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Abstract

Background: The nematode intestine is a major organ responsible for nutrient digestion and absorption; it is also involved
in many other processes, such as reproduction, innate immunity, stress responses, and aging. The importance of the
intestine as a target for the control of parasitic nematodes has been demonstrated. However, the lack of detailed
knowledge on the molecular and cellular functions of the intestine and the level of its conservation across nematodes has
impeded breakthroughs in this application.

Methods and Findings: As part of an extensive effort to investigate various transcribed genomes from Ascaris suum and
Haemonchus contortus, we generated a large collection of intestinal sequences from parasitic nematodes by identifying
3,121 A. suum and 1,755 H. contortus genes expressed in the adult intestine through the generation of expressed sequence
tags. Cross-species comparisons to the intestine of the free-living C. elegans revealed substantial diversification in the adult
intestinal transcriptomes among these species, suggesting lineage- or species-specific adaptations during nematode
evolution. In contrast, significant conservation of the intestinal gene repertories was also evident, despite the evolutionary
distance of ,350 million years separating them. A group of 241 intestinal protein families (IntFam-241), each containing
members from all three species, was identified based on sequence similarities. These conserved proteins accounted for
,20% of the sampled intestinal transcriptomes from the three nematodes and are proposed to represent conserved core
functions in the nematode intestine. Functional characterizations of the IntFam-241 suggested important roles in molecular
functions such as protein kinases and proteases, and biological pathways of carbohydrate metabolism, energy metabolism,
and translation. Conservation in the core protein families was further explored by extrapolating observable RNA
interference phenotypes in C. elegans to their parasitic counterparts.

Conclusions: Our study has provided novel insights into the nematode intestine and lays foundations for further
comparative studies on biology, parasitism, and evolution within the phylum Nematoda.
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Introduction

The intestine is one of the major organs in nematodes, creating

a key surface at the intestinal apical membrane that interacts with

the environment. While specific cellular characteristics of the

intestine can be diverse among nematode species, they typically

conform to polarized epithelial cells with the apical membrane

composed of microvilli lining the digestive tube. In apparent

contrast to other surfaces of nematodes, digestive and assimilative

functions, as well as various metabolic pathways and cellular

trafficking, are expected to be extremely active at the intestinal

surface. For example, an adult Caenorhabditis elegans is capable of

producing oocytes with about the same total biomass as its own

body per day [1], but the average intestinal residence time for

foods was estimated to be less than two minutes in C. elegans [2],

suggesting that the microvillous membrane must have an

enormous capacity for nutrient digestion and absorption. In

addition, the intestine has to offer innate immunity against

invasive pathogens, and adaptations at the apical intestinal

membrane may be required to protect parasitic nematodes against

host immune systems. Furthermore, the nematode intestine has

been suggested to be involved in other biological processes such as

stress responses, body size control, and aging [1].

Three lines of evidence indicate that the intestine is an

important target for the control of parasitic nematodes. First,

intestinal antigens enriched for apical membrane-associated
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proteins have been successfully used to immunize against

Haemonchus contortus, a hematophagous nematode of small rumi-

nants [3–7]. Surface-bound nematode proteases are a dominant,

but not exclusive, group of proteins that have been implicated in

inducing this protection. A prospective mechanism of the

immunity involves perturbing nutrient digestion and acquisition

at the intestinal surface by the ingested host-derived antibodies

capable of neutralizing parasite digestive proteases [7]. Further

investigations conducted with hematophagous hookworms also

produced similar effects [8]. Second, adult H. contortus intestinal

cells are hypersensitive to benzimidazole anthelmintics, apparently

through the target protein beta-tubulin isotype 1 [9,10]. It was

suggested that the drug inhibited vesicle transport in the apical

secretory pathway, causing the intracellular release of the digestive

enzymes destined for secretion and subsequent cytotoxic effects

[9]. Third, parasite control has been demonstrated by inhibition of

an intestinal enzyme, cathepsin L cysteine protease, by either

RNA interference or a chemical inhibitor in the plant parasitic

nematode Meloidogyne incognita [11]. These observations generate

great interests to uncover the basic characteristics of the intestinal

cells that might be further exploited for the broad control of

parasitic nematodes. However, the dearth of relevant experimental

systems and molecular information such as gene repertoires for

many parasitic species has impeded rapid progress.

Five major clades (I–V) are currently recognized to comprise the

phylum Nematoda [12,13]. So far, almost all studies of the intestine at

the gene level have focused on the clade V nematodes. A small-scale

sampling of expressed sequence tags (ESTs) from the dissected

intestine from adult H. contortus females identified 51 intestinal genes

including cysteine proteases [14], this list was later expanded via a

proteomic approach to include a number of apical intestinal

membrane proteases from H. contortus and hookworms [15]. Intestinal

EST libraries generated from laser-dissected materials from Necator

americanus and Ancylostoma caninum allowed the identification of 544

intestine-expressed genes [16]. Although a more comprehensive

dataset with .5,000 intestinal genes is available in C. elegans [17–19],

it is unclear, given the evolutionary diversity within Nematoda, to

what extent the molecular and cellular functions of the intestine can

be extrapolated across nematode species.

In this study, we sampled the transcribed genomes from several

tissues and developmental stages from two parasitic nematodes:

the clade III nematode Ascaris suum, which presumably feeds on the

semi-digested contents in the host intestine, and the clade V blood-

feeding parasite H. contortus. Nearly 10,000 and 5,000 genes were

identified from the two nematodes, respectively. More important-

ly, given the attention to the intestine, we produced the largest

collection of intestinal genes in parasitic nematodes by dissecting

adult intestine from each species, a procedure that is not practical

for many other nematodes because of their small sizes and the lack

of laboratory culturing systems. Extensive cross-species compari-

sons were made among the adult intestinal genes from the

parasites and those expressed in the adult intestine of the free-

living bacterivore C. elegans. Both diversification and conservation

of intestinal gene repertories were evident among the species

investigated. The diversities of intestinal transcriptomes by clade

and species may reflect the substantial life style differences among

these nematodes. A group of 241 protein families were found

conserved in the intestine of all three nematodes, accounting for

,20% of the intestinal gene repertoires from the three species.

These genes may include core intestinal functions that are

indispensable among many nematodes. Functional annotations

were generated for the intestinal genes. Molecular characteristics

of the intestinal genes were further explored to highlight various

physiological aspects of the nematode intestine.

