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Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and 

mechanisms of liver injury induced by APAP overdose have been the focus of extensive investigation. 

Studies in the mouse model, which closely reproduces the human condition, have shown that hepatotoxicity 

is initiated by formation of a reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes 

cellular glutathione and forms protein adducts on mitochondrial proteins. This leads to mitochondrial oxi-

dative and nitrosative stress, accompanied by activation of c-jun N-terminal kinase (JNK) and its transloca-

tion to the mitochondria. This then amplifies the mitochondrial oxidant stress, resulting in translocation of 

Bax and dynamin related protein 1 (Drp1) to the mitochondria, which induces mitochondrial fission, and 

ultimately induction of the mitochondrial membrane permeability transition (MPT). The induction of MPT 

triggers release of intermembrane proteins such as apoptosis inducing factor (AIF) and endonuclease G into 

the cytosol and their translocation to the nucleus, causing nuclear DNA fragmentation and activation of 

regulated necrosis. Though these cascades of events were primarily identified in the mouse model, studies 

on human hepatocytes and analysis of circulating biomarkers from patients after APAP overdose, indicate 

that a number of mechanistic events are identical in mice and humans. Circulating biomarkers also seem to 

be useful in predicting the course of liver injury after APAP overdose in humans and hold promise for sig-

nificant clinical use in the near future.  
Relevance for patients: This review focuses on the mechanisms behind APAP-induced hepatotoxicity and 

the relevance of these to the human pathophysiology. Current investigations on various biomarkers which 

may be useful in clinical management of APAP overdose patients are also discussed. 
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1. Introduction 

Acetaminophen is an analgesic drug, which is safe at thera-

peutic doses, but can produce significant hepatotoxicity with 

an overdose. APAP hepatotoxicity is the most frequent cause 

of acute liver failure (ALF) in the US [1] and a recent study  

evaluating outcomes in adults with acute liver failure between 

1998 and 2013 indicates that hepatotoxicity due to APAP ac-

counted for almost half the cases of ALF for the entire 16-year 

period, with unintentional APAP overdoses, (those in which 

patients took excessive medication over several days for ail-

ments like pain or fever) being more common than intentional 

(suicidal) overdoses [2]. This is similar to an earlier study, 

which showed that unintentional APAP overdose accounted for 

over 50 % of cases of acetaminophen-related ALF [3]. These 

unintentional overdoses are mainly driven by the increasing 
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availability of combination drugs, which contain acetamino-

phen in addition to other drug classes such as opioids [4]. 

Once the hepatotoxicity due to APAP was recognized, the 

mechanisms behind this were extensively investigated, espe-

cially in the mouse model, which recapitulates key mechanistic 

aspects of liver injury in humans such as mitochondrial dys-

function [5,6]. These insights, especially regarding GSH de-

pletion and protein adduct formation [7], resulted in develop-

ment of N-acetylcysteine (NAC) as an antidote for APAP over-

dose [8,9]. NAC treatment is now the standard of care under 

these conditions, and in spite of the significant therapeutic 

potential of NAC in preventing APAP- induced ALF, it has to 

be administered early after APAP consumption to have the 

most benefit. Since this may not be possible for most patients 

with an APAP overdose, especially those with unintentional 

overdoses, new therapeutic options which could benefit when 

administered at later time points are continuously being inves-

tigated. These studies have led to significant additional insight 

into cellular signaling events driving hepatocyte death and 

liver injury after APAP overdose and will be reviewed in this 

article.      

2. Acetaminophen metabolism initiates liver injury. 

Therapeutic doses of APAP are typically conjugated with glu-

curonic acid and sulfate, which are the main metabolites of 

APAP, and are then excreted in the urine [10]. A minor com-

ponent of APAP is also oxidized by the microsomal cyto-

chrome P450 system, predominantly by Cyp2E1 and Cyp1A2 

[11], to form a reactive metabolite, N-acetyl-p-benzoquinone 

imine (NAPQI) [12]. This minor metabolite is typically harm-

less, since it is mostly conjugated with glutathione and excret-

ed in bile [13,14]. However, even at these low, therapeutic 

doses, there occurs very limited reaction with protein sulfhy-

dryl groups leading to covalent binding and protein adduct 

formation [15,16]. The impact of these protein adducts is lim-

ited because they are effectively removed by autophagy [17]. It 

is only when high levels of APAP saturate the sulfation path-

way and glucuronidation cannot keep up any longer [18], that 

there is an excess generation of the reactive NAPQI metabolite. 

