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Abstract

Sesquiterpene synthases (STSs) catalyze the formation of a large class of plant volatiles

called sesquiterpenes. While thousands of putative STS sequences from diverse plant

species are available, only a small number of them have been functionally characterized.

Sequence identity-based screening for desired enzymes, often used in biotechnological

applications, is difficult to apply here as STS sequence similarity is strongly affected by spe-

cies. This calls for more sophisticated computational methods for functionality prediction.

We investigate the specificity of precursor cation formation in these elusive enzymes. By

inspecting multi-product STSs, we demonstrate that STSs have a strong selectivity towards

one precursor cation. We use a machine learning approach combining sequence and struc-

ture information to accurately predict precursor cation specificity for STSs across all plant

species. We combine this with a co-evolutionary analysis on the wealth of uncharacterized

putative STS sequences, to pinpoint residues and distant functional contacts influencing

cation formation and reaction pathway selection. These structural factors can be used to

predict and engineer enzymes with specific functions, as we demonstrate by predicting and

characterizing two novel STSs from Citrus bergamia.

Author summary

Predicting enzyme function is a popular problem in the bioinformatics field that grows

more pressing with the increase in protein sequences, and more attainable with the

increase in experimentally characterized enzymes. Terpenes and terpenoids form the larg-

est classes of natural products and find use in many drugs, flavouring agents, and per-

fumes. Terpene synthases catalyze the biosynthesis of terpenes via multiple cyclizations

and carbocation rearrangements, generating a vast array of product skeletons. In this
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work, we present a three-pronged computational approach to predict carbocation speci-

ficity in sesquiterpene synthases, a subset of terpene synthases with one of the highest

diversities of products. Using homology modelling, machine learning and co-evolutionary

analysis, our approach combines sparse structural data, large amounts of uncharacterized

sequence data, and the current set of experimentally characterized enzymes to provide

insight into residues and structural regions that likely play a role in determining product

specificity. Similar techniques can be re-purposed for function prediction and enzyme

engineering in many other classes of enzymes.

Introduction

One of the largest and most structurally diverse family of plant-derived natural products is the

isoprenoid or terpenoid family, with over 60,000 members comprising mono-, sesqui-, di-,

tri-, and sesterterpenes, along with steroids and carotenoids [1]. These phytochemicals serve

plants in defence against pathogens or herbivores and as attractants of pollinators [2]. They are

also of high economic value to humankind due to their widespread use in pharmaceutical

agents, insecticides, preservatives, fragrances, and flavoring [3]. The immense diversity of the

terpenoid family derives from the polymerization and rearrangement of a varying number of

simple 5-carbon isoprenoid units. Monoterpenes are 10-carbon (C10) compounds built up of

two such units, sesquiterpenes are composed of three and hence are C15 compounds, diter-

penes (C20) are composed of four, and so on. Sesquiterpenes are especially interesting due to

their high diversity. Their formation is catalyzed from the C15 substrate, farnesyl pyrophos-

phate (FPP), by sesquiterpene synthases (STSs), a class of enzymes found in plants, fungi and

bacteria [4].

Recently, we published a database of over 250 experimentally characterized STSs from over

one hundred plant species, collectively responsible for the formation of over a hundred differ-

ent sesquiterpenes [5]. These compounds all derive from the same substrate, FPP, through a

branching tree of reactions such as cyclizations, hydride shifts, methyl shifts, rearrangements,

re- and de-protonations to give rise to the immense existing variety in sesquiterpene struc-

tures. Apart from the functionally characterized STSs in the database, there are thousands of

putative STSs in sequenced plant genomes and transcriptomes whose product specificity is

unknown. In addition, many STSs in our database are multi-product enzymes, further compli-

cating the matter of product specificity prediction. As a first contribution, we show that multi-

product STSs usually catalyze products specific to a single pathway, indicating selectivity

towards one precursor cation. Finding residue positions related to this cation choice across all

STSs can reveal important aspects of the underlying mechanisms. However, our previous

sequence-based analysis showed that these enzymes are very diverse and sequence similarity is

heavily influenced by phylogeny [5]. While an approach using hidden Markov models derived

from sequences is available to predict what kind of terpene synthase (mono-, di-, tri-, sesqui-

etc.) a particular enzyme may be [6], this kind of sequence-based grouping was not seen within

STSs making products derived from a particular cation or cyclization [5]. As a result, previous

studies directed at identifying determinants of catalytic specificity in STSs mainly used muta-

tional approaches between and within a few enzymes from the same or closely related species

[7–10]. While such approaches have been successful in finding residues influencing product

specificity, their small scale in light of the large diversity of STSs makes it likely that they miss

aspects shared across all plant STSs. However, terpene synthases across plants, animals, fungi,

and bacteria all share a common structural fold [11]. Protein structures typically evolve at a
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slower pace than sequences, which means they can contain a wealth of information not easily

retrieved from the corresponding sequences.

Here, we combine homology modelling to incorporate STS structural information and

machine learning to tease out contributions of different residues to cation specificity. We

show that structure-based prediction performs well across all plant species, including on STS

enzymes that were published recently and were not used for the construction of the predictor.

Such structure- or model-based machine learning has been explored before in other enzyme

families and prediction tasks [12–15], and is challenging. One major challenge is the immense

number of features produced, as each protein has many hundreds of residues, each of which

has its own set of structural features. This poses a problem in cases like the current one, where

labeled, experimentally characterized data is sparse. Here we used a novel hierarchical classifi-

cation approach where many classifiers are first trained on each feature across all residues,

after which the most predictive residues are selected. The final classifier is only trained on the

feature values of these predictive residues. Thus, we are able to prune noisy and irrelevant fea-

tures in order to pinpoint residue positions correlating with cation specificity. These selected

residues are likely intrinsically linked to the catalytic mechanism of an STS and contribute to

the enzymatic formation of the precursor cation. Many of these residues are also not found

when relying on sequence-derived features alone, emphasizing the importance of structure in

understanding catalytic activity.

In addition, while the current characterized sequence space may be small, there are many

thousands of uncharacterized putative terpene synthases whose sequences can provide valu-

able information about evolution and conservation, especially in regions where reliable struc-

tural information is not available. A correlated mutations analysis on all putative terpene

synthases indicates co-evolving residue partners for our set of cation-specific residues which

are implicated in shared functional activity (such as intermediate binding or coordination),

favoring their co-evolution. Examining these residues and pairs in the context of each other

and co-crystallized substrate analogs reveals important aspects of the STS reaction mechanism.