Materials and Methods

EST generation, clustering, and translation
Dissection of the adult intestine was carefully performed under

microscopy as described previously [14,20,21]. The samples used in

this study had also passed another round of visual inspection

microscopically to ensure they did not contain other tissues such as

muscle, esophagus, or hypodermis. Detailed information on genetic

materials and cDNA library construction are available at www.

nematode.net. ESTs were processed and clustered as described

before [22–25]. EST contig sequences were translated individually by

Prot4EST, a 6-tier translation pipeline combining both similarity-

based methods and de novo predictions [26], for downstream analysis.

Identification of sequence similarities
Databases used for sequence comparisons were: i) Caenorhabditis

spp., all amino acid sequences in the complete genomes of C. elegans

(Wormbase Release v150), C. briggsae (June, 2006), and C. remanei

(June, 2006), ii) Other Nematoda, all non-Caenorhabditis nematode

nucleic acid sequences in GenBank excluding those from A. suum

(when analyzing A. suum sequences) or H. contortus (when querying

H. contortus sequences) (October 18, 2006), and iii) Non-Nematoda,

all amino acid sequences in the non-redundant protein database

NR excluding those from nematode species (September 20, 2006).

WU-BLASTP (wordmask = seg postwe B = 1000 topcomboN = 1)

was used to query the translated sequences against protein

databases, and WU-TBLASTN (wordmask = seg lcmask

B = 1000 topcomboN = 1) for searching against nucleotide data-

bases [27]. The E-value cutoff of 1.0e25 was used to accept

sequence similarities in all BLAST searches.

Identification of intestine-enriched genes
Each intestinal EST cluster was assigned two counts according

to the numbers of times it was sampled from either the intestinal or

Author Summary

Biological properties of the nematode intestine warrant in-
depth investigation, the results of which can be utilized in
the control of parasitic nematodes that infect humans,
livestock, and plants. Both the importance of intestinal
antigens from Haemonchus contortus in immunity and the
damage to H. contortus intestine by anthelmintic fenben-
dazole have highlighted the versatility of the intestine as
an emerging target. However, biological information
regarding fundamental intestinal cell functions and
mechanisms is currently limited. Conserved intestinal
genes across nematode pathogens could offer molecular
targets for broad parasite control. Furthermore, qualitative
and quantitative comparisons on intestinal gene expres-
sion among species and lineages can identify basic
adaptations relative to a critical selective force, the
nutrient acquisition. This study begins to identify intestinal
cell characteristics that are conserved across representa-
tives of two clades of nematodes (V and III) and further
clarifies diversities that likely reflect species- or lineage-
specific adaptations. Results consistent with functional
data on digestive enzymes from H. contortus and RNAi in
Caenorhabditis elegans, as examples, support the potential
for the comparative genomics approach to produce
practical applications. This study provides a platform on
which extensive investigation of intestinal genes and a
more comprehensive understanding of the Nematoda can
be gained.
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non-intestinal cDNA libraries, respectively. Similarly, each C.

elegans intestinal gene was assigned two counts for the numbers of

times it was sampled by SAGE tags from either the glp-4 dissected

gut or the glp-4 adult whole worm, respectively. The mutants lack

the gonad when raised at 25uC, therefore contamination by other

tissues is less likely [17]. The SAGE data was downloaded with

sequence quality filter = 0.99, no normalization, duplicate ditags

and ambiguous or antisense tags removed (April 19, 2006; mapped

to Wormbase Release v150) [17]. A Poisson-based enrichment

test, considering both the total sampling sizes and random

variations [28], was implemented to compute an P-value to

represent the likelihood of intestinal enrichment for each EST

cluster or C. elegans gene using these two counts. The P-value cutoff

of 0.001 was chosen to define the putative intestine-enriched genes

from the three nematodes.

Prediction of signal peptide (SP) and transmembrane
(TM) domain

A hidden Markov modeling-based algorithm, Phobius [29], was

used with default setting. Each query sequence was further

annotated as TM-only, TM with SP, SP-only, or intracellular

based on raw Phobius outputs. For each EST cluster, Phobius

annotation was predicted for each contig and summarized at the

EST cluster level. A modified Wormbase Release v150 containing

only the longest splicing isoform at each gene loci was used as the

complete gene set of the C. elegans genome.

Identification of orthogous gene pairs between A. suum
and C. elegans

For tissue-level comparisons made between intestine and

gonad, InParanoid [30] was used at default settings to identify a

total of 1,764 putative orthologous groups between all the A.

suum EST clusters and the complete gene set of C. elegans (the

modified Wormbase Release v150 containing only the longest

splicing isoform at each gene loci). InParanoid-generated main

orthologous pairs, which are essentially the mutual-best matches

between all the available genes from the two species, were

further screened against the 447,546 A. suum Genome Survey

Sequences (GSSs) that were generated recently (Mitreva,

unpublished), resulting in the final group of 1,652 putative

main orthologous pairs in which the C. elegans members do not

have better matches in GSSs than the A. suum EST partners

assigned by InParanoid. C. elegans gonad-expressed genes were

extracted from SAGE data generated from dissected gonad

(March 12, 2007) [17].

Identification of intestinal protein families
An all-against-all WU-BLASTP was performed on all the

9,918 translated intestinal genes from the three species (including

sequences for EST contigs from the two parasites and 5,056 C.

elegans genes). Raw BLAST results were fed to a C-language

implementation of Markov Cluster (MCL) Algorithm (www.

micans.org/mcl), a fast and scalable unsupervised cluster

algorithm based on simulation of flow in graphs [31]. An

Inflation Fact of 1.6 was chosen for the MCL clustering. The

MCL output was then summarized at the EST cluster level,

during which we applied an additional filtering step to remove an

EST cluster from a MCL protein family if less than 10% of its

total contigs were clustered into that family. These parameters

were based on manual inspection of the results on a test set

consisting of the putative intestine-enriched genes with 210

parasite EST clusters and 247 C. elegans genes (false positive rate

of 3%; data not shown).