This then consumes glutathione for its conjugation, resulting in 

depletion of glutathione stores. While the initial depletion is 

similar in both GSH and GSSG, without affecting the 

GSSG:GSH ratio (1:200), the recovery rates are different, with 

GSSG content increasing faster than that of GSH [19]. Recov-

ery rate of GSH can significantly influence injury, since an 

induction of glutamate-cysteine ligase which correlated with 

faster recovery of GSH is one of the mechanisms by which 

female mice are protected against APAP-induced liver injury 

[20]. A differential metabolomics study suggests that the de-

pletion of glutathione after low dose APAP (150mg/kg) is par-

alleled by elevation in the glutathione analogue ophthalmic 

acid, where the SH group of the cysteine residue of GSH is 

replaced with a CH3 group from 2-aminobutyrate [21]. Detec-

tion of ophthalmic acid in serum from APAP-induced acute 

liver failure patients was also more frequent in non-survivors  

[22]. As glutathione depletion occurs, there is an increasing 

reaction of NAPQI with sulfhydryl groups of proteins to form 

protein adducts [15]. In contrast to earlier assumptions, this 

generation of protein adducts can take place before GSH levels 

are depleted extensively [15,23] and also after therapeutic 

doses of APAP without relevant GSH depletion [15,16]. Inter-

action of NAPQI with mitochondrial proteins and formation of 

mitochondrial protein adducts is thought to be critical for the 

toxicity [24-26]. 

3. Mitochondrial protein adduct formation and APAP 

hepatotoxicity. 

Though mitochondria were traditionally considered important 

cellular organelles due to their role in ATP generation, it is now 

evident that they play important roles in various cell signaling 

scenarios, including cell death by regulated necrosis [27]. For-

mation of NAPQI adducts on mitochondrial proteins was 

found to be unique to APAP when compared to its regioisomer 

3’-hydroxyacetanilide (AMAP), which is non-toxic in     

mice [24,28,29]. In contrast, recent reports indicate that AMAP 

is cytotoxic in primary human hepatocytes or precision-cut 

human liver slices [30,31]. Interestingly, AMAP toxicity in 

primary human hepatocytes correlated with mitochondrial 

protein adduct formation and mitochondrial dysfunction [31]. 

Specific targets within the mitochondria, such as glutathione 

peroxidase and the alpha subunit of ATP synthase have been 

identified to undergo adduct formation by proteomic ap-

proaches [32]. Enzymes such as HMG CoA synthase have also 

been shown to be modified, accompanied by inhibition of en-

zyme activity [33]. APAP adducts on mitochondrial proteins 

such as glycine amidinotransferase, Parkinson disease protein 

7 (PARK7), peroxiredoxin 6 and voltage-dependent anion-sel-

ective channel protein 2 (VDAC2) have also been detected in 

cultures of human hepatocytes [34], indicating that adduct 

formation is not a global phenomenon affecting all mitochon-

drial proteins, but rather selective with specific targets. While 

mitochondrial protein adducts are relevant to APAP hepato-

toxicity since NAPQI binding to mitochondrial proteins corre-

lates with the toxicity [35], the role of specific proteins target-

ed for adduct formation in the pathophysiology is not well 

understood.   

4. Adduct formation initiates mitochondrial oxidative 

and nitrosative stress 

Mitochondrial protein adduct formation results in increased 

superoxide production [36] (Figure 1) accompanied by com-

promised mitochondrial respiration [37]. The importance of 

mitochondrial superoxide production in APAP hepatotoxicity 

is illustrated by the fact that mice with a partial deficiency of 

manganese superoxide dismutase (SOD2) (which would usu-

ally scavenge superoxide) have exaggerated liver injury when 

exposed to APAP overdose [38,39]. The enhanced production 

of superoxide would allow its reaction with nitric oxide (NO)  
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Figure 1. A Minardo representation [167] of acetaminophen hepatotoxicity in the mouse, illustrating the temporal separation of events after an 

APAP overdose. APAP hepatotoxicity is initiated by its conversion to the reactive intermediate NAPQI, which results in glutathione depletion and 

formation of APAP protein adducts. Adduct formation on mitochondrial proteins modulates respiratory chain function, producing elevated levels 

of free radicals such as superoxide. This, along with nitric oxide, generates peroxynitrite resulting in protein nitration within mitochondria. Mito-

chondrial oxidative stress results in oxidation of thioredoxin 1, releasing its partner ASK1, which activates JNK resulting in its phosphorylation 

and translocation to the mitochondrial outer membrane, where it interacts with Sab and subsequently stimulates free radical production from the 

mitochondrial electron transport chain. This in turn amplifies JNK activation and subsequent mitochondrial oxidant stress, which ultimately re-

sults in activation of RIP3 and translocation of Drp1 and Bax to the mitochondria. While Bax initiates outer membrane permeabilization, Drp1 

induces mitochondrial fission and subsequent activation of the mitochondrial permeability transition. This then releases apoptosis inducing factor 

(AIF) and endonuclease, which translocate to the nucleus and initiates nuclear DNA fragmentation. 

