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Nonalcoholic fatty liver disease (NAFLD) has been renamed metabolic dysfunction-
associated fatty liver disease (MAFLD), a condition for which there is now no
authorized treatment. The search for new medications to treat MAFLD made from
natural substances is gaining traction. The function of anti-oxidant, anti-inflammation,
hypoglycaemic, antiviral, hypolipidemic, and immunomodulatory actions of Astragalus
polysaccharides (APS), a chemical molecule isolated from Astragalus membranaceus, has
become the focus of therapeutic attention. We have a large number of papers on the
pharmacological effects of APS on NAFLD that have never been systematically reviewed
before. According to our findings, APS may help to slow the progression of non-alcoholic
fatty liver disease (NAFL) to non-alcoholic steatohepatitis (NASH). Lipid metabolism, insulin
resistance (IR), oxidative stress (OS), endoplasmic reticulum stress (ERS), inflammation,
fibrosis, autophagy, and apoptosis are some of the pathogenic pathways involved. SIRT1/
PPARα/FGF21, PI3K/AKT/IRS-1, AMPK/ACC, mTOR/4EBP-1/S6K1, GRP78/IRE-1/
JNK, AMPK/PGC-1/NRF1, TLR4/MyD88/NF-κB, and TGF-β/Smad pathways were the
most common molecular protective mechanisms. All of the information presented in this
review suggests that APS is a natural medication with a lot of promise for NAFLD, but more
study, bioavailability studies, medicine type and dosage, and clinical proof are needed.
This review could be useful for basic research, pharmacological development, and
therapeutic applications of APS in the management of MAFLD.
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1 INTRODUCTION

In addition to being caused by alcohol and other definitive factors, metabolic dysfunction-associated
fatty liver disease, formerly known as nonalcoholic fatty liver disease (NAFLD) (Eslam et al., 2020a;
Eslam et al., 2020b), is a clinical-pathological syndrome characterized by steatosis of hepatic
parenchymal cells and inflammation in the liver lobes linked to insulin resistance and hereditary
predisposition. It is further divided into non-alcoholic fatty liver disease (NAFL) and non-alcoholic
steatohepatitis (NASH) based on liver histological changes (Ratziu et al., 2010; Younossi et al., 2018;
Eslam et al., 2020b). The related pathogenic process is complex and cascaded-connected, as the “two-
hit” theory suggests (Friedman et al., 2018). Fat buildup in the liver is the first essential step in the
development of NAFLD. The second hit from NAFL to NASH is triggered by inflammatory
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reactions, oxidative stress (OS), endoplasmic reticulum (ER)
stress, mitochondrial damage, fibrogenesis, and disturbance of
the gut flora, among other factors (Pierantonelli and Svegliati-

Baroni, 2019) (As shown in Figure 1). NAFLD is the most
common chronic liver disease, threatening nearly a quarter of
the world’s population (Lonardo et al., 2016), and it will progress
to cirrhosis and liver cancer in advanced stages, yet there is still no
approved medication to treat it. Therefore, research is urgent and
high-profile.

Chinese herbal medicine, which is a tremendous treasure
trove of human medical development, has indeed
demonstrated tangible advantages in the treatment of liver
illness. Using contemporary technologies to excavate this
treasure trove of potent medicinal components, more and
more small-molecule compounds have been discovered from
Chinese herbs, such as Flos inulae (Yang et al., 2021),
Forsythiaside A (Gong et al., 2021), and Baicalin (Hu et al.,
2021). Astragalus membranaceus (AM), also known in China
as Huangqi, has been used to replenish qi and blood for over
two millennia and is suitable for deficiency disorders
(Auyeung et al., 2016). Astragalus polysaccharides (2-
(Chloromethyl)-4-(4-Nitrophenyl)-1,3-Thiazole, APS) (As
shown in Figure 2), a key active ingredient isolated from
AM that contains over 200 constituents (Guo et al., 2019), has
received a lot of attention over the past 2 decades. A slew of
recent pharmacology studies has shown its benefits on blood
lipids and glucose management, and it has anti-inflammation,
anti-oxidative stress, anti-fibrosis, liver protection, anti-
tumor, and immunoregulatory capabilities (Qi et al., 2017;
Chen et al., 2020), all of which are linked to the pathogenic