Apart from the independent test set of recently characterized enzymes, we also present a

use-case of our predictor for STS specificity screening by predicting and characterizing bisabo-

lyl cation synthases from Citrus bergamia, which further demonstrated the accuracy of the pre-

dictor. As the number of experimentally characterized STSs grows, this accuracy will further

increase, potentially allowing for more fine-grained product specificity prediction.

The three-pronged approach presented here combines a modest amount of labelled

sequence data, a very small amount of experimental structure data, and large amounts of unla-

beled sequence data using homology modelling, interpretable machine learning, and co-evolu-

tionary analysis to predict and investigate the underlying mechanisms of cation specificity in

STSs. This approach can also be useful for exploring specificity in other enzyme families with

characteristics similar to the STSs.

Results and discussion

Sesquiterpene synthases follow a single branch of the reaction tree

The reaction cascade of an STS can take two directions. As is depicted in Fig 1, all reactions are

initiated by a metal-mediated removal of the diphosphate anion in the (E,E)-FPP substrate,

leading to the formation of a transoid (2E,6E)-farnesyl cation (farnesyl cation). The farnesyl

cation may then isomerize to form a cisoid (2Z,6E)-farnesyl cation (nerolidyl cation). These

two cations may be quenched by water or undergo a proton loss to form acyclic products (acy-

clic-F and acyclic-N). However, both farnesyl and nerolidyl cations can undergo cyclization at

the C10-C11 bond, while the nerolidyl cation can also cyclize at the C6-C7 bond. The resulting
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cyclic cations can undergo further hydride shifts, methyl shifts, cyclizations, rearrangements,

re- and de-protonations to form the final products of the enzyme [16]. Thus, the farnesyl and

nerolidyl cations form the roots of a branching tree of hundreds of diverse intermediates and

end products.

Many STSs are multi-product enzymes, with two of the more extreme examples being δ-

selinene and γ-humulene synthases from Abies grandis, which produce 52 and 34 sesquiter-

penes respectively. In order to determine whether cation specificity is maintained across

minor products, we looked at the reaction pathways of the sesquiterpenes produced by the

Fig 1. The reaction mechanism of sesquiterpene production starts with farnesyl diphosphate ((E,E)-FPP). Loss of the diphosphate moiety (OPP) leads to farnesyl

cation formation. The farnesyl cation can subsequently be converted to the nerolidyl cation. Acyclic sesquiterpenes (acyclic-F and acyclic-N) are formed from these

two cations by proton loss or reaction with water molecules. Possible cyclizations for both cations are indicated in the figure. The subsequently formed cyclic cations

undergo modifications and rearrangements to form cyclic sesquiterpenes. Some of these sesquiterpenes (g-A and bcg) themselves act as neutral intermediates which

can be re-protonated and undergo further reactions to form more products. Products are also formed from specific charged intermediates such as a 1,2- or 1,3-hydride

shift of the 10,1-cyclized farnesyl cation (1,2H, 1,3H) and the cadalane skeleton (cadalanes), which can be formed via either of the two precursor cations, or via acid-

induced rearrangement of germacrene D. The 7,1-cyclization of the nerolidyl cation, shown in gray, is not found in plant-derived sesquiterpenes. g-A = germacrene A,

g-D = germacrene D, bcg = bicyclogermacrene.

https://doi.org/10.1371/journal.pcbi.1008197.g001
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multi-product enzymes in our previously assembled database [5]. In their review [17], Vattek-

katte et al. looked into multi-product mono-, sesqui-, and triterpene synthases with respect to

factors affecting their promiscuity, such as substrate isomers, metal cofactors and pH. How-

ever, they did not specifically address the similarity of an enzyme’s minor products to the

major product. The collation of characterized STSs in our database provides us with 96 multi-

product STSs across a wide variety of species, to better analyze and address this question.

For each sesquiterpene, the route taken in the reaction tree, up to the depth shown in Fig 1

was determined as explained in Materials and Methods. Out of the 96 enzymes with more than

one product, 79 (82%) had products from the same branch of the tree, three were 10,1-farnesyl

synthases with products from different sub-branches, seven had products from the same cation

but a different initial cyclization, and twelve synthases had products from different cations,

including the aforementioned multi-product Abies grandis γ-humulene synthase. Of these

twelve multi-cation STSs, however, eight had an acyclic farnesyl product in addition to neroli-

dyl-derived compounds. The ease of formation of acyclic farnesyl products (a single step from

the farnesyl cation) indicates that they can be formed even by a nerolidyl synthase as the farne-

syl cation is the precursor of the nerolidyl cation. Thus there are only four examples of true

multi-cation STSs (<5% of the experimentally characterized multi-product enzymes).

This analysis indicates that STSs are, in the vast majority of cases, optimized for the produc-

tion of sesquiterpenes from a single, well-defined reaction route, by careful control of interme-

diates right from the commencement of the reaction, at the precursor cation formation step.

This insight can be helpful in STS engineering: changing the reaction specificity of an existing

STS to products in the same reaction pathway may be easier to accomplish, with fewer muta-

tions, than the introduction of a new reaction pathway. For instance, the 412 active mutants

made by O’Maille et al., exploring the mutation space of tobacco 5-epi-aristolochene synthase

and Hyoscyamus muticus vetispiradiene synthase, in many cases resulted in an increased pro-

duction of germacrene A along with the original product 5-epi-aristolochene, which is derived

from germacrene A [18]. Given that even multi-product STSs make sesquiterpenes from the

same cation, understanding and predicting this cation specificity can greatly narrow down the

possible products of a given enzyme.

Structure-based cation prediction helps overcomes species bias

STS enzymes all have similar tertiary structures consisting entirely of α-helices and short

connecting loops and turns. Each structure is typically organized into two domains, with the

C-terminal domain containing the active site. The conserved nature of STS enzyme struc-

tures across the plant kingdom indicates that applying machine learning on attributes

derived from these structures may explain more about cation and product specificity in STSs

than sequence-derived attributes, which are more phylogeny-specific. However, due to the

lack of available crystal structures for all the characterized enzymes, we turn to homology

modelling to make up the deficit. Six crystal structures of STS enzymes were used for multi-

template homology modelling of the C-terminal domains of 247 characterized plant STSs.

Table 1 describes these six structures, three of which are farnesyl synthases, two nerolidyl

synthases, and one is a cadalane-type synthase. S1 Appendix provides more detail on the

modelling results, by comparing multi-template models to those created using the single

closest template, and by comparing models of the six experimental structures to themselves.