within the mitochondria producing the reactive radical peroxy- 

nitrite (ONOO– ), which can nitrate protein tyrosine residues 

and compromise their function [40] (Figure 1). APAP hepato-

toxicity results in early nitrotyrosine formation exclusively in 

hepatocyte mitochondria [41], suggesting that generation of 

elevated superoxide and its reaction with NO occurs within 

this organelle. The source of nitric oxide contributing to per-

oxynitrite formation within mitochondria, however, is not well 

characterized. It has been demonstrated that peroxynitrite for-

mation subsequent to APAP overdose is independent of induc-

ible nitric oxide synthase (iNOS) [42]. The lack of iNOS in-

volvement was also suggested by the absence of protection with 

iNOS inhibitors [43] and in iNOS-deficient mice [44]. In con-

trast, neuronal NOS (nNOS) was shown to be present in 

hepatocytes [45] and a nNOS inhibitor was protective against 

APAP-induced cell death in isolated mouse hepatocytes [46]; 

likewise, nNOS-deficient mice showed delayed injury after 

APAP overdose [47], suggesting that nNOS could be a putative 

source of NO for peroxynitrite formation after APAP overdose.  

The relevance of peroxynitrite to APAP-induced hepatotox-

icity is illustrated by the critical anti-oxidant proteins such as 

SOD2 it targets [48] and the protection afforded by its scav-

enging with delayed glutathione supplementation, which also 

replenished mitochondrial GSH levels [49-52]. In addition, the 

selective metabolism of superoxide by the mitochondrial tar-

geted SOD-mimetic Mito-TEMPO effectively reduced APAP 

hepatotoxicity [53]. Furthermore, APAP overdose in SOD2 

deficient mice also caused aggravated liver injury accompa-

nied by exacerbated peroxynitrite and protein carbonyl for-

mation [38,39].  

5. The MAP kinase JNK and amplification of mito-

chondrial oxidative stress.

While formation of APAP-protein adducts on mitochondria 

initiates a mitochondrial nitrosative and oxidative stress, this 

effect alone does not seem to be sufficient to ultimately trigger 

the MPT and cell death. Thus, it was recognized that an oxi-

dant stress-mediated activation of the MAP kinase JNK in the 

cytosol [54] is what ultimately seems to amplify the mito-

chondrial oxidant stress and results in downstream signaling 

events. JNK activation after APAP overdose occurs early after 

APAP overdose, and is then sustained during the signaling 

cascade inducing hepatocyte cell death. The apoptosis sig-

nal-regulating kinase 1 (ASK1) is involved in APAP-induced 

activation of JNK, with ASK1- deficient mice being protected 
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against the sustained JNK elevation [55] and a specific ASK1 

inhibitor decreasing JNK activation at 1.5 h and preventing 

JNK translocation to mitochondria [56]. In addition, it was 

found that the mixed-lineage kinase 3 (MLK3) was activated 

by oxidative stress and was required for JNK activation in re-

sponse to oxidative stress [57]. It was also seen that JNK 

phosphorylation at one, three and six hours after APAP treat-

ment was significantly attenuated in MLK3-KO mice [57]. 

Since MLK3 has been suggested to be part of a feedback 

mechanism that regulates cellular responses to ROS [58] and 

the activation of JNK can be prevented by anti-oxidants [42], it 

is possible that APAP-induced, ROS mediated JNK activation 

occurs through multiple mechanisms with temporal changes in 

their interaction.  

Though activation of JNK in the cytosol seems to be an 

early event after APAP overdose, occurring within an hour 

after a 300 mg/kg dose in the mouse [56], it is also influenced 

by the dose of APAP. Lower APAP doses such as 150mg/kg 

were shown to induce transient JNK activation with reversible 

mitochondrial dysfunction in the mouse liver [26]. Once JNK 

is activated and phosphorylated in the cytosol, the next mech-

anistic step for amplification of mitochondrial injury is its 

translocation to mitochondria, where it binds to the Sab protein 

on the outer mitochondrial membrane [54,59]. Binding to and 

phosphorylation of Sab by p-JNK leads to inactivation of p-Src 

on the inner mitochondrial membrane, which then inhibits 

electron transport and increases reactive oxygen species re-

lease [54,60], thus amplifying oxidant stress and peroxynitrite 

formation [42]. While a few studies suggested that JNK was 

protective in acetaminophen toxicity [61,62], the data from 

one of them [62] could be influenced by the differing suscepti-

bility to APAP toxicity of mice sub-strains used in the study 

[63]. It is however unclear why the knocking down of both 

JNK1 & 2 in hepatocytes resulted in a paradoxical exacerba-

tion of APAP-induced liver injury [61], and this requires fur-

ther study. The overall pathophysiological relevance of the 

JNK amplification loop in the murine models of APAP- in-

duced liver injury has been extensively shown with various 

JNK inhibitors and JNK gene silencing [42,64,65] as well as 

the protection by inhibition of upstream signaling events 

[56,57,59]. Similar effects of APAP-induced JNK activation 

and mitochondrial p-JNK translocation was also observed in 

primary human hepatocytes although JNK inhibition only 

moderately reduced cell death [66]. It remains unclear if this is 

due to a species difference or reflects the greater dependence 

on oxidant stress amplification in vivo compared to cultured 

cells, which are generally kept under hyperoxic conditions 

resulting in more oxidant stress [36].  