FIGURE 1 | The basic pathological mechanisms of NAFLD. NAFLD is characterized as either non-alcoholic fatty liver disease (NAFL) or non-alcoholic
steatohepatitis (NASH) predicated on histological characteristics. Lipid accumulation (LA) is the first hit, and with that lipotoxicity triggered, mainly results from three
sources: increased visceral adipose tissue lipolysis, hepatic de novo lipid (DNL) production activation, and excessive fat and calorie intake from diets. Insulin resistance,
visceral adiposity, and atherogenic are all linked to aberrant LA. Deficient insulin sensitivity in adipose tissue and skeletal muscle, resulting in decreased fat synthesis
and glucose uptake, an increase in the quantity of free fatty acids (FFAs) in the blood. FFAs enter the liver as a result of metabolic overload, which is the primary site of fat
production. Oxidative stress, endoplasmic reticulum stress, mitochondrial damage, inflammatory reactions, fibrosis, and other factors all contribute to the second hit.
Excessive deposition of extracellular matrix (ECM), activation of hepatic stellate cells (HSCs) and kupffer cells contribute to fibrosis in long-term chronic inflammatory
reactions. Steatosis causes autophagy and apoptosis in hepatocytes. AST: aspartate transaminase; ALT: alanine aminotransferase; ALP: alkaline phosphatase; TC:
total cholesterol; TG: triacylglycerol; CHOL: cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol.

FIGURE 2 | The chemical construction of APS.
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mechanism of NAFLD. These NAFLD pathogenic processes
are interconnected, promote each other, and share underlying
mediators and pathways.

Multi-components, multi-targets, and multi-pathways all
seem to be advantages for Chinese medicine. Obtained from
experimental evidence on APS and the complex pathophysiology
of NAFLD, we assume the potential efficacy of APS for NAFLD.
A complete assessment of pharmacological data, particularly on
molecular protective mechanisms, is required to stimulate further
study and to understand the potential of this medicine;
consequently, we wrote this work to encourage further
exploration and understanding of its potential.

In this work we intend to provide a complete review of APS’s
pharmacological effects and advancements in molecular
mechanism works of literature in NAFLD. The flaws in

existing development research are also explored, as well as
prospective study directions.

2 PHARMACOLOGICAL EFFECTS AND
MOLECULAR MECHANISMS OF
ASTRAGALUS POLYSACCHARIDES
AGAINST NONALCOHOLIC FATTY LIVER
DISEASE

A plethora of research indicates that APS appear to be effective on
NAFLD. (As shown in Supplementary Table S1). Serum
aspartate transaminase, alanine aminotransferase, and alkaline
phosphatase, which indicate liver injury, were all reversed in the

FIGURE 3 | Pharmacological effects and molecular mechanisms of APS against NAFLD. FFAs: free fatty acids; AST: aspartate transaminase; ALT: alanine
aminotransferase; ALP: alkaline phosphatase; TG: triglyceride; TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein
cholesterol; BAs: bile acids; FGF21: fibroblast growth factor 21; PPARα: peroxisome proliferator-activated receptor alpha; SIRT1: stimulating the sirtuin 1; CPT1:
carnitine palmitoyltransferase 1; LDL-R: low-density lipoprotein receptor; PCSK9: proprotein convertase subtilisin/kexin type; LOX-1: oxidized-LDL receptor-1;
CHOL: cholesterol; CYP: cholesterol hydroxylase; HMG-CoA: 3-hydroxy-3-methyl glutaryl coenzyme A reductase; InsR: insulin receptor; Ang-(1–7): angiotensin-(1–7);
ACE2: angiotensin-converting enzyme 2; IRS: insulin receptor substrates; ACC: acetyl-CoA carboxylase; AMPK: AMP-activated protein kinase; AKT: protein kinase B;
PI3K: the phosphatidylinositol-3 kinase; GSK3β: the glycogen synthase kinase 3beta; PEPCK: the phosphoenolpyruvate carboxyl kinase; G6Pase: the gluconeogenic
enzymes glucose 6-phosphatase; S6K1: S6 kinase 1; 4EBP: 4E-binding protein; GRP78: glucose-regulated protein 78; ATF6: transcription factor 6; PERK: protein
kinase-like endoplasmic reticulum kinase; IRE1α: inositol-requiring enzyme 1; JNK: the c-Jun N-terminal kinase; CHOP: C/EBP-homologous protein; NRF1: the nuclear
factor erythroid 2-like 1; HO-1: heme Oxygenase-1; GCLC: glutamate-cysteine ligase; ROS: reactive oxygen species; PGC1α: the peroxisome proliferator-activated
receptor γ coactivator 1; NRF2:; nuclear erythroid-derived 2-related factor 2; UCP-2: uncoupling protein 2; TFAM: the mitochondrial transcription factor A; GSH:
glutathione; SOD: superoxide dismutase; CAT: peroxidase catalase; MDA: malondialdehyde; LPS: lipopolysaccharide; TLR4: toll-like receptor 4; MyD88: the adaptor
protein myeloid differentiation primary response 88; NF-κB: the nuclear factor-kappa B; IkBα: inhibitory kappa B alpha; TNF-α: tumor necrosis factor-alpha; IL-1β:
interleaukin-1β; IL-6: interleaukin-6; IL-18: interleaukin-18; COX-2: cyclooxygenase-2; MCP-1: monocyte chemoattractant protein-1; IL-10: interleaukin-10; LC3II:
protein Ⅱ light chain 3; ATG: recombinant autophagy-related protein; KCs:; HSCs: hepatic stellate cells; HSECs: hepatic sinusoidal endothelial cells; TGF-β1:
transforming growth factor-β1; ECM: extracellular matrix; TOB2: transducer of ErbB2.2; USP15: the ubiquitin-specific proteases 15; 2-HB: 2-hemoglobin; 3-IPA: 3-
indolepropionic acid.
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study (Hamid et al., 2017a; Hamid et al., 2017b; Sun et al., 2019).
Through various mechanisms, APS may exert liver-protecting
functions, including improving insulin resistance (IR) and lipid
metabolism; inhibiting OS, ER, and mitochondrial injury;
providing anti-inflammatory and anti-fibrosis functions; and
regulating autophagy and apoptosis, and the main targets
modulated by APS are shown in Figure 3.