Models of the full enzyme sequences were also made but found to be sub-optimal due to the

lack of a defined sequence alignment in regions surrounding the C-terminal domain. These

results indicate that the final C-terminal domain models are accurate and capture the charac-

teristics of the true structures in this region.
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In order to assess the effect of using features derived from modeled structures compared to

purely sequence-based approaches we compared results across three classifiers. One is a simple

rule-based classifier, Clf-id, that assigns a test sequence the same class as its closest training

sequence based on sequence identity. While this approach is a good baseline and often used in

biotechnological applications, machine learning-based models have two advantages over this

simple model. Firstly, they are capable of incorporating more complex features, such as the

sequence and structure features described in, as well as recognizing more complex patterns in

these features, allowing for more accurate predictions that generalize across proteins. Sec-

ondly, trained machine learning models can be inspected to understand the patterns used for

prediction [19, 20]. In this case, this can help gain insight into the contributions of different

residues to cation specificity. Therefore, the other two classifiers use the hierarchical machine

learning framework described in Materials and Methods with only sequence features (Clf-seq)

and with sequence and structure features (Clf-str) respectively. Our classification frameworks

make use of gradient boosting trees due to their good out-of-box performance and capability

of handling missing feature values caused by deletions in some enzymes.

The dataset consists of 176 farnesyl cation-specific STSs and 72 nerolidyl cation-specific

STSs. The remaining 25 STSs are not used for training as they either form products from both

cations or only cadalane-type compounds. The cadalane skeleton (Fig 1) can be formed by

either of the two precursor cations [21] or in acidic conditions of in vitro assays from rear-

rangements of germacrene D [22]. These two alternatives make it difficult to judge whether a

cadalane STS goes through the farnesyl or the nerolidyl pathway.

Table 2 shows the performance of these three classifiers using increasingly difficult valida-

tion schemes: a random five-fold cross-validation (Random Split), a leave-10-genera-out based

scheme (Genus Split), and, finally, training on 177 dicot STSs (124 farnesyl, 53 nerolidyl) with

48 monocot and coniferous STSs (29 farnesyl, 19 nerolidyl) in the test set (Clade Split). Due to

Table 1. The six structures used for multi-template modelling.

Name PDB ID Resolution Species Product Cation

GACS 3G4F 2.65Å Gossypium arboreum (+)-δ-cadinene cadalane

AGBS 3SDU 1.89Å Abies grandis α-bisabolene nerolidyl

AABS 4FJQ 2.00Å Artemisia annua α-bisabolol nerolidyl

AAHS 4GAX 1.99Å Artemisia annua γ-humulene farnesyl

HMVS 5JO7 2.15Å Hyoscyamus muticus vetispiradiene farnesyl

TEAS 5EAU 2.15Å Nicotiana tabacum 5-epi-aristolochene farnesyl

https://doi.org/10.1371/journal.pcbi.1008197.t001

Table 2. Validation results of three classifiers.

Scheme Random Split Genus Split Clade Split

Clf- bAcc AUC AUPRC bAcc AUC AUPRC bAcc AUC AUPRC

id 0.88 ± 0.05 0.88 ± 0.06 0.88 ± 0.05 0.72 ± 0.11 0.72 ± 0.11 0.69 ± 0.16 0.51 0.51 0.46

seq 0.88 ± 0.04 0.83 ± 0.05 0.94 ± 0.02 0.69 ± 0.07 0.88 ± 0.07 0.75 ± 0.16 0.51 0.62 0.54

str 0.90 ± 0.04 0.86 ± 0.03 0.94 ± 0.02 0.73 ± 0.07 0.89 ± 0.07 0.77 ± 0.13 0.64 0.75 0.59

1. Clf-id—sequence-identity rule-based classifier, 2. Clf-seq—classification framework using sequence features, 3. Clf-str—classification framework using sequence and

structure features. Each column section shows the results of a different validation scheme: randomized 5-fold cross validation (Random Split), genus-based cross

validation (Genus Split), and training on 177 dicot STSs and testing on 48 monocot and conifer STSs (Clade Split). For each scheme, balanced accuracy (bAcc), area

under the ROC curve (AUC), and area under the precision-recall curve (AUPRC) are presented. The Random Split and Genus Split are repeated 5 and 10 times

respectively, leading to the reported standard deviation values.

https://doi.org/10.1371/journal.pcbi.1008197.t002
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the imbalanced nature of the dataset, we use a variety of different metrics to measure perfor-

mance. These are further described in the Materials and Methods. While Clf-str outperforms

the sequence-based approaches by a small margin in the random cross-validation results, the

improvement is much more striking in the phylogenetic validation schemes. As STS sequence

similarity is biased more towards phylogeny than functional activity, Clf-id and Clf-seq make

more errors when testing on species far away from those in the training set. Since Clf-str uses

structure-derived information, it is less affected by this bias. This indicates that the structure-

based classification framework is more suited to be applied across all plant species, including

under-explored species, without losing out on predictive performance. S1 Fig shows the pre-

dicted nerolidyl percentages for each enzyme with Clf-str (using the probabilities returned

by the genus-based split for each enzyme in the dataset). A clear separation is seen between far-

nesyl and nerolidyl-cation specific enzymes. However, because of the much lower number of

nerolidyl-cation specific enzymes in our dataset, the nerolidyl predicted probabilities for nero-

lidyl-cation specific enzymes (average 53% ± 30%) are generally lower than the farnesyl pre-

dicted probabilities of farnesyl-cation specific enzymes (average 88% ± 19%, calculated as 100

—nerolidyl predicted probability percentage).

As a consequence of its superior performance, the structure-based classifier likely finds fea-

tures and residues that are important for cation specificity across all plant species—something

we can look into to understand generic STS cation determinants.

Thirty cation-specific residues were selected from Clf-str, as described in Materials and

Methods. Fig 2 visualizes the characterized STS enzymes with respect to the features values of

the cation-specific residues, colored by cation and cyclization specificity. Though imperfect, a

separation of farnesyl and nerolidyl cation-specific STSs can be seen. Most cadalane STSs lie

on the farnesyl side, with only two being predicted as nerolidyl cation-specific STSs in the

Genus Split results. This can indicate that many cadalane synthases in fact make their products

through a germacrene D intermediate, or, if the measurements were conducted in vitro, then

perhaps acidic assay conditions led to spontaneous product rearrangements, thus the interpre-

tation of Fig 2 in terms of STSs producing only cadalane products is unclear. While nerolidol

synthases (N-acyclic in Figs 1 and 2) cluster separately from the rest, farnesene and farnesol

synthases (F-acyclic in Figs 1 and 2) are found all across the reduced space. Due to the ease

of formation of these acyclic farnesyl products, it is possible that ancestral versions of these

enzymes did indeed produce nerolidyl-derived compounds but this capability was later lost.