In parallel to activation and translocation of JNK, mito-

chondrial oxidant stress also results in the early translocation 

of the cytosolic protein Bax to the mitochondria [67,68]. While 

the initial mitochondrial oxidant stress seems to be required for 

Bax translocation [53], Bax does not seem to subsequently 

influence mitochondrial oxidant stress and peroxynitrite for-

mation, since the protection against APAP-induced liver injury 

in Bax knockout mice was transient, only occurring at early 

time points [67]. However, recent information suggesting that 

Bax could be part of a large integrated network mediating var-

ious regulated forms of cell death through mitochondrial 

translocation [69] give tantalizing clues as to its implications 

in APAP-induced liver injury and will be further discussed 

below. 

6. APAP overdose, mitochondrial dynamics and au-

tophagy. 

Mitochondria are dynamic organelles which undergo changes 

in morphology through cycles of fusion and fission. These 

processes are critical for mitochondrial homeostasis and bio-

energetics [70]. Mitochondrial fusion and fission are regulated 

by a number of GTPase proteins such as optic atrophy 1 

(OPA1), mitofusin 1/2 (Mfn1/2) and dynamin related protein 1 

(Drp1) in mammalian cells [71]. While OPA1 and Mfn1 & 2 

are involved in mitochondrial fusion, Drp1 mediates mito-

chondrial fission in mammals, where the role of mitochondrial 

fission 1 protein (Fis1) (a fission protein in yeast) is still not 

confirmed [72]. The impact of APAP overdose on mitochon-

drial dynamics was first identified when significant elevations 

in Drp1 and its translocation to the mitochondria were discov-

ered after APAP overdose [73] (Figure 1). The role of Drp1 in 

mitochondrial fission after APAP overdose was subsequently 

confirmed by other studies [74], suggesting that alterations in 

mitochondrial dynamics after APAP overdose could have im-

portant mechanistic implications. Interactions between Bax 

and Drp1 have also been implicated during mitochondrial fis-

sion in pathophysiological conditions, with spatial and tem-

poral association of Bax with mitochondrial fission sites, Drp1, 

and Mfn2 during apoptosis [75]. Bax has been suggested to be 

required for Drp1-mediated mitochondrial fission caused by 

photodynamic therapy in human lung adenocarcinoma cells 

[76], while Drp1 influenced Bax translocation to mitochondria 

in response to irradiation-induced apoptosis [77] and 

Drp1-induced membrane remodeling stimulates Bax oli-

gomerization [78]. In addition, pharmacological inhibition of 

Drp1was shown to prevent Bax induced mitochondrial outer 

membrane permeabilization (MOMP) [79]. This interaction 

between Bax and Drp1, both of which translocate to the mito-

chondria after APAP overdose would suggest a scenario where 

APAP-induced Bax and Drp 1 translocation to mitochondria 

facilitate mitochondrial fission, which then initiates down-

stream events such as opening of the mitochondrial permeabil-

ity transition pore. 

Removal of damaged mitochondria through autophagy (mi-

tophagy) has been shown to limit APAP-induced injury [80], 

especially adjacent to the acute necrosis area [81]. Mitochon-

drial fission as observed during APAP hepatotoxicity may en-

hance this process [73]. The mitochondrial translocation of 
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Parkin, an E3 ubiquitin ligase, is required for mitophagy in-

duction after APAP overdose and acute knockdown of Parkin 

aggravates APAP-induced liver injury [82]. However, chronic 

deletion of Parkin renders animals resistant to APAP [82], pos-

sibly due to development of compensatory and adaptive 

mechanisms for the chronic loss of Parkin, which may con-

tribute to the resistance to APAP-induced liver injury [82]. 

Parkin- independent mitochondrial spheroid formation may 

substitute for Parkin-dependent autophagy in removing dam-

aged mitochondria [83]. On the other hand, deletion of the 

autophagy gene Atg5 leads to chronic injury, regeneration and 

inflammation, which also protected against APAP toxicity [84]. 

The mechanism of this protection involves the persistent acti-

vation of Nrf2 with higher GSH synthesis rates and increased 

hepatocyte proliferation [84]. These observations support the 

critical role of autophagy for cell survival under normal condi-

tions and during APAP-induced liver injury.  

