWB,

the use of biological control agents and alternative insecticides

should be strengthened in the face of climate change [26,65,66].

Site specific plans and response mechanisms could also be

developed given the current and projected changes in the areas

and spatial distribution of the CWB in Zimbabwe. In addition,

although suggesting growing coffee in low risk areas may have

impacts on the livelihoods of many farmers and farm workers,

coffee production in Zimbabwe could be more concentrated in the

areas with less projected risk of CWB. Other climate change

adaptation strategies such as crop insurance schemes, promotion

of crop-livestock synergies, adoption of conservation farming

methods and diversification of land uses, agricultural systems and

sources of income are also suggested for the coffee sector in

Zimbabwe[13,67]. Further work of this nature should also be done

for other pests of coffee as well as for other crops of strategic

importance for national food security and economic development

in order to build national preparedness [68].

Potential limitations
Modeling species distribution in space and time is based on

assumptions inherent in the models, some of which cannot be

tested [33,37,69]. Future climate projections are also based on

assumptions that are very difficult to ascertain. The area highly

suitable for CWB obtained from this work does not necessarily

translate into a measure of field infestation as, in addition to the

biotic factors used in this study, multiple other physical and

socioeconomic factors determine CWB incidence and infestation

[28]. Given these challenges, the validity of models in making

predictions is questioned [37,69] but modeling still remains an

important tool for future planning purposes [36,37,69]. The results

obtained from these models could be very useful in responding to

climate change challenges especially in the agricultural sector

which is projected to be the most vulnerable.

Conclusions

The BRT and GLM models developed in this study were

considered reliable in explaining the distribution of CWB. When

these models were modified to incorporate how the climate of the

region may change by 2080, they predict that CWB will become

more common in some coffee districts while in one district this pest

may decline in importance. Precipitation related variables were

found as the most important predictors of CWB distribution.

While discrepancies exist between the degree to which these

models predict whether CWB will increase or decrease in different

districts, they provide a starting point for planning mitigation

programs and strategies to respond to the impacts of future climate

change. While not addressed in this study, the future distribution

and profitability of coffee production should also be considered

when developing strategies for future coffee production. There is

need to develop and apply adaptation strategies to minimize the

negative impacts not only on the CWB but possibly for other pests.
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59. Ladányi M, Horváth L (2010) A review of the potential climate change impact

on insect populations - General and agricultural aspects. Applied Ecology and

Environmental Research 8: 143–152.

60. International Coffee Organization (2009) Climate change and coffee.

International Coffee Council. London: 103rd Session of International Coffee

Organizatoin (ICO). pp. 14.

61. Trumble J, Butler C (2009) Climate change will exacerbate Carlifornia’s insect

pest problems. Carliformia Agriculture 63: 73–78.

62. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, et al. (2009)

Generalized linear mixed models: a practical guide for ecology and evolution.

Trends in Ecology & Evolution 24: 127–135.

63. Colcagno V, de Mazancourt C (2010) glmulti: An R package for easy automated

model selection with (generalized) linear models. Journal of Statistical Software

34.

64. Lin B (2011) Resilience in agriculture through crop diversification: adaptive

management for environmental change. Bioscience 61: 183–193.

65. Kutywayo V, Karanja L, Odour G (2006) Characterisation of a Malawian

isolate of Beauveria bassiana, a potential control agent of coffee stem borer,

Monochamus leuconotus. Communications on the Agricultural & Applied Biological

Sciences 71: 245–252.

66. Kutywayo D (1999) Research on environmentally friendly insect pest control for

coffee in Zimbabwe. In: Devlin JF, Zettel T, editors. Ecological Round Table

Series: Ecoagriculture: Initiatives in Eastern and Southern Africa. Harare:

Weaver Press. pp. 544.

67. Schroth G, Laderach P, Dempewolf J, Philpott S, Haggar J, et al. (2009)

Towards a adaptation climate change adaptation strategy for coffee commu-

nities and ecosystems in Sierra Madre de Chiappas, Mexico. Mitigation and

Adaptation to Global Change 14: 605–625.

68. Ziervogel G, Zermoglio F (2009) Climate change scenarios and the development

of adaptation strategies in Africa: challenges and opportunities. Climate

Research 30: 133–146.
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