A further test of Clf-str was performed on 42 STS enzymes characterized from August

2017-January 2020, not included in the first release of the characterized STS database [5], 31 of

which come from species not present in the current set. This new set consists of 24 farnesyl cat-

ion-specific STSs, 16 nerolidyl cation-specific STSs, three STSs producing only cadalane com-

pounds, and one STS which produces both farnesol and nerolidol. Clf-str correctly predicted

all the nerolidyl cation-specific STSs and all but two of the farnesyl cation-specific STSs. Both

the cadalane and the acyclic STSs were predicted as farnesyl cation-specific STSs. These

enzymes are listed in S1 Table and have been added to the second version of the characterized

STS database, found at bioinformatics.nl/sesquiterpene/synthasedb.

Residues in five structural regions contribute to cation specificity

The cation-specific residues according to our structure-based predictor are indicated in Fig 3A

on the tobacco epi-aristolochene synthase (TEAS) structure. They are roughly found in five

different structural regions, labeled A-E. Also shown are the residues in the three known ter-

pene synthase motifs, namely RxR, DDxxD, and NSE/DTE, as well as the magnesium ions and

substrate analog. Fig 3B shows the sequence composition of these thirty residues across farnesy
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and nerolidyl cation-specific STSs. While the sequence logos (Fig 3B) show significant differ-

ences in some predictive positions, others have very similar amino acid distributions across

the two cations, indicating that their differences lie solely in some combination of their struc-

tural features likely due to their structural interaction with neighboring residues. Thus, these

Fig 2. Characterized STSs visualized using the feature values of the cation-specific residues followed by dimensionality reduction using UMAP [23], which

positions STSs with similar feature values closer to each other. Squares represent farnesyl cation-specific STSs and diamonds represent nerolidyl cation-specific

STSs. Each STS is also colored by its cyclization specificity. Enzymes catalyzing products from different precursor cations are marked as triangles.

https://doi.org/10.1371/journal.pcbi.1008197.g002
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residues would not have been identifiable from sequence-based analysis alone, further demon-

strating the power of the integrative approach presented here. S2 Fig shows residue scores

across the 10 folds in the genus-based split. The scoring is consistent irrespective of the train-

ing set used, indicating that these residues are indeed catalytically important across all plant

species.

To obtain more information about these thirty residues we turned to the wealth of unchar-

acterized putative terpene synthase enzymes in sequenced plant genomes and transcriptomes.

The products of these putative enzymes are unknown, so they cannot be used to train a classi-

fier; however the sequences themselves still carry valuable information about conservation and

divergence. We used co-evolutionary analysis to inspect these sequences in the context of the

cation-specific residues. Co-evolutionary analysis is a statistical technique applied on protein

sequence alignments based on the underlying biological theory of residue co-evolution [24].

This theory postulates that if there is a mutation in one residue involved in an interaction,

then proteins in which its interaction partner is mutated as well, in a way that maintains their

interaction, are preferentially selected by evolution. While this technique is most often used to

find potentially interacting residues within a protein in protein families with scant structural

information, an alternative scenario of co-evolution can play out in the case of functionally

related residues [25]. For instance, two residues which contact a substrate or an intermediate,

while not interacting directly, may still co-evolve to maintain their shared interactions with the

substrate.

We used 8344 putative terpene synthase N- and C-terminal domains obtained from sequenced

plant genomes and transcriptomes to perform a co-evolutionary analysis as described in

Fig 3. A. Thirty cation-specific residues found by the structure-based Clf-str predictor on the tobacco epi-aristolochene synthase (TEAS) structure, colored by region.

Terpene synthase motifs are labelled in purple, Mg+2 ions in pink, and a substrate analog in orange and dark pink. The N-terminal domain is shaded with a lower

opacity. B. Sequence conservation of Clf-str cation-specific residues across farnesyl and nerolidyl cation-specific STSs, labelled by region and residue position in the

TEAS structure. The height of a letter represents its frequency in that position. An insertion/deletion is represented by a black ‘X’. Residue positions which are deleted

in the TEAS structure are represented by ‘-’s and correspond to residue 627 and residue 687 respectively in the Abies grandis α-bisabolene synthase structure (PDB ID:

3SDU). Note that if, for a given position, the residues in both logos are similar, this indicates that in spite of similarity in sequence at this position, the farnesyl and

nerolidyl cation-specific enzymes are structurally different.

https://doi.org/10.1371/journal.pcbi.1008197.g003

PLOS COMPUTATIONAL BIOLOGY Computational approaches to investigate specificity in sesquiterpene synthases

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008197 March 22, 2021 9 / 21

https://doi.org/10.1371/journal.pcbi.1008197.g003
https://doi.org/10.1371/journal.pcbi.1008197


Materials and Methods. S3B and S3C Fig show the predicted contact map from this analysis

compared to the pairwise minimum β-carbon Euclidean distance matrix across the six struc-

tures in Table 1. When looking at the top 1500 predicted contacts (S3A Fig), 328 have residues

at least 7 positions apart in the sequence indicating long range interactions across different

structural regions. Only 78 (24%) of these are not capable of physical interaction (>11 Å
apart) in all of the six STS crystal structures. 10 of these predicted pairs, shown in Fig 4, have

at least one residue among the thirty cation-specific residues. Below, we discuss specific exam-

ples of these residues and pairs in context of the five regions predicted to be involved in cation

specificity.

Residues in region A (colored dark green in Figs 3 and 4) lie in the A-C loop, close to the

conserved RxR motif, with one residue forming the second Arg in the motif itself. This motif

has been implicated in the complexation of the diphosphate moiety, preventing nucleophilic

attacks on any of the intermediate carbocations [26]. As this is one of the first steps to occur in

order for the resulting charged intermediate to undergo cyclization and further reactions, it

can play a crucial role in determining how the newly formed cation is positioned, thereby

determining whether a farnesyl cation is formed or a nerolidyl cation. In previous work we

showed that many nerolidol (N-acyclic) synthases have a mutation in this motif, from RxR to

RxQ (as can be seen in the sequence logo; Fig 3B, position 266), indicating that changes in and

around this motif can indeed affect the products formed.

The six residues in region B (colored red in Figs 3 and 4) all lie right in the center of the

active site cavity, in helix D (G276, T293, S298, in TEAS), around the kink region in helix G2

(T402, Y404, L407) and in helix H2 (C440), enveloping the descending substrate from all sides.