Protein folding in the endoplasmic reticulum (ER) is a crit-

ical cellular function and various cellular stresses such as ROS 

or alterations in cellular calcium can impair protein folding 

and initiate ER stress. Mice treated with 200mg/kg of aceta-

minophen showed activation of ER stress with upregulation of 

GADD153/CHOP by 6 hours after APAP administration, ac-

companied by a decrease in Grp78 levels [85]. Higher doses of 

APAP also induce markers of ER stress, with doses of 

450mg/kg APAP inducing activation of ER stress-responsive 

transcription factor ATF6 and transcriptional activation and 

elevated expression of GADD153/CHOP [86]. CHOP deficient 

mice were also shown to be protected against APAP-induced 

liver injury, though interestingly the protection was only seen 

in animals given APAP by gavage and not in those given APAP 

as an intra-peritoneal injection [87]. Hence, while ER stress 

does seem to occur after APAP overdose, the mechanisms by 

which APAP induces ER stress are poorly understood [88] and 

need more study.  

7. APAP-induced mitochondrial permeability transi-

tion and regulated necrosis. 

While the immediate consequence of amplification of mito-

chondrial oxidant stress is loss of mitochondrial protein func-

tion due to modification of thiols [33], peroxynitrite mediated 

nitrotyrosine formation [48] and oxidative mitochondrial DNA 

damage [41], the critical event resulting in escalation of cell 

wide damage is induction of the mitochondrial permeability 

transition (MPT). The mitochondrial permeability transition is 

an extensively studied phenomenon, which was initially linked 

to the apoptotic cell death pathway, though it is now recog-

nized that it is activated in numerous forms of cell death. It 

involves initial permeabilization of the mitochondrial outer 

membrane, followed by an abrupt change in inner membrane 

permeabilization allowing exit of molecules less than 1500 

daltons [89,90]. Though it has been suggested that Bax and 

Bak form the components of the mitochondrial permeability 

transition pore (MPTP) in the outer membrane [90,91], the 

components within the inner membrane are still being con-

firmed. While cyclophilin D is generally accepted as being one 

of the proven components and regulator of the MPT [92], re-

cent evidence suggests that the c-subunit ring of the F1FO ATP 

synthase could also be a regulatory unit within the inner mem-

brane [93]. The induction of the MPT subsequent to APAP 

overdose results in breakdown of the proton gradient across 

the membrane, loss of mitochondrial membrane potential, and 

consequently, cessation of ATP production, which eventually 

leads to cell death [94-97]. However, the role of cyclophilin D 

and the MPTP in APAP-induced liver damage seem to be de-

pendent on the dose of APAP administered. For example, 

while use of a relatively low overdose of 200 mg/kg APAP  

demonstrated protection against liver injury in cyclophilin 

D-deficient mice [96], only transient protection was achieved 

when cyclophilin was inhibited using cyclosporine A in    

vitro [94]. Furthermore, treatment with a higher dose of APAP  

(600 mg/kg) in vivo also showed no protection against liver 

injury [98]. Though MPT was initially studied only in the con-

text of pathophysiology, it is now being recognized that it 

could also have physiological roles [99], such as in the heart 

[100] and in calcium buffering in neuronal cells [101]. This 

may explain the transient MPTP opening seen after treatment 

of mice with low doses of APAP (150mg/kg) [26], when JNK 

activation was also seen only for a short term. However, sus-

tained JNK activation resulted in irreversible activation of 

MPT [26]. The involvement of lysosomal iron translocating to 

the mitochondria through the calcium uniporter has also been 

suggested in APAP-induced MPTP opening [102,103] imply-

ing that reactive oxygen species formation through the 

iron-mediated Fenton reaction could also be an amplifying 

source to ultimately cause mitochondrial dysfunction. Hence, 

the activation of the mitochondrial permeability transition pore, 

which is a key mechanistic step in the cascade of cell signaling 

after APAP overdose, seems to be influenced by the dose of 

APAP, with lower doses producing a reversible activation, 

while higher doses produce a sustained effect. 

The immediate consequence of Bax-induced permeabiliza-

tion of the mitochondrial outer membrane would be release of 

a number of proteins from the inter-membrane space, which 

have been implicated in cell death pathways such as apoptosis. 

Release of these proteins including cytochrome c, second mi-

tochondria-derived activator of caspase (Smac), apoptosis in-

ducing factor (AIF) and endonuclease G have been extensively 

studied in the context of apoptotic cell death, and it is recog-

nized that the mechanisms of their release may not be identical 

in all cases. Cytochrome c and Smac release occurs almost 

simultaneously, suggesting that they exit mitochondria by a 

similar mechanism [104], while AIF release from the mito-

chondria occurs at a different rate [105]. Also, while Bax was 

involved in release of cytochrome c and Smac, this was not the 

case for endonuclease G and AIF [106], suggesting that these 

two proteins may be released by slightly differing mechanisms in 
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contrast to cytochrome c and Smac. It has also been shown that 

DRP1 can influence release of intermembrane proteins [104] 

implicating it in release of cytochrome c, Smac, AIF and en-

donuclease G which is evident after APAP [67,107]. Once in the 

cytosol, AIF and endonuclease G (both of which contain nuclear 

localization sequences [108]) translocate to the nucleus [107], 

where endonuclease G cleaves DNA every 50-300kb [109], 

thereby generating DNA fragments typically seen after APAP 

overdose [41,110] (Figure 1). AIF is also critical for DNA 

damage and liver injury due to its involvement in DNA frag-

mentation [111], a fact highlighted by the fact that AIF-deficient 

mice have lower DNA damage and liver injury after APAP 

[112]. 