Gene Ontology mappings and identification of
statistically enriched ontologies

Default parameters for InterProScan v13.1 [32] were used to

search against the InterPro database [33]. Raw InterProScan

results for the translated EST contigs were summarized at the EST

cluster level. Gene ontology (GO) terms were further assigned and

displayed graphically by the AmiGO browser with default

parameters and the ontology data released on March 15,

2007[34]. Complete GO mappings for the three intestinal

transcriptomes are available at www.nematode.net. For each

GO term, its enrichment in an IntFam group (such as the IntFam-

241 group) was measured over the complete set of 9,918 translated

intestinal genes using a hypergeometric test, the p-value cutoff of

1.0e25 was chosen for enrichment. The less informative

ontologies, including those at level 4 or higher for Biological

Process or Molecular Function, and those at level 2 or higher for

Cellular Component, were removed from the enrichment list. Also

removed were redundant ontologies by keeping only the lower

level more informative ontology if the same group of genes was

mapped to more than one GO term.

KEGG pathway analysis
An empirical mixed approach was used for mapping the novel

genes to canonical pathways. The E-value cut-off of 1.0e210

reported by WU-BLASTP against the Genes Database Release

39.0 from Kyoto Encyclopedia of Genes and Genomes (KEGG)

was first used for finding homologous matches. Then the top

match and all the matches within a range of 30% of the top

BLAST score, if meeting the cut-off, were accepted for valid

KEGG associations [35–37]. A hypergeometric test, measuring

the relative coverage of the KEGG-annotated orthologous groups

assigned to a pathway, was implemented to identify the enriched

pathways for each intestine [38].

Accession numbers
Nucleotide sequences data reported in this paper are available

in the GenBank, EMBL and DDBJ databases. The accession

numbers for ESTs from A. suum are: BI781215-BI784439,

BM032617-BM034650, BM280443-BM285290, BM318846-

BM319958, BM515079-BM518821, BM566483-BM567588,

BM568416-BM569529, BM732977-BM734435, BM964439-

BM965448, BQ094886-BQ096565, BQ380669-BQ383404,

BQ835081-BQ835723, BU965907-BU966430, CA849193-

CA850481, CA953713-CA955182, CB100077-CB102042,

DV018957-DV019894, EB186562-EB187079. The accession

numbers for ESTs from H. contortus are: CA033335-CA034379,

CA868595-CA870175, CA956361-CA959150, CB018493-

CB022024, CB063882-CB065260, CB099467-CB100076,

CB190871-CB192419, CB331948-CB333475.

Results/Discussion

Generation and Clustering of ESTs from Clade III and V
Parasitic Nematodes

We constructed 18 A. suum and 6 H. contortus stage- or tissue-

specific cDNA libraries, and sequenced 31,416 and 14,014 5-

prime ESTs from the two species, respectively. These ESTs totaled

to 13.6 and 6.3 million bases for A. suum and H. contortus,

accounting for 77% and 63% of the total nucleotides from the two

species currently available in public databases (Table S1).

Supplemented by 9,354 A. suum and 8,146 H. contortus ESTs

previously deposited in GenBank (retrieved in January, 2006), all

available ESTs were grouped into 17,989 A. suum and 9,842 H.

Intestinal Transcriptomes of Nematodes
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contortus EST contigs, each containing ESTs derived from nearly

identical transcripts according to overlapping sequences to reduce

sequence redundancy [23,24]. The contigs were further assembled

into 9,947 A. suum and 5,058 H. contortus EST clusters based on

sequence similarities identified among contigs as well as in

previously identified genes (Table S1). Each EST cluster likely

represents transcripts derived from a single genomic locus and

therefore is approximated as one gene [22–24]. Given that C.

elegans and C. briggsae each contains ,19,000 protein-coding loci,

and between 14,500 and 17,800 genes were inferred from the

Brugia malayi draft genome [39], we have consequently identified a

substantial portion of the complete gene sets from the two

parasites. These data will vastly facilitate the genome assembly and

annotation in the related nematode genome sequencing projects

currently underway. Initial investigation of the identities of these

novel genes was performed by comparing the translated sequences

with known proteins from other organisms (Text S1; Figure S1).

Intestinal Transcriptomes from Adult A. suum, H.
contortus, and C. elegans

To study the intestinal transcriptomes, four cDNA libraries (out

of the 18) from A. suum and three (out of the 6) from H. contortus

were constructed from dissected adult intestine with methods

based on either Poly-A [40] or spliced leader sequences [24].

Among all the ESTs we generated, a total of 9,586 A. suum and

7,068 H. contortus ESTs were derived from these intestinal libraries.

These ESTs occurred in 3,121 A. suum and 1,755 H. contortus EST

clusters, accounting for about 30% of the total genes sampled in

each nematode. Since these EST clusters contained ESTs sampled

from the adult intestine, they were considered to represent adult

intestinal genes, making this the largest tissue-level gene discovery

in parasitic nematodes thus far (Table 1).

In contrast to the two gastrointestinal parasites, the free-living

model nematode C. elegans is a bacterivore obtaining nutrients

primarily or exclusively from the consumption of bacteria. Two

previous studies reported identification of genes expressed in the

adult C. elegans intestine: i) sequence tags generated by serial

analysis of gene expression (SAGE) from the dissected adult

intestine were mapped to over 4,000 C. elegans genes [17,18]; ii) a

study using mRNA tagging and microarray gene expression

profiling identified ,1,900 intestine-expressed genes [19]. Con-

solidating the two efforts provided us with a non-redundant set of

5,065 intestinal genes from adult C. elegans, covering over 25% of

all coding loci in its entire genome (Table 1).

The phylum Nematoda is ancient and diverse. Even though the

evolutionary distance between clade III A. suum and clade V C.

elegans was estimated to be ,350 million years [41], the nematode

intestine has maintained high similarity in both tissue morphology

and presumably physiology (i.e. involvement in feeding). However,

it is unknown how much the intestine is conserved, or diversified, at

the molecular level across species. The tissue-level gene sampling in

this study offered an opportunity to investigate this question.

Diversification among Intestinal Transcriptomes
Differences in the intestinal gene repertoires were obvious

among the three nematodes. In total, 39% of A. suum and 19% of

H. contortus intestinal genes were found to be novel compared to all

known proteins in the public databases (Figure 1). Such novel

intestine-expressed parasite genes contained no match in the

complete genome of the free-living C. elegans, thus not in the C.

elegans intestine, making them unique by comparison to C. elegans.