The residues in this region are very close to both the substrate analog co-crystallized with

TEAS as well as the analog co-crystallised with Abies grandis α-bisabolene synthase, as

depicted in Fig 4C. This proximity has led to a more thorough exploration of these residues in

the context of product specificity, than in other regions of the structure. For instance, Yoshi-

kuni et al, 2006 explored plasticity residues in the active site of the promiscuous Abies grandis
γ-humulene synthase [8]. Among the many mutants they made, those that converted the

major product from the farnesyl-derived γ-humulene to nerolidyl-derived products such as β-

bisabolene, α-longipinene, longifolene, and sibirene, contained mutations in the residues cor-

responding to T402, Y404 and C440 in TEAS—three cation-specific residues according to our

predictor. Two of these residues (Y404 and C440) have also been explored by Salmon et al [27]

when mutating the acyclic β-farnesene synthase from Artemesia annua to a cyclic nerolidyl

cation-derived enzyme.

Similarly, Li et al, 2013 demonstrated that a single mutation in the kink in the G2 helix can

change the product specificity of an Artemisia annua STS from α-bisabolol, a nerolidyl-derived

sesquiterpene, to the farnesyl-derived γ-humulene [28]. T402 from this kink has co-evolved

with S298 in the parallel helix D. As depicted in Fig 4B (column 1), while these two positions

are very often both Serine in farnesyl cation-specific STSs, in nerolidyl cation-specific STSs the

commonly occurring pairs are Thr-Ile or Tyr-Ser. The dipole of T402 has been implicated

along with T401 in directing the cationic end of the farnesyl chain into the active site, prepar-

ing it for a C10 attack [26]. Isoleucine, which is not often found to be a catalytic residue due to

its inert nature, cannot perform this task in nerolidyl cation-specific STSs. Another contact is

between the cation-specific residue C440 and Y376 (numbered 2 in Fig 4B). A mutational anal-

ysis on a multi-product maize STS by Kollner et al. demonstrated the importance of Y376 in

the formation of bicyclic products such as sesquithujene and bergamotene, derived from the

nerolidyl cation [29]. The residue positioned three residues downstream of Y376 was identified

by Kollner et al in 2009 to be involved in controlling the ratio of α-bergamotene to the acyclic

β-farnesene in maize STS orthologs [30]. Therefore, the combined effects of position 376 and
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Fig 4. A. Tobacco epi-aristolochene synthase (TEAS) secondary structure with distal cation-specific co-evolutionary contacts (green arcs), motif residues

(purple), and cation-specific residues (colored by region). Helix naming as in Starks et al. [26] B. Sequence-pair conservation of four cation-specific contacts

discussed in the text, across farnesyl and nerolidyl cation-specific STSs, and all putative terpene synthases. The height of a pair of letters represents the frequency

of the pair appearing in those two positions, with ‘X’ representing gaps. C. Diagrams indicating the proximity of residues labeled B in Fig 3B, as well as the

residues that they co-evolve with, to substrate analogs trifluorofarnesyl diphosphate (FFF) co-crystallized with TEAS (left) and farnesyl thiodiphosphate (FPS)

co-crystallized with Abies grandis α-bisabolene synthase (AgBIS) (right). Carbon atoms are numbered (white boxes) as in the FFF subtrate analog moeity in PDB
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440 are likely required for the formation of the nerolidyl cation followed by a second cycliza-

tion to bicyclic nerolidyl sesquiterpenes. An alignment of TEAS with the examples discussed

here is depicted in S4 Fig. These examples demonstrate that residues found important by our

structure-based predictor are indeed involved in catalytic and functional activity. They also

establish the power of an integrative machine learning approach to pinpoint residue positions

important across a variety of species, a combination of what one would find from each of the

individual studies referenced above. A Fisher’s exact test for the significance of the number of

residues found both by our predictor and in literature returned a p-value of 9.8e−07.

The 12 residues in region C (colored orange in Figs 3 and 4) encompass the entire E-F loop

and parts of the G2-H1 loop at the very bottom of the active site cavity. An interesting residue

here is H360, the last residue in the E-F loop. Sequence conservation shows that this position

is very often deleted in nerolidyl cation-specific synthases, while farnesyl cation-specific

synthases usually have bulky residues such as Tyrosine and Histidine (Fig 3B, position 360).

Two of its co-evolving partners (numbered 3 and 4 in Fig 4B), one from the parallel helix G2

and one from the 4-5 loop in the N-terminal region, are also primarily deleted in nerolidyl cat-

ion-specific STSs but present in farnesyl cation-specific STSs, albeit usually as Glycine in helix

G2. While the connection with the N-terminal domain is surprising, the parallel residue in the

C-terminal domain, when present, may physically interact at some point during the reaction

or in other plant STSs, not captured in the six crystal structures currently available [31]. A dele-

tion can break this interaction, which in turn can have an effect on the positioning of helix G2

in the active site and thereby the positioning of the cation-specific residues that lie within it.

These subtle alterations in cavity shape may in turn affect which kinds of intermediates fit

comfortably inside the cavity.

Two consecutive high scoring residues (region D, colored blue in Figs 3 and 4), lie in the

H3-α1 loop, close to the catalytic NSE/DTE motif. This motif is involved in coordinating Mg+2

ions along with the DDxxD motif on the opposite side [32]. This region lies at the entrance of

the active site cavity and is in an optimum position to contact the substrate as it enters the cav-

ity. In addition, the inability to crystallize this region in three of the six crystal structures indi-

cates that this loop is very flexible [33].

Residues in region E (colored light green in Figs 3 and 4) lie in helix I, near the end of the

C-terminal domain and close to helix 7 and helix 8 in the N-terminal domain.

Overall, these results show that cation-specific residues in regions labelled A, B, and D lie

within areas known to participate directly in the catalytic reaction. These residues were pre-

dicted by our machine learning approach without using any knowledge on their functional

properties. Some of these residues have been mutated before and were shown to be important

for cation specificity. This indicates that the other residues are also likely to perform similarly

crucial roles, perhaps also in STSs that have not been used so far in mutagenesis experiments.

Residues labeled C and E lie quite far from the active site and could be involved in subtle alter-

ations of the cavity shape or in stabilising contacts with the N-terminal domain. Though this

domain is known to be important for plant STS reactions, its exact function has not been fully

explored. However, just as O’Maille et al. showed that residues distant from the active site can

still be functionally crucial [18], these distal residues are likely to have multifaceted and inter-

dependent roles in cation specificity that only such large-scale computational approaches

can recognize. Further experiments and mutational studies in these regions are required to

confirm and elaborate their involvement in the STS reaction mechanism. Meanwhile, the

ID 5EAU. The closest distance (in Å) between each residue’s β-carbon and a substrate atom is labeled in gray. Two co-evolving contacts (labeled 1 and 2 in A)

are colored in green.

https://doi.org/10.1371/journal.pcbi.1008197.g004
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structure-based predictor, as well as the cation-specific sequence and contact conservation

information described can be used to screen through the many thousands of uncharacterized

putative STSs with a particular cation specificity in mind as demonstrated in the next section.