2.1 Lipid Metabolism
The first crucial step in the development of NAFLD is lipids-
aberrant accumulation in the liver. Triglycerides (TGs),
phospholipids, glycolipids, cholesterol (CHOL), and cholesterol
ester are lipids that are part of the cell structure and play a role in
cellular homeostasis, cell–cell interaction, and inflammation and
immune modulation (Marra and Svegliati-Baroni, 2018). Fatty
liver accumulation is caused by a lipid deposition and removal
imbalance to toxic lipids species including TGs, free fatty acids
(FFAs), lysophosphatidylcholine, ceramides, and free cholesterol
(Fch), which results in lipotoxicity and glucotoxicity (Marchesini
et al., 2016; Marra and Svegliati-Baroni, 2018; Régnier et al.,
2019).

APS could inhibit the synthesis and accumulation of TGs by
regulating the transport and breakdown of FFAs (Mao and
Ouyang, 2007; Song et al., 2014). FFAs determine the
synthesis of TGs, and APS could increase the FA translocator/
receptor FAT/CD36 to promote this synthesis (Song et al., 2014).
Meanwhile, carnitine palmitoyltransferase 1 (CPT1) and fatty
acid oxidation rate-limiting enzyme gene CPT1B increased (Cui
et al., 2015b), which helped increase FFA decomposition as a rate-
limiting enzyme of long-chain FFAs entering the human
mitochondrial inner membrane to speed up the fatty acid
oxidation process.

APS may also play a role in the synthesis, catalysis, and
metabolism of CHOL. Total cholesterol, Fch, and low-density
lipoprotein (LDL) cholesterol levels fell after APS intervention
(Cui et al., 2015a; Yan Y. et al., 2020; Wang and Sun, 2021), while
high-density lipoprotein (HDL) cholesterol levels increased to
move CHOL out (Chen et al., 2018; Cai et al., 2020). The LDL
receptor pathway is responsible for the breakdown of LDL, which
is a cholesterol-rich lipoprotein. APS could reduce proprotein
convertase subtilisin/kexin type 9 (PCSK9) levels via the PPAR-β/
γ pathway to increase the expression of low-density lipoprotein
receptors (LDL-R) to reduce lipid deposition (Zou, 2016;
Sabatine, 2019), and oxidized-LDL receptor-1 (LOX-1)
increased to improve lipid disorder (Cui et al., 2015b). It is
reported PCSK9 also has a mutually beneficial interaction with
LOX-1 and induces the secretion of pro-inflammation cytokines
by regulating toll-like receptor 4 (TLR4) expression and NF-κB
activation (Ding et al., 2020). It is thought that viscous
polysaccharides can lower cholesterol and bile acids (BAs)
absorption, which is restricted by APS (Cheng et al., 2011; Cui
et al., 2015b; Sun et al., 2019). By inhibiting 3-hydroxy-3-methyl
glutaryl-coenzyme A reductase, a rate-limiting enzyme in
hepatocyte cholesterol synthesis catalyzing the creation of
mevalonic acid, APS may lower CHOL synthesis (Cheng,
2010). To enhance BAs secretion, APS could stimulate the
expression of cytochrome P450 (CYP) enzymes such as

cholesterol 7-hydroxylase (CYP7A1), cholesterol 7-hydroxylase
(CYP7B1), CYP2C12, and LOC687842 (Cheng, 2010; Cheng
et al., 2011; Cui et al., 2015b). The alternate pathway to BAs
begins with the 27-hydroxylation of cholesterol as the initial step
in the liver or extrahepatic tissues, followed by CYP7B1-
dependent oxidation in the 7-position (Leoni and Caccia,
2011; Kakiyama et al., 2020). CYP7A1 could transfer
cholesterol to HDL particles, which are then returned to the
liver for conversion into BAs. CYP2C12 and LOC687842 belong
to the family of cytochrome P450 as short hairpin RNA, which
participate in the metabolism of the linoleic acid pathway (Elfaki
et al., 2018).