8. Necrotic cell death after APAP overdose 

As discussed, proteins released from the mitochondrial inter-

membrane space after APAP are also seen in the cytosol after 

apoptotic cell death. However, despite the mitochondrial release 

of cytochrome c [107,113] during APAP-induced liver injury, 

there is no activation of caspases [114,115] and all morpho-

logical characteristics of necrosis including cell and organelle 

swelling, cell contents release and karyolysis are evident both in 

vivo and in vitro [116-118]. In addition, caspase inhibitors do 

not protect against APAP-induced liver injury [114,115,118, 

119]. Recent studies have uncovered a number of molecular 

mediators dictating the mode of cell death after APAP overdose, 

which confirms that cells die by a controlled form of cell death, 

now termed regulated necrosis. Necroptosis, a form of regu-

lated necrosis is typically mediated by activation of death re-

ceptors such as TNF receptor 1 (TNFR1), which ultimately lead 

to the assembly of a necrotic death complex (necrosome) [120], 

which consists of the receptor-interacting kinase 1 (RIP1), the 

receptor-interacting kinase 3 (RIP3), which interact through 

their homotypic interaction motif (RHIM) domains, as well as 

the pseudokinase mixed-lineage kinase domain-like protein 

(MLKL) [121]. The activation of these mediators such as the 

receptor interacting protein kinases 1 and 3 (RIPK 1 and 3), 

result in necrosis while inhibiting apoptosis [122], and RIP3 

has been suggested to be a molecular switch between apoptosis 

and necrosis [123] implicating it as a unique molecular regu-

lator dictating necrotic cell death. It has been suggested that 

death signals flows from RIP1 to RIP3 through their RHIM 

domains, resulting in recruitment of additional RIP3 molecules 

for signal propagation, implying that RIP3 oligomerization is 

the minimal functional unit that is required to drive necrosome 

assembly [121]. Activated RIP3 binds to MLKL, and subse-

quently phosphorylates MLKL [124]. Activated MLKL then 

traffics the necrosome to various phospholipid-rich cellular 

compartments, where MLKL interferes with membrane integ-

rity, causing necrotic cell death [121].   

Early induction of RIP3 levels were evident after APAP 

overdose [73,125], and genetic deletion of RIP3 delayed 

APAP-induced cell death [73], implicating the kinase in 

APAP-induced cell death pathways. This involvement of RIP3 

in APAP-induced acute liver injury is supported by several 

reports showing upregulation of RIP3 protein expression in 

ethanol-induced liver injury. [126], non-alcoholic steatohepati-

tis [127] and furosemide-induced liver injury [128]. It was also 

recently reported that while RIP3 deletion was protective in 

ConA-induced autoimmune hepatitis, RIP1 inhibition exacer-

bated disease and accelerated animal death. In APAP-mediated 

liver injury however, blockade of either RIP1 or RIP3 was 

protective [125]. In addition, a recently developed, highly se-

lective RIP3 inhibitor protected against APAP-induced cell 

death in isolated human hepatocytes in vitro and in an in vivo 

mouse model. [129]. In contrast to all this evidence, one group 

of researchers were unable to detect RIP3 expression in pri-

mary mouse hepatocytes under basal conditions or after treat-

ment with APAP [74], a finding which could have been influ-

enced by culture conditions [130].  

It should be noted however, that the various physiological 

and pathophysiological processes may have slight differences 

in specific components of the necrosome, with inducers such 

as the murine cytomegalovirus (MCMV) and herpes simplex 

virus having other proteins with RHIM domains substituting 

for necrosome components[121]. Hence, requirements of spe-

cific necrosome components may be variable depending on the 

pathophysiology, with Toll-like receptor 3-mediated necrosis 

proceeding independent of RIP1 [131] and MLKL-mediated 

regulated necrosis proceeding independently of RIPK3 in in-

flammation after Con A-induced hepatitis [132]. The involve-

ment of MLKL in APAP-induced liver injury is questionable 

however, since two studies found that MLKL knockout mice 

were not protected [74,132]. This information, coupled with 

the fact that APAP hepatotoxicity is not attenuated in absence 

of TNFR1 [133] or influenced by absence of TNF [134], leads 

to the conclusion that APAP-induced cell death probably does 

not involve classical necroptosis. However, reactive oxygen 

species, which are central players in the APAP-induced sig-

naling cascade, have been shown to be involved in RIP3-ind-

uced necroptosis in the cardiomyocyte [135] and several stud-

ies have also implicated RIP1 in APAP-induced liver injury 

[57,73,74,136] further confirming that the mode of cell death 

after APAP is regulated necrosis. A recent report has identified 

an iron dependent non-apoptotic form of cell death termed 

ferroptosis [137] and studies on primary hepatocytes in culture 

seem to suggest that this form of cell death may play a role in 

APAP-induced hepatocyte injury [138]. However, the physio-

logical significance of this form of cell death in APAP-induced 

liver injury in vivo needs further study. Thus, based on the 

current data in the literature, APAP-induced hepatocyte cell 

death does not represent classical apoptosis or necroptosis. 

