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Abstract

No diagnostic or predictive instruments to help with early diagnosis and timely therapeutic

intervention are available as yet for most neuro-psychiatric disorders. A quantum potential

mean and variability score (qpmvs), to identify neuropsychiatric and neurocognitive disor-

ders with high accuracy, based on routine EEG recordings, was developed. Information pro-

cessing in the brain is assumed to involve integration of neuronal activity in various areas of

the brain. Thus, the presumed quantum-like structure allows quantification of connectivity

as a function of space and time (locality) as well as of instantaneous quantum-like effects in

information space (non-locality). EEG signals reflect the holistic (nonseparable) function of

the brain, including the highly ordered hierarchy of the brain, expressed by the quantum

potential according to Bohmian mechanics, combined with dendrogram representation of

data and p-adic numbers. Participants consisted of 230 participants including 28 with major

depression, 42 with schizophrenia, 65 with cognitive impairment, and 95 controls. Routine

EEG recordings were used for the calculation of qpmvs based on ultrametric analyses,

closely coupled with p-adic numbers and quantum theory. Based on area under the curve,

high accuracy was obtained in separating healthy controls from those diagnosed with

schizophrenia (p<0.0001), depression (p<0.0001), Alzheimer’s disease (AD; p<0.0001),

and mild cognitive impairment (MCI; p<0.0001) as well as in differentiating participants with

schizophrenia from those with depression (p<0.0001), AD (p<0.0001) or MCI (p<0.0001)

and in differentiating people with depression from those with AD (p<0.0001) or MCI

(p<0.0001). The novel EEG analytic algorithm (qpmvs) seems to be a useful and sufficiently

accurate tool for diagnosis of neuropsychiatric and neurocognitive diseases and may be

able to predict disease course and response to treatment.
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Introduction

Disorders of the brain, such as schizophrenia, epilepsy, depression and dementia, constitute

approximately 27% of the global disease burden in terms of disability-adjusted life-years

(DALYs) and that surpasses cardiovascular diseases and cancer combined [1]. For most brain

disorders no single accurate, diagnostic tool is available as yet [2–4]. Several biomarkers exist

to substantiate the diagnosis, including biological markers from serum or cerebrospinal fluid

(CSF), neuroimaging techniques, including magnetic resonance imaging (MRI), functional

MRI (fMRI), and positron emission tomography (PET). Those, however, are often expensive

possibly quite invasive and none of these techniques has yielded a biomarker sufficient for

accurate diagnosis of disorders such as Alzheimer’s disease (AD) [5], major depression or

schizophrenia [6]. Electroencephalography (EEG) is an inexpensive and well-established tool

[7, 8] used for resting-state power, spectral and functional connectivity analyses as well as

microstate analysis, which may assist in diagnosing these disorders [9–14] with variable suc-

cess and little use in clinical practice.

The recent years were characterized by tremendous development of quantum information the-

ory [15–17]. Nowadays quantum-like modelling is widely used in microbiology, genetics, cogni-

tion, psychology, decision making and social science [18–22]. Furthermore, it is widely accepted

that the brain that is considered a “black box” in this model, is a highly hierarchic organ in terms

of communication and subsystem function [23, 24]. Baring this in mind, we decided to compare

the EEG-pattern of healthy controls and those of peoples with neuropsychiatric diseases. The way

to represent hierarchy in mathematical terms is by dendrogram trees that can be expressed as p-

adic numbers, [21, 22, 25] representing an emergent property of the holistic brain (where

throughout this study the 2-adic numbers are in the use thus p = 2). The quantum (Bohmian

mechanics) formalism was used operationally to describe holistic information processing by the

brain in accordance with Bohr and Hilley who treated it as a field of “active information” [26].