By stimulating the sirtuin 1 (SIRT1)/peroxisome proliferator-
activated receptor alpha (PPARα)/Fibroblast growth factor 21
(FGF21) pathway, APS could alleviate lipid metabolism disorder,
notably, by increasing hepatic glycolipid metabolism, reducing
inflammation, and lipid droplet deposition (Gu et al., 2015).
PPARα is mainly involved in the catabolism of hepatic lipids and
bile acids metabolism, fatty acid uptake, and activation, which
affects intracellular fatty acid-binding and mitochondrial fatty
acid oxidation (Burri et al., 2010). FGF21 and SIRT1 interact with
PPARα to regulate hepatic glycolipid metabolism, OS, and
inflammation and may serve as a biological target in NAFLD
to improve IR (Ding et al., 2017).

Furthermore, Li et al. discovered the three following distinct
metabolites in the APS treatment group and high-fat diet model
mice: 3-indole propionic acid, 2-hemoglobin, and alanine, which
may ameliorate lipid droplets, but there is no further evidence to
support its exact mechanism (Li et al., 2019).

2.2 Insulin Resistance
Insulin sensitivity in muscle and adipose tissue declines in the IR
state, glucose delivery to these tissues decreases, and FFAs are
liberated into the systemic circulation. To compensate for high
blood glucose (BG) levels, pancreatic beta cells release more
insulin, resulting in hyperinsulinemia. Despite being primarily
insulin-sensitive and being exposed to high concentrations of BG,
TGs, FFAs, and insulin, the liver enters a hyper-anabolic state
when it continues to generate and store lipids, all of which is
improved by APS (Gu et al., 2015; He et al., 2016). APS may help
injured islets regain their morphological function and maintain a
balance of normal insulin output and compensatory insulin
secretion (Gu et al., 2015; Hong et al., 2020; Liu et al., 2020).

APS may increase ISI by stimulating the phosphorylation of
insulin receptor substrates (IRS) and aiding the transit of glucose
transporters (GLUTs) from the nucleus to the cell membrane,
promoting glucose transfer and boosting insulin utilization (Zou
et al., 2009; Sun, 2012; Ye et al., 2014; Sun et al., 2019). Insulin
insufficiency is characterized by a lack of receptors and a
reduction in GLUTs. APS may phosphorylate IRS-1 by the
phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB,
also known as Akt) signal pathway to promote the activation
of the AMPK/acetyl-CoA carboxylase (ACC) pathway and its
downstream targets, glycogen synthase kinase 3beta (GSK3β),
phosphoenolpyruvate carboxyl kinase (PEPCK), and
gluconeogenic enzymes glucose 6-phosphatase (G6Pase)
phosphorylation, to improve glucose metabolism (Sun et al.,
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2019). The metabolic function of insulin is mainly achieved
through the PI3K signal pathway, which binds to the insulin
receptor to phosphorylate IRS, leading to Akt phosphorylation; it
exerts the biological effects of insulin to promote glucose uptake
and glucose homeostasis in the liver. PEPCK and G6Pase regulate
gluconeogenesis (Liu Q. et al., 2017), GSK3β could inhibit
glycogen synthesis, and the synthesis also reduced results from
ser641GS phosphorylation activated by APS (Zou et al., 2007).
AMPK is the main energy sensor that regulates the dynamic
balance of ATP/AMP levels up-regulated and phosphorylated by
APS (Zou et al., 2009; Zou, 2010; Sun et al., 2019).
Lipoglycometabolism, insulin sensitivity, and plasma glucose
regulation are all dependent on it (Smith et al., 2016). APS
might boost IRS-1 and Akt phosphorylation, triggering the
PI3k signal transduction pathway to improve ISI by activating
the angiotensin-converting enzyme 2-Ang-(1–7)-Mas axis and
inhibiting the mTOR/4E-binding protein 1 (4EBP-1)/S6 kinase 1
(S6K1) signaling pathway (Simanshu et al., 2017; Santos et al.,
2018; Ma et al., 2019; Sun et al., 2019); excessive intake of energy
or insulin resistance causes overexpression of mTOR, which
activates 4EBP-1 and S6K1 phosphorylation. APS promote
glucose synthesis by activating GLUT4 and GLUT2
translocation to improve ISI. GLUT4 and GLUT2 are sorted
and retained intracellularly, and they dynamically redistribute to
the plasma membrane by insulin-regulated vesicular traffic
(Thorens, 2015; Jaldin-Fincati et al., 2017). APS could also
promote adiponectin secretion to activate the downstream
PI3K/Akt/IRS-1 pathway by increasing its receptor AdipoR1
levels (Sun et al., 2019). Changes in morbid adipose tissue in
endocrine characteristics could decrease adiponectin secretion,
which is an insulin enhancer (Hamid et al., 2017a).