In addition, for the sampled intestinal genes from both parasites,

the non-Caenorhabditis nematodes offered the largest numbers of

homologous matches than either the Caenorhabditis species or the

non-nematode organisms (Figure 1). Such differences may suggest

the existence of lineage- or species-specific diversification in the

nematode intestine.

Furthermore, we observed higher levels of diversification in the

putative intestine-enriched genes from the three nematodes.

Taking into consideration sample size and random sampling

fluctuation [28], we identified 150 A. suum, 60 H. contortus, and 247

C. elegans putative intestine-enriched genes based on the ‘‘digital’’

expression levels revealed in EST and SAGE data (at the Poisson

distribution-based P-value cutoff of 0.001) (Table S2; Table S3;

Table S4). Many of these predicted enrichments suggested unique

intestinal functions for the individual species. For example, the

group of 60 genes from the blood-feeding H. contortus includes 2

fibrinogen-related proteins that may function as thrombin

inhibitors to prevent clotting of ingested blood. Also included

are putative enzymes that may be involved in the digestion of

hemoglobin, one of the major food sources of blood-feeding

parasites, including a serine-type protease, a metallopeptidase, and

13 different cysteine-type proteases that were reported previously

[42] (Table S3). Interestingly, a significantly higher percentages of

these genes (e.g. 15%-31% higher than all the sampled intestinal

genes) encode proteins predicted as secreted or trans-membrane

[29] (Figure 2), suggesting that they interact with the extracellular

environment. However, 64%, 54%, and 69% of them, from the

three species respectively, were distinct from members of the

protein families conserved in the intestine of all three nematodes

(IntFam-241; see below), indicating that a large portion of these

putative intestine-enriched genes are specific to the intestine of

individual nematode lineages or species. This further underlines

the diversification of intestinal transcriptomes in accommodating

the different life styles and feeding patterns among nematodes.

Molecular Conservation of the Nematode Intestine
To evaluate common characteristics of the nematode intestine,

we first sought evidence for the molecular conservation of the

Table 1. Intestinal Transcriptomes and Intestine-Enriched
Genes from Three Nematodes.

Summary A. suum H. contortus C. elegans

cDNA libraries

Non-intestinal 14 3

Intestinal 4 3

ESTs/SAGE Tags 1

Total 38,978 22,152 104,756

Non-intestinal 29,392 15,084 53,197

Intestinal 9,586 7,068 51,559

EST Clusters/Genes

Total 9,947 5,058

Non-intestinal 6,826 3,303

Intestinal 3,121 1,755 5,065

Int. genes w/Gene Ontology 954 620 2,911

% Int. genes w/Gene Ontology 31% 35% 57%

Intestine-enriched EST Clusters/Genes 2

p-value , = 0.001 150 (10) 60 (5) 247 (7)

1SAGE tags from glp-4 adults (6,903 genes) and dissected gut (4,071 genes) for
C. elegans.

2Included in parentheses are putative false positives.
doi:10.1371/journal.pntd.0000269.t001
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tissue in the context of phylogeny. We made comparisons among

genes expressed in the intestine of A. suum and C. elegans and those

expressed in another tissue, namely the gonad. These two species

have the largest numbers of sequences available, and they also

represent the most distant relationship among the three nematodes

investigated. The gonad was chosen because the next largest group

of genes was sampled from this tissue in A. suum after the intestine.

H. contortus was excluded from this analysis because a gonad-

expressed gene set was not available from this nematode. Genes

expressed in the intestine and gonad were divided into four

putative tissue-specific groups: i) 2,453 A. suum and ii) 2,557 C.

elegans genes expressed in the intestine but not in the gonad (the

two intestine groups), and iii) 2,690 A. suum and iv) 2,589 C. elegans

genes that were found in the gonad but not in the intestine (the two

gonad groups). The use of the similar numbers of genes in each

group is expected to reduce false results caused by over-

representation from any single category.

Molecular conservation was first evaluated by comparing the

numbers of putative homologous pairs identified among the

intestine and gonad gene groups. The number of the putative

homologs between the two intestine groups was significantly larger

than that between the intestine and gonad groups (p-va-

lue = 2.5e204 at the bit-score cutoff of 100 in a permutation two-

tailed Z-test; p-value = 4.2e208 at the bit-score cutoff of 50; Figure

S2), suggesting that for genes expressed in the intestine of one

nematode, their homologous matches in another species are

significantly more likely to be expressed in the intestine than in the

gonad of the second nematode. These results provide evidence for

the molecular conservation of the intestine across these distantly

related nematodes. In contrast, the number of putative homologs

between the two gonad groups was not statistically different from

that between the gonad and intestine (Figure S2), indicating that

the gonad genes appeared to be less conserved than those

expressed in the intestine in this two-tissue comparison.

To increase the confidence of analysis, we next focused on the

putative orthologous pairs predicted among the intestine and

gonad gene groups, which was a smaller data set than the

homologous pairs used above but with higher stringency. Among

the total of 1,652 putative orthologous pairs predicted from A. suum

and C. elegans (see Materials and Methods), 289 were paired among

genes from the intestine and gonad groups. They were used in a

Chi Square statistical test, with random distribution of orthologous

pairs as the null hypothesis. Compared to the expected numbers,

there was a 31% enrichment of orthologous pairs observed

between the A. suum and C. elegans intestine groups (Figure 3),

whereas the enrichment between the two gonad groups was only

marginal (5%), and the observed numbers of orthologous pairs

between the gonad and intestine groups were less than expected

(Figure 3). Overall, a significant x2 value of 11.9 rejects the null

hypothesis at a confidence level higher than 99% (p-value ,0.01)

[43], and selective pressure is evident on molecular conservation of

the intestinal gene repertories.

Although the use of the incomplete transcriptomes and a bias

towards relatively abundant transcripts in EST sampling can affect

results, analyses of either homologous or orthologous pairs both

provide direct support for the molecular conservation of the

nematode intestine. With the obvious pattern of diversification in

the nematode intestine (discussed earlier), our results indicate that

a subset of the intestinal gene repertoires, which likely contribute

to the intestinal characteristics conserved across diverse nematode

species, remain conserved during the evolution of Nematoda.

Interestingly, genes expressed in the gonad appear to be less well

conserved based on both analyses. However, these results do not

suggest the lack of evidence for the conservation of the gonad.