The current study’s main objective was to develop a novel and relatively simple tool to diag-

nose and predict multiple neuropsychiatric diseases. This tool combines routine EEG and

mathematical structures of quantum Bohmian theory, to extract characteristic information

patterns presented in dendrograms, expressing the hierarchical treelike structure of informa-

tion processing in the brain [27]. This novel method accurately identified participants with

mild cognitive impairment (MCI), AD, schizophrenia, or depression, by routine EEG records

analysed by this novel approach.

Methods

The study adhered to rules and regulations of the Helsinki Declaration and was approved by

the Institutional Review Board (IRB) of the Rabin Medical Center, Petach Tikva, Israel (0275-

20-RMC). The study was approved as retrospective clinical and need for consent was waived

by the ethics committee. All patient data were fully anonymized before review.

Participant groups

Online medical health records from two medical centres were used to identify all participants

that underwent at least one routine EEG examination between the years 2011 and 2019. The

participants were then divided into the following groups: 1) Depression: Participants with a

diagnosis of major depressive disorder (MDD), hospitalized during the index time. This diag-

nosis had been established by two senior psychiatrists according to DSM-IV and DSM-V crite-

ria, following a psychiatric interview where the severity of depression was found to be at least

moderate. In addition, the participants (range: 33–91 years; average age: 69.7 ±14.8 years; 20

females) had to have had at least one previous major depressive episode, prior to age 30, namely,
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the index episode was a recurrent one. 2) Schizophrenia: Diagnosis of schizophrenia had been

established by two senior psychiatrists according to the ICD-10 criteria. In addition, the partici-

pant had to be hospitalized during the index time. 3) Cognitive impairment: Participants in the

study had been diagnosed by two senior neurologists, with either MCI or AD according to the

criteria of the National Institute on Aging and the Alzheimer’s Association [28, 29]. 4) Controls:

Participants undergoing routine EEG due to indications unrelated to neuropsychiatric diseases.

None of the participants in this group had been diagnosed with any condition defining any of

the other groups. In this group, exclusion criteria also included diagnosis of bipolar disorder;

substance abuse, psychiatric or general medical conditions requiring hospitalization, history of

epilepsy or conditions requiring anticonvulsants, ECT, vagal nerve stimulation, or transcranial

magnetic stimulation (TMS), history of traumatic brain injury and history or imaging findings

of cerebrovascular diseases including ischaemic and haemorrhagic stroke.

EEG data acquisition and analysis

Routine EEG recordings were retrospectively obtained from the medical records of all patients.

EEGs had been performed in a routine clinical setting by an experienced technician. All

included participants had undergone EEG between 8 am and 1 pm using a Nihon Koden sur-

face EEG (19-electrode standard according to the international 10–20 electrode placement sys-

tem) with a sampling frequency of 500 Hz (Nihon Kohden, Japan). Participants had been

resting with open and closed eyes. Those who underwent sleep-EEGs were excluded.

2-adic quantum potential calculation. To extract the 2-adic quantum potential from par-

ticipants’ EEG signals, the following procedures were preformed:

1. Raw EEG data from the 19 active electrodes (elec) were transformed into the European

Data Format (EDF).

2. Data was filtered first to remove the 50Hz mains signal and then further filtered with a high-

pass 1 Hz filter. Subsequent analysis was performed using a 351s sample of continuous EEG.

3. A moving time window of 1s duration was selected. For each time step,

We define

W ¼ window duration

and

n ¼ b
no:of data points

sample rate
c ð1Þ

Thus, the time step, t, has values in the interval: t2[1,n/W] and for each electrode we assign,

elec, with values in the interval as the number of EEG electrodes used to record the data.

elec 2 ½1; 19�

4. normalized distribution function construction. Electrical potential values, donated as ep
with units of [mV] recorded from each electrode (elec) at any given time step, t, normalized

according to the following:

bepelec;t ¼
jepelec;tj

maxðjepelec;tjÞ
; bepelec;t 2 0 1½ � ð2Þ
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5. 19 histograms, helec,t, each with bin width of 0.01 were constructed representing an empiri-

cal probability distribution function of the normalized electrical potential values of each of

the 19 electrodes. Thus, we have for each elec 21,2..19 a vector with 100 elements where

each element represents frequency of the corresponding binned bep values. helec,t contains 19

such vectors.