Metabolomics revealed that APS could strengthen ISI by
upregulating the mi-RNA transducer of ErbB2.2, TMEM100,
and the ubiquitin-specific proteases (USP15) (Liu et al., 2020).
There is no direct evidence on IR about the mi-RNAs, but they all
affect inflammation, which may influence ISI indirectly (Pan
et al., 2019; Jiang et al., 2020; Das et al., 2021). Studies have shown
that both the let-7 family and miR-103 can modulate ISI in the
liver, and both are the target genes of TMEM100 and USP15,
which may explain why APS improve IR (Chakraborty et al.,
2014; Liu et al., 2020). However, more experimental validation is
required.

2.3 Oxidative Stress, Endoplasmic
Reticulum, and Mitochondrial Injury
In NASH patients, studies revealed a positive relationship
between OS levels and IR severity, fat degeneration,
inflammatory response, and fibrosis (Tariq et al., 2014). ROS
are produced primarily by mitochondrial failure, ER stress,
particulates, and peroxidase oxidation (Scherz-Shouval and
Elazar, 2007; Forrester et al., 2018; Das et al., 2021), all of
which are reduced by APS to alleviate liver injury (Wang,
2016). The increased input of fatty acids and oxidation in
mitochondria, on the other hand, is a primary source of ROS
in NAFLD (Forrester et al., 2018).

2.3.1 Oxidative Stress
OS is a balance between free oxygen radical generation and
antioxidant protection (Forrester et al., 2018). Studies have
shown APS could regulate the levels of the final products of
membrane lipid peroxidation malondialdehyde (MDA),
antioxidant metal enzyme superoxide dismutase (SOD), and
redox agent glutathione (GSH), which are OS damage
indicators and clear the content of hydroxyl free radicals and
superoxide anions (Tong et al., 2006; Wang et al., 2015; Wang X.
et al., 2016; Yang, 2017; Yuan et al., 2018), both of which are
common free oxygen radicals with lipotoxicity (Mota et al., 2016).

APS could activate the nuclear erythroid-derived 2-related
factor 2 (NRF2) pathway and its downstream protein glutamate-
cysteine ligase and heme oxygenase-1 (HO-1) to anticipate anti-
oxidative stress, reversing the marker enzyme of peroxidase
catalase, MDA, SOD, and GSH-Px after suffering OS damage
(Yan Y. et al., 2020; Qu et al., 2020). NRF2 is a determinant
regulating the transcription of antioxidant enzyme lines, which
could regulate the expression of more than 100 genes (Wang
et al., 2019). Yuan et al. showed that APS regulate the NRF2
pathway, which might be dependent on inhibiting miR-128-3
that can regulate the level of antioxidant enzymes and play a
therapeutic role in hyperlipidemia by in vivo and in vitro
experiments (Yuan et al., 2018).

2.3.2 Endoplasmic Reticulum Stress
ER is the main cellular compartment involved in secretory and
transmembrane protein productive folding, lipid biogenesis, and
calcium homeostasis (Lebeaupin et al., 2018). With the
occurrence of abnormal glycolipid metabolism, cells activate
unfolded proteins in response to misfolded and unfolded
protein aggregation and calcium balance in the ER, and
misfolded proteins induce ROS generation while OS disturbs
the ER redox state, thereby breaking the correct disulfide bond
formation and proper protein foldin (Wang J. et al., 2016).

APS improve ER and the resulting autophagy by inhibiting the
ATF6 passage and glucose-regulated protein 78 (GRP78)-related
pathways [including IRE-1α, the c-Jun N-terminal kinase (JNK),
and PERK], reducing the apoptosis factors expression of C/EBP-
homologous protein and caspase-12 (Wang et al., 2009; Hu et al.,
2010; Wei et al., 2018). Under ER stress, partner GRP78 binds to
unfolded protein, releasing the following three transmembrane
receptors: inositol-requiring enzyme 1 (IRE-1α), protein kinase-
like endoplasmic reticulum kinase (PERK), and activating
transcription factor 6alpha, allowing their signaling pathways
to be activated. The dephosphorylation of PERK and IRE1 could
be initiated by APS and suppress p50-ATF6 and activate p90-
ATF6 to improve ER and recover glucose homeostasis (Wang
et al., 2007; Wang et al., 2009).