Instead, the two-tissue comparisons indicate that the levels of

conservation are lower in the gonad than in the intestine,

suggesting that the levels of molecular conservation may differ in

different nematode tissues. In fact, the conserved characteristics of

the gonad may become more evident with larger sample sizes

Figure 1. Sequence Similarities Identified in the A. suum and H.
contortus Intestinal Transcriptomes. The three phylogenetically
specific sequence groups used to identify sequence similarities of the
intestinal genes were: i) Caenorhabditis spp., amino acid sequences from
the complete genomes of C. elegans, C. briggsae, and C. remanei, ii)
Other Nematoda, non-Caenorhabditis nematode nucleic acid sequences
excluding those from either A. suum or H. contortus, when sequences
from A. suum or H. contortus were queried, respectively, and iii) Non-
Nematoda, non-nematode amino acid sequences from the non-
redundant protein database NR. In total, 61% (1,893/3,121) A. suum
and 81% (1,423/1,755) H. contortus intestinal genes contained primary
sequence similarities to known proteins from other organisms.
doi:10.1371/journal.pntd.0000269.g001

Intestinal Transcriptomes of Nematodes
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and/or by comparisons with another tissue with a lower level of

conservation than the intestine, when new sequence data becomes

available. Similarly, differences at the levels of molecular

conservation were observed in different tissues between human

and mouse, which diverged only about 25 million years ago [44].

Future comparisons with more complete expression data across

multiple tissues in different nematode species should offer

additional insights into this aspect of nematode evolution.

Figure 2. Putative Secreted or Trans-membrane Proteins in A. suum, H. contortus, and C. elegans. Larger percentages of the putative
intestine-enriched genes (Int. Enriched) were predicted to be secreted with signal peptide (SP) or trans-membrane (TM) than either the complete set
of intestinal genes (Int. Genes) or the complete set of all available genes (All Genes) in A. suum, H. contortus, and C. elegans.
doi:10.1371/journal.pntd.0000269.g002

Figure 3. Orthologous Genes Tend to Maintain Their Intestinal
Expression Patterns across A. suum and C. elegans. A total of 289
putative orthologous pairs were identified among the intestine or
gonad gene groups from A. suum and C. elegans. Ninety such pairs were
found between the two intestine gene groups, representing an
enrichment of 31% over the expectation from a random distribution
of orthologous pairs, and an enrichment of only 5% was detected
between genes in the two gonad groups. The null hypothesis of
random orthologous pairing was rejected at a confidence level of at
least 99% with a x2 value of 11.9 between the observations and
expectations.
doi:10.1371/journal.pntd.0000269.g003

Figure 4. Protein Families in the Adult Intestine from A. suum,
H. contortus, and C. elegans. In total, 5,587 intestinal protein families
(IntFam) were built from the complete set of 9,918 translated intestinal
genes sampled from the three species. Forty-one percent of all the
intestinal genes were grouped into 910 multiple-species IntFam groups;
2,024 genes, including 752 from A. suum, 455 from H. contortus, and 817
from C. elegans, were found in a group of 241 families (IntFam-241)
containing members from all three intestines. The IntFam-241 families
likely represent an ancestral intestinal transcriptome involved in core
cellular and physiological intestinal functions common to the investi-
gated species or even to Nematoda, they are thus referred as the ‘‘core’’
IntFam-241 group.
doi:10.1371/journal.pntd.0000269.g004
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Table 2. Gene Ontology Terms Statistically Enriched among 2,024 Intestinal Genes in IntFam-241.

GO id IntFam-241 Genes Mapped 1
All Int. Genes
Mapped P_value Gene Ontology

As Hc Ce Total

GO:0008150 biological_process

GO:0044267 222 165 246 633 1,081 0.0E+00 cellular protein metabolic process

GO:0006412 154 62 74 290 451 0.0E+00 translation

GO:0006464 36 24 104 164 297 0.0E+00 protein modification process

GO:0006796 34 24 103 161 284 0.0E+00 phosphate metabolic process

GO:0016310 29 23 99 151 240 0.0E+00 phosphorylation

GO:0043687 28 18 101 147 243 0.0E+00 post-translational protein modification

GO:0006468 16 9 82 107 149 0.0E+00 protein amino acid phosphorylation

GO:0007264 8 10 28 46 63 9.92E-11 small GTPase mediated signal transduction

GO:0006457 12 9 22 43 62 5.95E-09 protein folding

GO:0006508 19 69 49 137 281 2.50E-08 proteolysis

GO:0042254 5 7 9 21 25 2.46E-07 ribosome biogenesis and assembly

GO:0006414 9 5 9 23 29 4.69E-07 translational elongation

GO:0006512 7 9 13 29 43 4.62E-06 ubiquitin cycle

GO:0046034 11 11 16 38 62 5.33E-06 ATP metabolic process

GO:0005575 cellular_component

GO:0005737 172 72 123 367 697 0.0E+00 cytoplasm

GO:0044444 164 68 95 327 590 0.0E+00 cytoplasmic part

GO:0005840 145 52 58 255 371 1.52E-12 ribosome

GO:0030529 149 58 67 274 408 1.81E-12 ribonucleoprotein complex

GO:0043232 161 58 69 288 480 2.36E-12 intracellular non-membrane-bound organelle

GO:0015935 8 5 8 21 24 5.74E-08 small ribosomal subunit

GO:0005740 10 9 19 38 61 3.03E-06 mitochondrial envelope

GO:0005874 4 3 4 11 11 5.55E-06 microtubule

GO:0044429 10 9 21 40 67 7.61E-06 mitochondrial part

GO:0005739 13 12 26 51 92 9.02E-06 mitochondrion

GO:0003674 molecular_function

GO:0030554 44 24 161 229 468 0.0E+00 adenyl nucleotide binding

GO:0016773 18 10 84 112 186 0.0E+00 phosphotransferase activity, alcohol group as acceptor