6. For each t, we calculated the pair-wise Hellinger distances between all the 19, helec,t, histo-

grams vectors as shown below:

For helec,t where elec = i elec’ = j and t = 1,2,. . .351. we have x = hi,t y = hj,t
x = xi i = 1,2,3..k, y = yi i = 1,2,3..k where k in our computation is k = 100 and the Hellinger

distance between vectors x and y is defined as:

H x; yð Þ ¼
1
ffiffiffi
2
p ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xk

i¼1

ð
ffiffiffiffi
xi
p

v
u
u
t �

ffiffiffiffi
yi
p
Þ

2

From all H values we constructed a dendrogram with 19 edges (each edge represents one of

the 19 electrodes histograms, helec,t).
The resulted dendrogram is a representation of distance relations of normalized electrode

voltage histograms for each time window.

7. Each dendrogram was represented in a matrix (Bt,participant), where each row (relec,t,participant)
is the 2-adic expansion of the electrode (edge (tree route in the dendrogram [30]. Each

2-adic expansion (relec,t,participant) was converted to a rational number in the following man-

ner:

Thus for each binary vector relec,t,participant, which is a 2-adic expansion, we have a vector Y
that contains values of places in the 2-adic expansion of each relec,t,participant equal to 1,

qelec ¼
X

2� Y qelec 2 ½0 1� ð3Þ

8. from the 19 values in qelec we constructed an empirical probability distribution function

(pdf), ρ(q), of with a kernel function of bandwidth:

ðmaxðqelecÞ � min ðqelecÞÞ=ðno:columns of Bt;participantÞ ð4Þ

9. The quantum potential (QP) function was calculated according to P. Holland [31]:

QPt;participant ¼
h2

4mr
1

2r

@r

@q
@r

@q
�

@2r

@q@q

� �

ð5Þ

in our numerical approach

We define

d = (max(qelec)−min(qelec))/mwhere

m = 100 in our numerical calculations as the number of points in the empirical probability

distribution function ρ(q). Interestingly our qualitative results do not change upon increas-

ing number of points in ρ(q) from 100 to 1000 and changing m respectively from 100 to

1000.further we define

q 2 minðqelecÞ;minðqelecÞ þ d;minðqelecÞ þ 2d . . .maxðqelecÞ
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and

@r

@q
¼
rðqþ dÞ � rðqÞ

d
;

@2r

@q@q
¼ ð

rðqþ 2dÞ � rðqþ dÞ
d

�
rðqþ dÞ � rðqÞ

d
Þ=d ð6Þ

Thus, inserting into Eq 5

QPt;participant ¼
h2

4mr
ð

1

2r

rðqþ dÞ � rðqÞ
d

� �2

�

rðqþ2dÞ� rðqþdÞ
d �

rðqþdÞ� rðqÞ
d

� �

d
Þ ð7Þ

with Planck’s constant h = 1 and mass m = 1, and q2[0 1].

The integral of the QP was calculated for each t and each participant as follows:

Z

QPt;participantdq ð8Þ

We note that Eq 7 gives as a measure of the dendrogramic hierarchical structure topology.

Thus, the ambiguous quantum potential notion becomes in our framework quite trivially a score
or measure of hierarchical topology.

For each electrode, the QP value was extracted as follows:

QPelec;t;participant ¼ QPt;participantðelecÞ ð9Þ

We define

1. The mean of the log10 (|QPelec,t,participant|) values across electrodes for each participant as:

Qmet,patient

2. The mean of Qmet,patient across all participants in one group as: Qmet,group

3. The standard deviation (STD) of Qmet,patient across all participants in one group as: Qstdt,
group

The above QP time series data analysis was performed with MATLAB software (Math-

works, Natick, MA).