2.3.3 Mitochondrial Injury
Increased fatty acid oxidation and lipotoxicity in NASH are
principal drivers of mitochondrial deterioration (Schuppan
et al., 2018). The liver adapts to the influx of excess fatty acids
caused by liver lipid deposition, increasing mitochondrial β
oxidation and the number of mitochondria. It is not only a
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direct reaction to fatty acids but also an activation of lipid
cytokines caused by IR and increasing PPAR-α activation
levels, which is inhibited by APS as shown earlier. NAFLD
patients show a rise in pro-inflammation cytokine TNF-α
levels. Remarkably, APS may reduce TNF-α levels while
inhibiting the expression of PPAR-α (Chen et al., 2017).

By stimulating the expression of uncoupling protein 2, APS
could improve liver energy metabolism disorders and limit the
production of ROS, up-regulating ATP enzyme activity (Gu et al.,
2015; Kan, 2018). UCPs are proteins that exist on the inner
membrane of mitochondria, limiting the production of ROS by
mitochondria, and protecting cells from oxidative damage caused
bymitochondrial respiration (Toda and Diano, 2014). High levels
of UCPs may lead to high levels of protein leakage and
uncoupling of substrate oxidation from ADP phosphorylation,
thereby limiting ATP synthesis and energy loss (Demine et al.,
2019).

Besides, APS may promote mitochondrial biogenesis through
the AMPK-mediated peroxisome proliferator-activated receptor
γ coactivator 1 (PGC-1α)/nuclear factor erythroid 2-like 1
(NRF1) signaling pathway, up-regulating the mitochondrial
transcription factor A level to improve mitochondrial oxidative
phosphorylation levels and boost mitochondrial function and
mitochondrial DNA replication (Cheng et al., 2018; Kan, 2018;
Kang et al., 2018).

2.4 Inflammation, Fibrosis, Autophagy, and
Apoptosis
Long-term repetitive inflammation irritation is an accomplice to
the progression of NAFLD, further leading to sustained hepatic
fibrogenesis and, ultimately, cirrhosis (Koyama and Brenner,
2017). Apoptotic hepatocytes activate quiescent hepatic stellate
cells (HSCs) and Kupffer cells (KCs) that in turn promote
inflammation and fibrosis (Brenner et al., 2013).
Inflammation, fibrosis, autophagy, and apoptosis as inter-
related pathogenesis deteriorate each other in the progression
of NAFLD.

2.4.1 Inflammation
Inflammatory damage as a result of the imbalance between pro-
inflammatory cytokines and anti-inflammation is triggered by
various endogenous or exogenous factors in adipose tissue or the
gut, such as lipotoxicity, cells apoptosis, innate immune
responses, OS, mitochondrial dysfunction, and ER (Schuster
et al., 2018). APS could down-regulate inflammation-related
pathway proteins and cytokines in vitro and in vivo, such as a
series of pro-inflammatory cytokines including tumor necrosis
factor-alpha (TNF-α), interleukin-1beta, interleukin-6,
interleukin-18, cyclooxygenase-2, and monocyte
chemoattractant protein-1 (MCP-1/CCL2), which up-regulate
anti-inflammation cytokine interleukin-10 (Cui et al., 2016;
Sun et al., 2019; Cai et al., 2020).

By enhancing the intestinal mucosa, mucosal permeability,
and intestinal flora, APS protect against endotoxin generated by
intestinal bacteria that enter via the portal circulation to activate
toll-like receptor-4 signaling in Kupffer cells (Mollazadeh et al.,

2019; Wang and Sun, 2021). The entry of lipopolysaccharide into
the liver via the damaged intestinal mucosal barrier stimulates the
release of pro-inflammatory cytokines, and the downstream
signaling pathways activation of the adaptor protein myeloid
differentiation primary response 88 (MyD88) and nuclear factor-
B (NF-κB) have been demonstrated to be inhibited in the APS
treatment group to alleviate liver steatosis (Zhang et al., 2012); the
associated proteins NF-κB, NF-κB p65, and inhibitory kappa B
alpha were lowered, as were the regulatory proteins governing
innate and adaptive immune responses (Wang et al., 2013; Hamid
et al., 2017b; Freitas and Fraga, 2018).