Bisabolyl cation synthases from Citrus bergamia ‘Femminello’

One potential application of the cation-specificity predictor presented here is to screen for

enzymes with a desired specificity. We demonstrate this application to find STSs catalyzing

the formation of products derived from the bisabolyl cation from 23 terpene synthase-like

sequences extracted from the transcriptome of Citrus bergamia ‘Femminello’ (described in

Materials and methods). Using the hidden Markov model approach detailed by [6], 11

sequences out of these 23 were predicted to be STSs (as opposed to mono- or diterpene

synthases). We used the cation specificity predictor on these 11 and sorted by decreasing order

of predicted nerolidyl cation specificity, selecting enzymes with predicted probability percent-

age above 10%, based on the predicted percentages of the characterized database (S1 Fig).

Two enzymes clustered close to the nerolidol cluster in Fig 2 and were thus excluded, result-

ing in four enzymes with>10% predicted nerolidyl cation specificity. Three of these could be

experimentally characterized, submitted to GenBank with identifiers MT636927, MT636928

and MW384854 respectively. MT636927 and MT636928 produced bisabolyl cation-derived

products. MT636927 has 55% predicted nerolidyl specificity and produced trans-α-bergamo-

tene, β bisabolene, and α bisabolol. MT636928 has 11% predicted nerolidyl specificity, and

produced zingiberene. MW384854 has 26% predicted nerolidyl specificity but produced the

farnesyl-cation derived caryophyllene. The chromatograms and the fragmentation patterns of

the identified peaks and the reference compounds can be found in S5 Fig and S2 Appendix.

Sequence identity based screening, on the other hand, predicts all 11 enzymes as farnesyl

cation specific showing that based on only sequence identity, we cannot prioritize candidate

genes for production of bisabolyl cation-derived products. Thus, the cation specificity predic-

tor can be used for effective screening of STSs with desired intermediate specificity, saving

time, labour and costs required for extensive experimental characterization. Considering that

the bisabolyl cation is one of the least represented intermediates in our dataset, expanding the

number of experimentally characterized enzymes used for training can further increase the

accuracy of our results, and even allow for more fine-grained product specificity prediction.

Conclusion

The availability of growing numbers of characterized and putative sesquiterpene synthases

opens doors for the application of computational analyses in order to obtain insights about

this large and amazingly diverse family of enzymes. While STSs collectively produce many

hundreds of compounds, these are all rearrangements of two precursor carbocations deriving

from a single substrate. We show that multiproduct STS enzymes catalyze the formation of

products deriving from the same cation, indicating that cation specificity is determined early

in the reaction. A combination of structure-based supervised machine learning and unsuper-

vised co-evolution gives us a set of structural regions implicated in cation specificity determi-

nation as well as possible functional relationships between residues in these regions and other

parts of the STS structure. The predictor itself can be used for cation-specificity screening,

while the residues and corresponding linkages discussed here can be used to design mutational

studies with a higher likelihood of maintaining catalytic activity while changing cation specific-

ity. Such an integrative approach can also be applied to other diverse enzyme families in order

to uncover large-scale interdependent relationships between catalytic residues influencing

product specificity. As the number of characterized STSs from across the plant kingdom
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increases, more specific predictors can be designed, in order to screen STSs at the cyclization

or even product level.

Materials and methods

Reaction pathway determination

The reaction pathway for each sesquiterpene in the database was determined using the scheme

detailed in IUBMB’s Enzyme Nomenclature Supplement 24 (2018) [34] up to the depth speci-

fied in Fig 1. For example, the sesquiterpene viridiflorene would be labeled F112 as it derives

from bicyclogermacrene which itself is labeled F11. Sesquiterpenes derived from the cadalane

skeleton, namely cadinanes, cubebenes, copaenes, amorphenes, sativenes, muurolenes, ylan-

genes, and their alcoholic variants, are marked as cadalanes as they can form from multiple

reaction pathways.

Two sesquiterpenes share a reaction path if the pathway annotation of one is a non-strict

prefix of the other’s. For example, sesquiterpenes labeled F1, F11, and F113 belong on the

same reaction path while those labelled F111, F112, and F12 do not. If multiple cadalane-type

compounds are produced by one enzyme, they are assumed to come from the same path.

These rules are used to calculate the number of multi-product enzymes with products follow-

ing the same reaction path.

STSs were labelled as farnesyl or nerolidyl according to the group that their products belong

to. STSs making cadalane products along with additional non-cadalane products are labeled

with the cation of these other products. Multi-product STSs producing compounds from dif-

ferent cations, as well as cadalane STSs without any non-cadalane product are considered sepa-

rately and are not used for training.

Sequence extraction and alignment

N-terminal and C-terminal domain sequences were extracted from all spermatophyte plant

STSs from the database using HMMER [35] and the Pfam [36] domains PF01397 and

PF03936 respectively. All N-terminal and C-terminal sequence alignments were made using

Clustal Omega [37], using the corresponding Pfam domain HMM to guide the alignment. A

combined N- and C-terminal domain HMM was built by aligning each half of the common

seed sequences from both respective Pfam domains, stacking the resulting alignments

together, and using the hmmbuild tool in HMMER [35]. This HMM is referred to as

Terpene_synth_N_C.

Homology modelling

For each STS, 500 multi-template homology models were created of the C-terminal domain

region using MODELLER [38], with six STS structures from the PDB [39] as templates, as

listed in Table 1. These were aligned to each sequence using the C-terminal PF03936 Pfam

domain [36] as a guide, using Clustal Omega [37]. The top three models were selected based

on their N-DOPE score for feature extraction.

For comparison, 500 models were also made using a single template for each enzyme; the

template chosen was the one having the maximum sequence identity to the enzyme being

modelled. Similarly, models were made for each of the six template structures using the other

five structures as templates. Models of full STS sequences (including the N-terminal domain)

were also made using a similar multi-template approach with the custom Terpene_synth_N_C

HMM to guide the alignment to the templates. Results for these three additional approaches

are presented in S1 Appendix.
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Feature extraction

Sequence and structure features were extracted from each STS as described below and aligned

according to the C-terminal domain alignment. Gaps in the alignment were represented as

NaNs for continuous features and as a separate category for categorical features.