GO:0004672 16 9 82 107 151 0.0E+00 protein kinase activity

GO:0004674 13 8 63 84 103 0.0E+00 protein serine/threonine kinase activity

GO:0005525 15 17 40 72 103 0.0E+00 GTP binding

GO:0004713 7 6 26 39 46 0.0E+00 protein-tyrosine kinase activity

GO:0000062 29 1 6 36 36 0.0E+00 acyl-CoA binding

GO:0004194 5 14 12 31 32 0.0E+00 pepsin A activity

GO:0005524 44 25 156 225 436 1.98E-13 ATP binding

GO:0016301 20 11 88 119 213 1.04E-12 kinase activity

GO:0004190 6 14 12 32 35 3.79E-12 aspartic-type endopeptidase activity

GO:0004197 5 44 16 65 95 4.26E-12 cysteine-type endopeptidase activity

GO:0008234 5 46 18 69 105 1.02E-11 cysteine-type peptidase activity

GO:0004175 15 59 33 107 190 2.75E-11 endopeptidase activity

GO:0015035 8 6 15 29 41 9.97E-07 protein disulfide oxidoreductase activity

GO:0005544 9 1 2 12 12 1.84E-06 calcium-dependent phospholipid binding

GO:0016620 6 2 6 14 15 2.10E-06 oxidoreductase activity, acting on the aldehyde or oxo group of
donors, NAD or NADP as acceptor

1As: A. suum; Hc: H. contortus; Ce: C. elegans; Total: IntFam-241 genes from all the three species.
doi:10.1371/journal.pntd.0000269.t002
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Identification of ‘‘Core’’ and Other Groups of Intestinal
Protein Families

To compare the intestinal transcriptomes of A. suum, H. contortus,

and C. elegans in a single analysis, we built protein families from the

complete set of 9,918 translated intestinal genes combined from

the three nematodes. A total of 5,587 intestinal protein families

(IntFam) were identified conservatively based on sequence

similarities by MCL clustering [31] (Figure 4). Proteins assigned

into the same protein family contain putative homologous or

orthologous matches among the three species. Both diversification

and conservation of the intestinal transcriptomes was obvious at

the protein family level in this 3-species comparison. A total of

59% of all the sampled intestinal genes were members of the

protein families containing proteins from only one nematode

(Figure 4). Although the assignments for many of these single-

species families are likely to change when more complete intestinal

gene repertories become available, this group includes the genes

contributing to the unique intestinal features in each species. The

remaining 41% of the intestinal genes formed 910 multi-species

protein families; they are conserved in the intestine of at least two

nematodes. Among these multi-species families, 241 had members

from all three species, accounting for ,20% of all the intestinal

genes under investigation (Figure 4). Given the differences in life

styles and feeding patterns among the three nematodes, we

propose that these 241 intestinal protein families represent an

ancestral intestinal transcriptome involved in core cellular and

physiological intestinal functions common to the investigated

species or even across the Nematoda. Therefore, we referred to

them as the ‘‘core’’ IntFam-241 group.

Functional Analysis of Intestinal Genes Based on Gene
Ontology

The 9,918 translated intestinal genes sampled from the three

nematodes were annotated and classified using Gene Ontology

[34,45]. Ontologies were assigned at a higher ratio (58%) to the C.

elegans intestinal genes than to those from A. suum (31%) or H.

contortus (35%; Table 1). In addition, genes in the multi-species

IntFam groups, which contained members from at least two

nematodes, were annotated at higher ratios (47%–74%), whereas

only 8% of the genes were annotated from the two single-species

IntFam groups containing members only from A. suum or H.

contortus (data not shown). These data may indicate that novel

intestinal genes have independently evolved in relation to the

different lineages of parasitism. Complete GO mappings for the

three intestinal transcriptomes are presented in the searchable

AmiGO browser at www.nematode.net [46]. Furthermore, A

hypergeometric test was implemented to identify ontologies that

are statistically enriched, thus indicating enriched features, in the

core IntFam-241 (Table 2) as well as other IntFam groups (Text

S1; Table S6).

Five of the 17 enriched Molecular Function ontologies in

IntFam-241 are related to protein kinases (Table 2; Table 3).

Protein kinases are one of the largest and most influential protein

families, accounting for about 2% of genes in a variety of

eukaryotic genomes including C. elegans and B. malayi. They

regulate almost every aspect of cellular activities and may

phosphorylate up to 30% of entire proteomes [39,47]. Based on

GO annotations, protein kinases were enriched by ,3.5 fold in

IntFam-241 over the complete set of intestinal genes (5.3% vs.

1.5% of the total genes for each group). Both serine/threonine-

and tyrosine-types of protein kinases were found to be enriched.

Novel protein kinases from the parasites were further classified

based on their C. elegans homologs (Table S5). Interestingly,

molecular functions such as adenyl nucleotide binding, ATP

binding, and GTP binding were also enriched. The involvement of

these functions in protein kinase activities further suggested key

roles of cellular signaling in the nematode intestine (Table 2).

The other major Molecular Function terms enriched in IntFam-

241 were the proteases (Table 2; Table 3). All but one of the six

subtypes of proteases (glutamic acid-type proteases as the

exception) had been identified in IntFam-241 (Table 3), suggesting

conservation of essential protease functions, such as nutrient

Table 3. Selected Gene Ontology Annotations in IntFam-241.

GO Annotation GO id Genes

Protein Kinases

protein kinase activity GO:0004672 107

Serine/threonine-specific protein kinases

protein serine/threonine kinase activity GO:0004674 84

receptor signaling protein serine/threonine
kinase activity

GO:0004702 4

MAP kinase activity GO:0004707 4

Tyrosine-specific protein kinases

protein-tyrosine kinase activity GO:0004713 39

transmembrane receptor protein tyrosine kinase
activity

GO:0004714 2

epidermal growth factor receptor activity GO:0005006 1

vascular endothelial growth factor receptor
activity

GO:0005021 1

Protein Phosphatases

phosphoprotein phosphatase activity GO:0004721 10

protein tyrosine phosphatase activity GO:0004725 10

Proteases

peptidase activity GO:0008233 137

Serine proteases

serine-type peptidase activity GO:0008236 9

Threonine proteases

threonine endopeptidase activity GO:0004298 8

Cystine proteases

cysteine-type peptidase activity GO:0008234 69

cysteine-type endopeptidase activity GO:0004197 65

legumain activity GO:0001509 3

Aspartic acid proteases

aspartic-type endopeptidase activity GO:0004190 32

pepsin A activity GO:0004194 31

Metalloproteases

metallopeptidase activity GO:0008237 16

metalloendopeptidase activity GO:0004222 1

metalloexopeptidase activity GO:0008235 11

leucyl aminopeptidase activity GO:0004178 1

membrane alanyl aminopeptidase activity GO:0004179 7

metallocarboxypeptidase activity GO:0004181 3

Protease Inhibitors

protease inhibitor activity GO:0030414 17

serine-type endopeptidase inhibitor activity GO:0004867 10

cysteine protease inhibitor activity GO:0004869 7

doi:10.1371/journal.pntd.0000269.t003
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digestion and acquisition, among the three species or even across

many species of Nematoda. Because each species feeds on distinct

food sources, it is possible that related digestive proteases have

evolved within each species to adapt for digestion of the different

food types. Given the success of parasite control achieved by

immunization with H. contortus and hookworm intestinal protease-

type antigens [3,8], these proteases may warrant further

investigation in A. suum and other parasites.