While the exact sequence of events and identity of all the me-

diators involved in the process are still being investigated, 

hepatocytes after an APAP overdose die by regulated necrosis.   
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9. Role of inflammation and intercellular communica-

tion in APAP-induced liver injury  

APAP-induced hepatocyte necrosis results in massive release 

of damage associated molecular patterns (DAMPs), which can 

then lead to recruitment of monocytes and neutrophils. [139]. 

While it is well established that inflammation is induced after 

APAP- induced liver injury, there has been some controversy 

in the literature regarding the biological role of this inflamma-

tion and whether it would be a useful therapeutic target. While 

a number of earlier studies suggested that inflammation played 

a role in hepatocyte necrosis with P2X7 receptor-mediated 

purinergic signaling thought to promote liver injury through 

the inflammasome [140,141], the identity of the cytotoxic cell 

type involved in immune mediated injury is not clear and the 

effect of P2X7 was shown to be due to inhibition of P450 iso-

enzymes by the inhibitor of P2X7 and not through inflam-

masome activation [142]. A considerable amount of data, re-

viewed in Woolbright et al. [139], exists that raises concerns 

about the role of sterile inflammation and the importance of 

inflammasome activation during APAP hepatotoxicity, and the 

majority of experimental evidence suggests that the extensive  

sterile inflammatory response during APAP hepatotoxicity is 

mainly beneficial by limiting the formation and the impact of 

pro-inflammatory mediators and by promoting tissue repair 

[143]. The role of inflammation in APAP-induced liver injury 

is further discussed in detail in the Woolbright article in this 

special issue [144]. 

Intercellular communication plays an important role in tis-

sue homeostasis, and gap junctions between hepatocyte are 

important guardians of this process. The gap junctions are 

composed of connexin proteins [145] and a small molecule 

inhibitor of connexin 32 (2-aminoethoxy-diphenyl-borate) was 

suggested to be protective against APAP hepatotoxicity [146]. 

However, it was later shown that the 2-aminoethoxy-diph-

enyl-borate protects against acetaminophen hepatotoxicity by 

inhibiting cytochrome P450 enzymes and JNK activation [147]. 

Genetic deficiency of connexin32 was also found to have no 

effect on acetaminophen-induced cell death, inflammation or 

oxidative stress [148]. However, a study exploring the role of 

multiple connexins such as connexin26, connexin32 and con-

nexin43 demonstrated that gap junction communication was 

compromised after APAP overdose, accompanied by a switch 

in connexin production from connexin32 and connexin26 to 

connexin43 [149]. Connexin43-deficient animals had aggra-

vated liver injury after APAP overdose, with increased cell 

death, inflammation and oxidative stress, suggesting that he-

patic connexin43-mediated signaling could protect against 

APAP-induced liver injury [149]. A recent study also suggests 

that inhibition of pannexins, a family of transmembrane chan-

nel forming proteins linking the cytosol to the extracellular 

environment, alleviates APAP-induced hepatotoxicity [150]. 

Thus, the intracellular signaling which results in hepatocyte 

necrosis after APAP could also influence inter-cellular com-

munication through various gap junction proteins and further 

research in this area will provide additional insight into the 

transmission of APAP- induced signaling across the liver. Fur-

ther details of the role of gap junctions in APAP hepatotoxicity 

are discussed in the Maes article in this special issue [151]. 

10. Translation of mechanisms of APAP-induced liver 

injury from mice to humans 

The translation of mechanisms obtained from mouse models of 

APAP overdose to the human situation were only initiated re-

cently. Exploration of intra-hepatic changes after APAP over-

dose in humans can only be studied using in vitro cell culture 

approaches, due to the lack of liver biopsies from these pa-

tients where the procedure is contraindicated. A major con-

straint towards these in vitro analyses was the metabolic in-

competence of the commonly used liver cell line HepG2 [152]. 