Sequence features. For each STS sequence, PSIBLAST [40] was run on the non-redun-

dant protein database (nr) [41] and used to calculate a position-specific scoring matrix (PSSM)

and a position-specific frequency matrix (PSFM). The information content of each column in

the PSSM was also calculated. SCRATCH [42] was used to predict the secondary structure and

surface accessibility of each residue. Finally, the raw amino acid sequence was also used as a

feature source. Categorical features were one-hot encoded.

Structure features. Structural features were extracted for each of the top three homology

models for each STS. All atom-level features were converted into α-carbon, β-carbon, and

mean residue features. For Gly, the α-carbon was used for the β-carbon features as well. ProDy

[43] was used to calculate the 50-mode Gaussian Network Model (GNM) and Anisotropic

Network Model (ANM) atom fluctuations using the calcGNM/calcANM functions followed

by the calcSqFlucts function. APBS [44] was used to calculate the Coulomb and Born electro-

statics of a modelled structure. PDB2PQR [44] was first used to generate a PQR file from each

PDB file, followed by running the born command with an epsilon (solvent dielectric constant)

of 80 and the coulomb command with the -e option. DSSP features are calculated using ProDy

[43] to give hydrogen bond energies, surface accessibility, dihedral angles (α), bend angles (κ),

ϕ, and ψ backbone torsion angles, and tco angles (cosine angle between the C = O of residue i
and the C = O of residue i − 1). Residue depths were extracted using BioPython [45] from the

PDB files of the top three models.

Classification framework

A classification framework using Gradient boosting trees (as depicted in S6 Fig) was built for

different sets of features. The framework is trained in three steps:

1. A separate gradient boosting tree is trained for each kind of feature for all residues.

XGBoost [46] was used with default parameter settings for these intermediate classifiers

(100 trees, learning rate = 0.1, gamma = 0, subsample = 1, colsample_bytree = 1, colsam-

ple_bylevel = 1). These simple settings are sufficient as these classifiers are only used to find

predictive residues, as described in the next step.

2. The sum of normalized weights for each residue across all the trained feature models from

Step 1 is used as a scoring measure to select the top thirty residues.

3. A final gradient boosting forest with much stricter parameter settings (2000 trees, learning

rate = 0.005, gamma = 0.01, subsample = 0.7, colsample_bytree = 0.1, colsample_byle-

vel = 0.1) is trained using XGBoost [46] on all the feature values of the top residues picked

in Step 2. These parameter settings are chosen to make a more conservative classifier that

avoids overfitting in three ways: reduced model complexity by regularization (using the

gamma parameter), robustness to noise by random selection in each intermediate tree of

both data points (the subsample parameter) and features (the colsample parameters), and

a slow learning rate combined with a large number of trees to increase the power of the

ensemble.

For testing, the features of the selected thirty residue positions in the test enzymes are fed

into the trained classifier.
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Clf-seq and Clf-str are two classifiers built using this framework utilizing only sequence fea-

tures and both sequence and structure features, respectively. Clf-id is a simple rule-based clas-

sifier that does not use this framework and instead returns the class of the closest training set

sequence based on sequence identity.

Validation and testing

Three validation schemes are used to test a classifier.

1. Random Split: A random five-fold cross-validation with 80%-20% train-test split.

2. Genus Split: A scheme in which cases from 65 genera are used for training and the rest for

testing, repeated 10 times with different sets.

3. Clade Split: All dicot STSs are used for training and monocot and conifer STSs for testing.

Three different metrics are used to measure the performance of each classifier, using the

definitions of TP and TN as the number of nerolidyl cation-specific synthases and number of

farnesyl cation-specific synthases predicted correctly at a certain threshold of predicted proba-

bility, and FP and FN as the number of nerolidyl cation-specific synthases and number of far-

nesyl cation-specific synthases predicted incorrectly at a certain threshold. All metrics are

calculated using the scikit-learn Python library [47].

1. Balanced accuracy (bAcc): 1

2

TP
TPþFN þ

TN
TNþFP

� �
at a threshold of 0.5.

2. Area Under the Receiver Operating Characteristic Curve (AUC): Calculated as the area

under the plot of the fraction of TP out of the total number of nerolidyl cation-specific

synthases vs. the fraction of FP out of the total number of farnesyl cation-specific synthases,

at various threshold settings.

3. Area Under the Precision-Recall Curve (AUPRC): Calculated as the area under the plot of

the precision (TP/(TP + FP)) vs. the recall (TP/(TP + FN) at various threshold settings.

42 newly characterized synthases from literature (listed in S1 Table) are used as the final

independent test set.

Selecting cation-specific residues

The normalized weights across all feature classifiers were summed across all the folds of the

Genus Split and the resulting thirty highest scoring positions represent the set of cation-spe-

cific residues. The sequence and structural features of these residues were used to visualize the

set of characterized STSs. This was done by applying UMAP [23] to reduce the dimensionality

to 2.

Co-evolution analysis on plant terpene synthase-like proteins

An HMM search was performed using HMMER [35] and the custom Terpene_synth_N_C

HMM across all plant UniProt proteins [48] and all plant transcriptome sequences from the

OneKP transcriptome dataset [49]. Only those with sequence length at least one standard devi-

ation away from the mean sequence length of the characterized STSs from the database [5]

were retained. The resulting set of uncharacterized sequences were aligned with Clustal

Omega [37] using the same HMM and 10 guide-tree/HMM iterations (clustalo option –

iter = 10). Alignment positions not present in any of the six structures in Table 1 were

discarded.
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CCMPred [50] was used to perform co-evolution analysis on this alignment. The top 1500

predicted contacts were selected based on their confidence scores (S3A Fig). Contacts contain-

ing one residue from the cation-specific positions, at least 11 Å apart in any of the six struc-

tures in Table 1 and seven residues apart in sequence were retained.

Visualization of cation-specific residues and contacts

Cation-specific residues and contacts were visualized in multiple ways.

• 3D Structure—Pymol [51] was used to visualize the three-dimensional structure of tobacco

5-epi-aristolochene synthase (TEAS, PDB ID: 5EAU) and label terpene synthase motif resi-

dues and cation specific residues.

• Sequence and Co-evolution Conservation Logos—The positions of predictive residues in

farnesyl and nerolidyl cation-specific STSs were used to generate two sequence conservation

logos based on the percentage of appearance of each amino acid at each position. The

sequence conservation of four co-evolving residue pairs was also visualized across farnesyl

and nerolidyl cation-specific STSs and the set of putative terpene synthases. These figures

were made with matplotlib [52].

• Co-evolutionary Links—The cation-specific residues and contacts as well as terpene

synthase motif residues were visualized on the secondary structure of the N-terminal and C-

terminal domain portions of the tobacco aristolochene synthase (TEAS) structure found by

the two respective Pfam domains (PF01397 and PF03936), using matplotlib [52]. Helices are

labeled as described by Starks et al. [26].