Table 4. KEGG Pathway Mappings for Intestinal Genes from Three Nematodes.

KEGG Pathway A. suum H. contortus C. elegans
Wormbase
v150

Genes KOs 1 P-value 2 Genes KOs P-value Genes KOs P-value Genes KOs

1. Metabolism 247 176 167 152 414 316 788 480

1.1 Carbohydrate Metabolism 79 57 6.9E-03 46 45 4.3E-02 123 88 4.7E-03 230 122

1.2 Energy Metabolism 105 70 4.8E-05 80 70 6.7E-09 117 96 6.4E-03 182 135

1.3 Lipid Metabolism 25 22 22 20 71 41 2.3E-02 133 55

1.4 Nucleotide Metabolism 25 20 9 8 37 36 92 57

1.5 Amino Acid Metabolism 42 35 35 29 106 84 209 129

1.6 Metabolism of Other Amino Acids 23 13 11 7 51 30 2.6E-02 91 39

1.7 Glycan Biosynthesis and Metabolism 8 8 6 5 30 21 72 50

1.8 Biosynthesis of Polyketides and Nonribosomal Peptides 0 0 0 0 2 2 3 2

1.9 Metabolism of Cofactors and Vitamins 19 14 17 16 47 31 98 47

1.10 Biosynthesis of Secondary Metabolites 11 9 5 4 24 14 58 21

1.11 Xenobiotics Biodegradation and Metabolism 21 13 14 10 58 26 6.1E-04 120 29

1.12 Enzyme Families 0 0 0 0 0 0 0 0

2. Genetic Information Processing 280 133 135 120 248 215 432 336

2.1 Transcription 11 10 18 16 22 21 55 50

2.2 Translation 218 91 5.3E-10 79 73 6.0E-07 130 115 1.6E-04 194 155

2.3 Folding, Sorting and Degradation 50 31 35 28 88 71 6.9E-02 149 104

2.4 Replication and Repair 1 1 3 3 8 8 34 27

3. Environmental Information Processing 76 55 42 36 170 99 940 207

3.1 Membrane Transport 11 5 4 4 16 9 47 18

3.2 Signal Transduction 44 27 23 22 79 61 168 103

3.3 Signaling Molecules and Interaction 32 28 19 14 86 37 752 107

4. Cellular Processes 75 53 86 39 105 85 254 153

4.1 Cell Motility 16 11 5 3 17 14 39 28

4.2 Cell Growth and Death 9 8 6 6 24 22 51 42

4.3 Cell Communication 24 15 16 11 37 31 114 57

4.4 Endocrine System 18 15 13 13 33 27 68 42

4.5 Immune System 32 18 3.1E-02 58 14 9.9E-02 21 16 55 34

4.6 Nervous System 6 4 6 6 12 11 56 18

4.7 Sensory System 1 1 1 1 4 4 9 5

4.8 Development 5 5 2 2 10 10 22 20

4.9 Behavior 1 1 0 0 1 1 3 2

5. Human Diseases 9 8 11 9 17 15 42 30

5.1 Neurodegenerative Disorders 6 5 9 8 12 11 32 21

5.2 Metabolic Disorders 3 3 2 1 6 5 12 11

7. Unclassified 44 26 19 15 72 49 221 74

7.1 Metabolism 0 17 13 10 49 35 3.6E-02 145 47

7.2 Genetic Information Processing 18 0 0 0 0 0 1 1

7.3 Cellular Processes and Signaling 0 9 6 5 23 14 75 26

7.4 Poorly Characterized 0 0 0 0 0 0 0 0

Total Mapped Genes 660 406 419 334 905 687 2393 1125

1Each KEGG Orthology (KO) represent an ortholog/paralog group defined by KEGG.
2Only P-values meeting the cutoff of 0.1 are shown here.
doi:10.1371/journal.pntd.0000269.t004
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Analysis of the IntFam groups other than IntFam-241 was also

conducted. However, in absence of deeper sampling of the

intestinal transcriptomes, it is difficult to interpret the results in

relation to broadly conserved or lineage- and species-specific

characteristics (Text S1; Table S6).

KEGG-based Pathway Analysis of Three Intestinal
Transcriptomes

To identify the biological pathways that are active in the nematode

intestine, we mapped the 9,918 intestinal translated sequences, and

for comparison, the complete C. elegans genes (Wormbase Release

v150), to the reference canonical pathways in Kyoto Encyclopedia of

Genes and Genomes [35–37] (Table 4). Complete listing of all

KEGG mappings including graphical representation is available for

navigation at www.nematode.net [46].

The enrichment of specific major KEGG pathways was evident

for each intestine by comparisons to the complete KEGG

mappings for all C. elegans genes (Table 4) [38]. Carbohydrate

metabolism, energy metabolism, and translation were identified as

the statistically enriched pathways in all three intestinal tran-

scriptomes (at the p-value cutoff of 0.05). Interestingly, immune

system was an enriched KEGG cellular process in the A. suum

intestine; this pathway barely missed the cutoff for enrichment in

H. contortus (with a p-value of 9.9e202), but no enrichment was

indicated for the C. elegance intestine (Table 4). The KEGG

immune system was built based on studies in mammalian systems.

Many of those from the two parasites were mapped to intracellular

proteins of immune cells involved in, for example, intracellular

signaling or antigen processing (Table S7; Table S8). Therefore,

the potential for their involvement in interactions with the host are

not a primary suggestion here, but it cannot be completely

excluded either.