2.4.2 Fibrosis
Hepatic fibrosis develops as a consequence of a chronic, recurrent
wound healing process (Schuppan et al., 2018). Cascade
responses (such as OS, necrosis, and apoptosis) induced by
liver cell damage are intimately linked to inflammation and
can serve as a risk indicator for the development of hepatic
fibrosis (Koyama and Brenner, 2017; Schuppan et al., 2018). APS
inhibit fibrosis formation by inhibiting oxidative stress, apoptosis,
and inflammation; enhancing immunity; and preserving the
shape and function of sinusoidal and hepatic cells, as well as
reducing extracellular matrix (ECM) deposition (Niu et al., 2012;
Xu et al., 2012; Zhang, 2012; Li, 2013; Huang et al., 2015).

Hepatic fibrosis is characterized by the deposition of the ECM, a
rise in myofibroblasts, and hyperplasia of fibrous tissue. Additionally,
pseudolobules occur, which are reversed by APS (Zhang et al., 2009;
Qin, 2012; Huang et al., 2015; Zhang et al., 2015). Collagen,
proteoglycan, laminin, fibronectin, and matrix cell proteins are all
deposited as ECMs. APS may decrease collagen deposition by
inhibiting the activation of Kupffer cells and the hyperplasia of
HSCs (Qin, 2012; Huang et al., 2015). The activation indicators of
HSCs transforming growth factor-beta1 (TNF-β1), and alpha-
smooth muscle actin were reduced in the presence of APS
(Huang et al., 2015; Zhang et al., 2015; Hamid et al., 2017a;
Hamid et al., 2017b). Likewise, APS may decrease MMP9
expression and boost MMP2 to maintain a balance between
matrix metalloproteinases (MMPs) and their inhibitors, hence
promoting ECM deposition. MMP2 and MMP9 are gelatinases
that could also cleave type IV collagen and degrade type V, VII,
and X collagen, fibronectin, and elastin (Pittayapruek et al., 2016).
ECM deposition in the Disse space results in the establishment of
endodermis and the loss of fenestration in hepatic sinusoidal
endothelial cells (HSECs). APS may increase defenestration of
HSECs, sinusoidal capillaries, and liver cells by increasing Young’s
modulus, the fenestration area, and several SECs (Li, 2013; Yan F.
et al., 2020), as well as the hepatic circulation flow rate and perfusion
(Tian and Xu, 2008).

APS may act as a regulator of the TGF-β/small mother against
the decapentaplegic (Smad) pathway, thereby preserving the
basement membrane-like intercellular material seen in normal
liver tissue and preventing the development of scar tissue (Huang
et al., 2015; Hu et al., 2018). TGF-1, Smad3, Smad4, and Smad7
expressions were all suppressed while Smad7 increased CCL4-
induced fibrosis in rats (Huang et al., 2015).

It has been reported that astragalus has the function of
immunity enhancement (Liu CH. et al., 2017; Qi et al., 2017;
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Liu and Lv, 2020). Additionally, APS may ameliorate liver
damage by boosting immunity, which results in a rise in
serum total protein, albumin, and albumin/globulin levels,
while decreasing globulin levels (Zou et al., 2002; Niu et al.,
2012; Xu et al., 2012).

2.4.3 Autophagy and Apoptosis
Autophagy and apoptosis research in the context of improving
NAFLD includes lipid removal and anti-inflammatory and anti-
oxidative stress benefits. Hamid et al. observed that APS stimulate
KCs by decreasing the amounts of recombinant autophagy-
related proteins (ATGs), family members (ATG7, ATG12, and
ATG6), and protein II light chain 3 (LC3II), resulting in a
decrease in CD68-positive KCs (Hamid et al., 2017b).
According to previous studies, ATG7 and LC3II recruited by
PI3K further clear hepatocellular lipid droplets, and ATG7 may
also control PERK, linking autophagy with ER (Martinez-Lopez
and Singh, 2015; Zheng et al., 2019). As shown by the decreased
expression of Bcl-2/BAX apoptotic genes, APS may also promote
apoptosis in activated HSCs in hepatic fibrosis (Hamid et al.,
2017a). The Bcl-2 family of proteins controls and regulates the
intrinsic or mitochondrial apoptotic pathway (Peña-Blanco and
García-Sáez, 2018). The Bcl-2 protein family regulates and
controls the intrinsic or mitochondrial apoptotic process
(Mukhopadhyay et al., 2014).