• Substrate Analog Proximity—Substrate analogs trifluorofarnesyl diphosphate (FFF) and

farnesyl thiodiphosphate (FPS) were extracted from tobacco epi-aristolochene synthase PDB

ID: 5EAU, and Abies grandis α-bisabolene synthase PDB ID: 3SAE respectively. Their posi-

tions in both structures were obtained by superposing the two structures to each other using

the align command in Pymol [51]. Distances between a subset of the cation-specific residues

and the atoms of the substrate analogs were visualized using matplotlib [52]. The atoms in

both analogs are numbered according to the numbering of FFF.

Citrus bergamia ‘Femminello’ STSs

The cation specificity predictor was employed to select four STSs among the putative terpenes

synthases from C. bergamia with the highest nerolidyl cation specificity. The sequences were

codon optimised, synthesised and expressed in Rhodobacter sphaeroides, as described earlier in

[53]. The analysis of the products coming from the engineered strains was performed on the

GC Agilent 7890B coupled to the MS Agilent 5977B. The used column is an HP-5MS 30m x

250um x 0.25um. The resulting chromatograms and the fragmentation patterns of the identi-

fied peaks and the reference compounds can be found in S5 Fig and S2 Appendix.

Supporting information

S1 Appendix. Homology modelling. Results from different homology modelling runs.

(PDF)

S2 Appendix. Fragmentation patterns. Fragmentation patterns of identified peaks from

chromatograms and of corresponding reference compounds for Citrus bergamia STSs.

(PDF)
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S1 Table. 42 STSs characterized from August 2017-January 2020, used as an independent

test set.

(TXT)

S1 Fig. Predicted nerolidyl percentages. Nerolidyl prediction percentages returned by Clf-str

on characterized STSs calculated using the genus-based split.

(PDF)

S2 Fig. Residue importance scores. Residue scores found by Clf-str across 10 different train-

test splits based on genus.

(PDF)

S3 Fig. Predicted contacts from co-evolutionary analysis. A. Scores of predicted contacts

from co-evolutionary analysis in decreasing order. The 1500 contacts on the left of the orange

dashed line are considered in the text. b. Pairwise minimum β-carbon distance matrix (in Å)

across all six template structures in Table 1 for the residue positions present in the tobacco

aristolochene synthase (TEAS) structure. c. The top 1500 predicted co-evolving contacts on

the TEAS structure, indicated in black.

(PDF)

S4 Fig. Alignment of discussed STSs. Sequence alignment of tobacco aristolochene synthase

with STS examples discussed in text.

(PDF)

S5 Fig. Citrus bergamia STS chromatograms. Chromatograms obtained from the R. sphaer-
oides strain expressing a. MT636927, b. MT636928, and c. MW384854 with peaks labelled.

(PDF)

S6 Fig. Classification framework. Classification framework of gradient boosting trees, to deal

with a large number of residue-based features as well as allow for intuitive selection of the

most predictive residues. A separate gradient boosting tree (GbT-s) is trained on each kind of

feature across all aligned residue indices. The weights obtained from all the GbT-s classifiers

are pooled (by taking the sum of the normalized weights) to select the top 30 residues. All fea-

ture values of these selected residues are used as input to the final classifier GbT. The parame-

ter settings of the GbT-s and GbT classifiers are listed in Materials and Methods.

(PDF)
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12. Berliner N, Teyra J, Çolak R, Lopez SG, Kim PM. Combining structural modeling with ensemble

machine learning to accurately predict protein fold stability and binding affinity effects upon mutation.

PLoS ONE. 2014; 9(9):e107353. https://doi.org/10.1371/journal.pone.0107353 PMID: 25243403

13. Ferraro E, Via A, Ausiello G, Helmer-Citterich M. A novel structure-based encoding for machine-learn-

ing applied to the inference of SH3 domain specificity. Bioinformatics. 2006; 22(19):2333–2339. https://

doi.org/10.1093/bioinformatics/btl403 PMID: 16870929

14. Cang Z, Wei GW. Integration of element specific persistent homology and machine learning for protein-

ligand binding affinity prediction. International Journal for Numerical Methods in Biomedical Engineer-

ing. 2018; 34(2):e2914. https://doi.org/10.1002/cnm.2914 PMID: 28677268

PLOS COMPUTATIONAL BIOLOGY Computational approaches to investigate specificity in sesquiterpene synthases

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008197 March 22, 2021 19 / 21

https://doi.org/10.1038/nchembio.2007.5
http://www.ncbi.nlm.nih.gov/pubmed/17576428
https://doi.org/10.1021/acs.jafc.7b00473
http://www.ncbi.nlm.nih.gov/pubmed/28418659
https://doi.org/10.1111/j.1365-313X.2011.04520.x
http://www.ncbi.nlm.nih.gov/pubmed/21443633
https://doi.org/10.1016/j.phytochem.2018.10.020
https://doi.org/10.1016/j.phytochem.2018.10.020
http://www.ncbi.nlm.nih.gov/pubmed/30446165
https://doi.org/10.1186/s13007-017-0269-0
http://www.ncbi.nlm.nih.gov/pubmed/29339971
https://doi.org/10.1073/pnas.0601605103
http://www.ncbi.nlm.nih.gov/pubmed/16785438
https://doi.org/10.1038/nature04607
http://www.ncbi.nlm.nih.gov/pubmed/16495946
https://doi.org/10.1105/tpc.106.047779
https://doi.org/10.1105/tpc.106.047779
http://www.ncbi.nlm.nih.gov/pubmed/17557809
https://doi.org/10.1039/B008338K
https://doi.org/10.1039/B008338K
http://www.ncbi.nlm.nih.gov/pubmed/12828369
https://doi.org/10.1039/c2np20059g
http://www.ncbi.nlm.nih.gov/pubmed/22907771
https://doi.org/10.1371/journal.pone.0107353
http://www.ncbi.nlm.nih.gov/pubmed/25243403
https://doi.org/10.1093/bioinformatics/btl403
https://doi.org/10.1093/bioinformatics/btl403
http://www.ncbi.nlm.nih.gov/pubmed/16870929
https://doi.org/10.1002/cnm.2914
http://www.ncbi.nlm.nih.gov/pubmed/28677268
https://doi.org/10.1371/journal.pcbi.1008197


15. Romero PA, Krause A, Arnold FH. Navigating the protein fitness landscape with Gaussian processes.

Proceedings of the National Academy of Sciences. 2013; 110(3):E193–E201. https://doi.org/10.1073/

pnas.1215251110 PMID: 23277561
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