C. elegans RNA Interference and Intestinal Genes
RNA interference (RNAi) has been developed and successfully

applied to genome-wide gene silencing to inhibit gene functions in

C. elegans [48–51]. C. elegans RNAi information can be further

extrapolated in understanding functions of orthologous genes in

other nematodes, especially in parasitic nematodes where high-

throughput screening is not yet practical [52]. For the 3,455

IntFam protein families containing C. elegans genes, observed

RNAi phenotypes for their C. elegans members (Wormbase Release

v150) were extracted and extrapolated to a total of 45% of these

IntFams (Table 5). Protein families from the IntFam-241 were

assigned at a higher ratio (73%) than those from other IntFam

groups with C. elegans members (Table 5). Among the IntFams-241

families with RNAi phenotypes assigned, 74% (131/176) had

severe phenotypes including embryonic, larval, or adult lethal,

sterile, sterile progeny, and larval or adult growth arrest (data not

shown). Since the IntFam-241 families represent proteins con-

served in all the three species, these results further support our

hypothesis that the core IntFam-241 protein families likely play

key roles in the nematode intestine across many species.

Summary
We have performed large-scale sampling of the transcribed

genomes in A. suum and H. contortus from various tissues or

developmental stages, accounting for 77% and 63% of total

available bases for the two nematodes, respectively. The

identification of 9,947 A. suum and 5,058 H. contortus genes in this

study will vastly facilitate the related genome sequencing projects

currently underway. The research has produced the largest

samplings of the adult intestinal transcriptomes thus far in

parasitic nematodes by identifying 3,121 A. suum and 1,755 H.

contortus intestinal genes, making possible the extensive compara-

tive studies with the adult intestinal transcriptome of the free-living

C. elegans. We found that, even with the evolutionary distance of an

estimated 350 million years separating clades III and V nematodes

[41], both significant conservation and diversification of gene

repertories were evident for the intestine. A group of 241 intestinal

protein families, each containing members from all three

intestines, were further identified. The IntFam-241 group,

containing ,20% of all intestinal genes sampled from the three

species, was proposed to represent an ancient intestinal tran-

scriptome responsible for core cellular and physiological intestinal

functions that are conserved in the investigated species or many

other nematodes. In addition, various aspects of nematode

intestinal physiology were revealed by GO and KEGG classifica-

tions of the intestinal transcriptomes, and the examination and

extrapolation of available RNAi phenotypes from C. elegans.

Overall, this study has contributed to a better understanding of

nematode biology, providing central information for the develop-

ment of novel and more effective parasite control strategies.

Finally, the use of the C. elegans model to dissect basic parasite

biology has been slow to evolve. Results presented here identified

numerous specific areas of research where C. elegans might

contribute in this way.

Supporting Information

Figure S1 Distribution of Sequence Similarities Identified in A.

suum and H. contortus EST Clusters. The three phylogenetically

specific sequence groups used to identify sequence similarities of

the intestinal genes were: i) Caenorhabditis spp., amino acid

sequences from the complete genomes of C. elegans, C. briggsae,

and C. remanei, ii) Other Nematoda, non-Caenorhabditis nematode

nucleic acid sequences excluding those from either A. suum or H.

contortus, when sequences from A. suum or H. contortus were queried,

respectively, and iii) Non-Nematoda, non-nematode amino acid

sequences from the non-redundant protein database NR. In total,

53% (5,303/9,947) A. suum and 75% (3,792/5,058) H. contortus

EST clusters contained primary sequence similarities to known

genes from other species, but similar distributions of the identified

matches to various species groups were observed in the two

parasites.

Found at: doi:10.1371/journal.pntd.0000269.s001 (0.05 MB PPT)

Figure S2 Homologous Pairs between the Intestine and Gonad

Gene Groups from A. suum and C. elegans. Significant larger

number of genes in the A. suum intestine group had homologous

Table 5. RNA interference (RNAi) Phenotypes Assigned to
IntFams through C. elegans Members.

IntFam Group Families
Families
w/RNAi 1

Families
w/Pheno 2

% Families
w/Pheno

IntFam-241 241 241 176 73%

IntFam_As_Ce 332 323 182 55%

IntFam_Hc_Ce 290 286 168 58%

IntFam_Ce_only 2,592 2,488 1,037 40%

All Ce-containing
IntFams

3,455 3,338 1,563 45%

1Families whose C. elegans members have RNAi results available.
2Families whose C. elegans members have RNAi phenotypes reported.
doi:10.1371/journal.pntd.0000269.t005
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counterparts in the C. elegans intestine group than in the C. elegans

gonad group at BLAST bit-score cutoff of either 50 or 100,

indicating the intestinal expression of homologous genes tend to be

maintained across nematodes. However, the number of homolo-

gous pairs detected between the two gonad groups was not

different from that between the gonad and intestine groups.

Found at: doi:10.1371/journal.pntd.0000269.s002 (0.14 MB PPT)

Table S1 EST Generation and Clustering.

Found at: doi:10.1371/journal.pntd.0000269.s003 (0.02 MB XLS)

Table S2 Identification of 150 Intestine-enriched Genes in A.

suum.

Found at: doi:10.1371/journal.pntd.0000269.s004 (0.06 MB XLS)

Table S3 Identification of 60 Intestine-enriched Genes in H.

contortus.

Found at: doi:10.1371/journal.pntd.0000269.s005 (0.04 MB XLS)

Table S4 Identification of 247 Intestine-enriched Genes in C.

elegans..

Found at: doi:10.1371/journal.pntd.0000269.s006 (0.07 MB XLS)

Table S5 Classification of Putative Protein Kinases in A. suum

and H. contortus.

Found at: doi:10.1371/journal.pntd.0000269.s007 (0.03 MB XLS)

Table S6 Gene Ontology Terms Statistically Enriched in

IntFam Groups Other Than IntFam-241.

Found at: doi:10.1371/journal.pntd.0000269.s008 (0.03 MB XLS)

Table S7 Genes Mapped to KEGG Immune System in A. suum.

Found at: doi:10.1371/journal.pntd.0000269.s009 (0.03 MB XLS)

Table S8 Genes Mapped to KEGG Immune System in H.

contortus.

Found at: doi:10.1371/journal.pntd.0000269.s010 (0.03 MB XLS)

Text S1 Supplementary Materials.

Found at: doi:10.1371/journal.pntd.0000269.s011 (0.04 MB

DOC)
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