3 CONCLUSION AND FUTURE
PERSPECTIVES

As phytotherapy, APS are appropriate for long-term therapeutic
options in patients with chronic illness owing to relatively small
toxic side effects, which has been the most difficult issue in the
study of NAFLD treatments, resulting in a large number of
medicines being abandoned in subsequent clinical trials.
Increasing data indicate that APS are useful for NAFLD. It
may enhance lipid metabolism by reducing the buildup of
lipids such as TGs, FFAs, and CHOL (in particular, the
production and secretion of CHOL and Bas). FAT/CD36,
CPT1B, PCSK9, LDL-R, LOX-1, CYP enzymes, and the
SIRT1/PPARα/FGF21 pathway are the major molecular
processes and pathways involved. They have the potential to
reverse IR by increasing ISI, restoring islet cell shape and
function, controlling insulin secretion, and stimulating glucose
absorption, all of which are necessary for proper lipogenesis and
glycogen production. APS regulate the PI3K/Akt pathway,
phosphorylating IRS-1 and activating the AMPK/ACC
pathway to ameliorate inadequate ISI, and down-regulates the
mTOR/4EBP-1/S6K1 pathway and the addition of adiponectin.
Additionally, the therapeutic impact of APS on NAFLD may be
related to its capacity to ameliorate OS, ERS, and mitochondrial
damage through regulation of the NRF2/HO-1, GRP78/IRE-1/
JNK, and AMPK/PGC-1/NRF1 pathways, as seen in Figure 3.
APS inhibit inflammation and fibrosis and regulates autophagy
and apoptosis in HSCs and Kupffer cells via the TLR4/MyD88/
NF-κB pathway and gut microbiota; ECMs are diminished and
proliferation of HSCs and Kupffer cells is inhibited via the TGF-

β/Smad pathway; HSEC defenestration and immunity are
improved; and autophagy and apoptosis occurs in HSCs.
Among them are several small-molecule compounds that have
been screened using metabolomics, but their findings have not
been confirmed in subsequent research, and many of the current
animal and cell experiments have remained in the laboratory.
Preliminary verification of pathological improvement needs more
systematic and in-depth study; further verification of its
mechanism of action requires more systematic and in-depth
research. At the moment, no clinical data exist to support the
therapeutic efficacy of APS in NAFLD. As a consequence of the
progress of so many experiment outcomes, further clinical studies
will be required in the future to validate the data.

However, because of the intricacy of its structure and
composition, it is difficult to correctly regulate the quality of its
compounds, and we must make further efforts toward this end
(Zeng et al., 2019). APS have been extensively investigated as an
immunostimulant and anti-aging, anti-diabetic, anti-tumor, and
antiviral agent (Zheng et al., 2020). Owing to the origin of the
raw materials, the medicinal components, the growth years of the
medicinal materials, and the extraction technique, the purity,
composition (e.g., polysaccharide content), and chemical structure
of APS will vary (Li et al., 2015). Huang et al. identified
polysaccharides as one of the most essential components of
Astragalus (Huang et al., 1982). The major components of APS
are heteropolysaccharide, neutral polysaccharide, dextran, and acidic
polysaccharide, with heteropolysaccharide being the most abundant
(Zheng et al., 2020).

As a macromolecular molecule, APS are insoluble in water,
have a low oral absorption rate and a low bioavailability, and are
quickly affected by stomach acid and other variables, resulting in
a highly limited therapeutic effectiveness. In recent years, in
conjunction with emerging technologies, a plethora of new
preparations aimed at increasing the drug’s absorption rate
and efficacy have been developed, such as the establishment of
APS liposomes and the preparation of APS microcapsules to
extend the drug’s storage time and enhance its slow-release effect
and boost immunological function (Fan et al., 2011).
Additionally, APS pellets may be manufactured for use as a
colon-targeted formulation, allowing the medicine to bypass
the intestinal mucosal barrier and reach the liver (Qin et al.,
2016; Lai et al., 2017). Chitosan is used to synthesize APS
nanoparticles, which boost the herb’s therapeutic efficacy in
the treatment of blood disorders (Lai et al., 2017).
Additionally, colonized and fermented APS are often
employed in anti-liver fibrosis studies (Zhou et al., 2017). In
clinical settings, APS injection is used the most. It has been
extensively used to increase immune function and aid in the
treatment of asthma and hypertension in patients after cancer
chemotherapy (Wang et al., 2021). As previously stated, it aims to
address the issue of APS’s limited oral availability. That said, as we
can see, various preparations alter the functional targeting of APS.
Is there a better way to handle APS for the treatment of NAFLD?
The gut-liver axis is critical in NAFLD, and APS have also been
shown to promote intestinal flora. Not only may APS be used as a
pharmaceutical, but it can also be utilized as a dietary supplement
for metabolic illness nutritional treatment.
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Modern experimental technology has made tremendous
strides in recent years. High-throughput techniques such as
metabolomics, transcriptomics, epigenetics, and gut
microbiota analysis may aid in the exploration of drug
action mechanisms. APS demand a more thorough
examination of the exploration of NAFLD therapeutic
mechanisms by those technologies.
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