However, recent studies in metabolically competent HepaRG 

cell lines [23] and primary human hepatocytes [66] have con-

firmed that exposure to high levels of APAP result in GSH 

depletion, APAP protein adduct formation in mitochondria and 

organelle dysfunction accompanied by oxidant stress, resulting 

in necrotic cell death in human cells as demonstrated earlier in  

mouse models. JNK activation and its translocation to the mi-

tochondria were also evident in primary hepatocytes [66], whi-

le this was not seen in HepaRG cells [66]. Thus, many key 

intracellular signaling events discovered in mice are reproduc-

ible in human hepatocytes suggesting that common mecha-

nisms are in play during progression of APAP-induced liver 

injury. Further confirmation of the similarity of mechanisms 

comes from the detection of APAP protein adducts in plasma 

from patients after APAP overdose implying that they generate 

a similar reactive metabolite as in mice [153]. Though APAP 

protein adduct levels could identify patients with potential 

APAP overdose [16,153], interpretation needs to be tempered 

by the fact that APAP protein adducts were detectable in cir-

culation in humans taking therapeutic doses of acetaminophen 

and this persisted for over a week after dosing was stopped 

[154]. Also, protein adduct levels tend to peak at later time 

points in humans [18] when compared to mice [15], which 

correlates with the delayed cell injury in patients and human 

hepatocytes.  

The central role of mitochondrial dysfunction and nuclear 

DNA fragmentation in APAP-induced liver injury in the mouse 

model is also replicated in humans as illustrated by the detec-

tion of a mitochondrial matrix enzyme, glutamate dehydro-

genase, mitochondrial DNA and nuclear DNA fragments in 

patients with APAP overdose [155]. The importance of mito-

chondrial dysfunction is further confirmed by the correlation 

of these serum markers of mitochondrial damage with poor out-

come, as defined by death or need for liver transplant to sur-

vive [156]. Confirmation of the mode of cell death in humans 

as being necrosis comes from the significant elevation in bi-
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omarkers of necrosis, such as full-length cytokeratin-18, 

HMGB1 and microRNA-122 in APAP overdose patients [157, 

158] in contrast to apoptotic biomarkers such as the caspa-

se-cleaved form of cytokeratin-18 and caspase-3 activity, 

which showed only a minor increase or no significant change, 

respectively, in these patients [155,157]. Thus, experiments in 

primary human hepatocytes and human HepaRG cells as well 

as measurement of specific circulating biomarkers from pa-

tients after APAP overdose indicate commonality of mecha-

nisms of liver injury in mice and men. It is important to recog-

nize that rats are generally less susceptible to APAP than mice 

and are not a good model for the human toxicity [25]. From an 

intervention standpoint, administration of antibodies against 

HMGB1 has been shown to be protective against APAP-ind-

uced liver injury, by enhancing liver regeneration and recovery 

[159]. HMGB1 neutralization also decreased bacterial translo-

cation from the gut during APAP hepatotoxicity [160]. A re-

cent study showed that use of a partly humanized anti-HMGB1 

monoclonal antibody in mice resulted in a 50% reduction in 

liver injury after APAP overdose, with prolonged therapeutic 

efficacy when compared to NAC [161]. Interestingly, however, 

animals treated with the humanized antibody showed reduced 

regeneration [161], suggesting that mechanisms of protection 

were different from that seen with the rodent anti-HMGB1 

treatment [159]. 

In addition to information of mechanisms of liver injury, 

prediction of the course of liver injury and severity in individ-

ual patients would be very important for APAP overdose pa-

tients from the clinical management standpoint. Measurement 

of liver enzymes such as ALT and AST are not very useful in 

this context, since they represent acute cell death and peak 

levels of ALT and AST are not predictive of clinical outcome 

[157,162]. Serum biomarkers which could predict acute liver 

failure and death, would hence be of immense clinical use. 

Towards this end, it is now evident that higher levels of cy-

tokeratin-18, HMGB1 and glycodeoxycholic acid levels cor-

related with poor outcome [157,163]. At the other end of spec-

trum, in early presenting patients, elevations in miR-122, cy-

tokeratin-18, HMGB1 and argininosuccinate synthetase could 

indicate liver injury before ALT/AST increases are measurable 

[162,164,165]. Profiles of circulating miRNA could also be 

useful in identifying APAP hepatotoxicity and in differentiat-

ing cause of cell damage [166]. Thus, key mechanistic steps in 

the cellular signaling cascade induced in the liver after APAP 

overdose first discovered in animal models have been corrob-

orated in human hepatocytes and also indirectly by circulating 

biomarkers from human patients. Future studies in this area of 

biomarker discovery is likely to uncover additional molecules, 

which could identify therapeutic targets or help predict the 

course of liver injury after APAP overdose in the clinic [162]. 

In conclusion, significant advances have been made in re-

cent years regarding cell signaling mechanisms involved in 

APAP-induced liver injury, with the role of mitochondrial dy-

namics and regulated necrosis being identified. A number of 

these key mechanistic events are also reproduced in humans, 

suggesting that cellular responses to APAP overdose are con-

served between mice and men. However, significant lacunae 

exist in our knowledge regarding a number of steps in the pro-

cess, justifying further studies on mechanisms as well as pre-

dictive biomarkers in the future.  
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