Quantum potential mean and variability score (qpmvs). To compare two participant

groups, we defined the following parameters.

1. For each participant, the mean log10 of the absolute value of the integral of the QP function

of all t was calculated as follows:

mIqpparticipant ¼< ðlog10j

Z

QPpdqÞtj>participant

2. For each participant group, the mean mIqpparticipant across all participants of a group was

calculated as follows:

mIqpgroup ¼ < mIqpparticipant>group
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3. For each participant, the standard deviation (std) of the log10 of the absolute value of the

integral of the QP function for all t was calculated as follows:

sIqpparticipant ¼ stdðlog10j

Z

ðQPpdqÞtjÞparticipant

4. For each participant group, the mean sIqpparticipant of each group’s std as follows:

sIqpgroups ¼< stdðlog10j

Z

ðQPpdqÞtjÞparticipant>groups

5. The quantum potential mean and variability score (qpmvs) was calculated as follows:

For each participant M will be the number of time steps, t, that satisfy

ðlog10j

Z

ðQPpdqÞtjÞparticipant > mIqpgroup þ sIqpgroups

or

ðlog10j

Z

ðQPpdqÞtjÞparticipant < mIqpgroup � sIqpgroups

Thus,

qpmvsparticipant ¼ mIqppatient �M

6. Receiver operating characteristic (ROC) was used to assess the accuracy of the method in

differentiating the participant groups from each other. The area under the curve (AUC) is

calculated as an effective measure of accuracy using the individual qpmvsparticipant with

MATLAB software scripts.

QP power spectrum analysis of QPelec values. In order to study QP time-series dynamics for

each participant group, fast Fourier transformation (FFT) was used for creating a spectrogram for

each QPelec for each participant’s frequency band of 2-n (n = 1. . .5) and a window of 64 s with 0.5 s

overlap. Each participant’s electrode spectrogram (n = 19) was averaged (<SPelec>participant,window)

and averaged again across all participants in each group (<<SPelec>participant>window). For each fre-

quency band, each participant group (<<SPelec>participant>window) was normalized to the corre-

sponding maximum value of that particular band.

Statistical analyses

Statistical analyses were performed using GraphPad Prism Software (San Diego, CA). Means were

represented with standard error of means (SEM). Student-t-tests were performed to compare pair-

wise group differentiation with a 99% confidence level. Analysis of Variance (ANOVA) tests with

multiple comparisons were applied to test differentiation of all groups with a 99% confidence level.

Results

Participants’ characteristics

A total of 230 participants (average age: 58.2 ±18.7 years; range: 18–91 years; 129 (56.1%)

female) were included in the study (Table 1). The participants were grouped according to the
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clinical data described in the methods section and consisted of 28 participants with a primary

diagnosis of MDD (average age: 69.7 ±14.8 years; range: 33–91 years; 20 (71.4%) female); 42

participants with a diagnosis of schizophrenia (average age: 41.4 ±16.8 years; range: 18–76

years; 15 (35.7%) female); 65 participants with cognitive impairment (average age: 72.9 ±7.2

years; range: 60–87 years; 31(47.7%) female) from which 25 (38.5%) were diagnosed with MCI

(average age: 73.5 ±6.0 years; range: 62–85 years; 11 (44%) female) and 40 with AD (average

age: 72.6 ±7.9 years; range: 60–87 years; 20 (50%) female). Further, 95 participants with no

neurological or psychiatric morbidity were included in the control group (average age: 52.2

±16.8 years; range: 19–80 years; 63 (66.3%) female).

Characterization of neuropsychiatric participant groups according to

p-adic quantum potential

The study aimed first to differentiate participants with neuro-psychiatric disorders from control

participants. For this comparison, a cumulative distribution function (CDF) of Qmet,group (Fig

1A) was constructed. Among the controls (n = 95), the mean of the Qmet,group was 4.15 ±0.03,

which differed with high statistical significance from participants with depression (n = 28; 4.26

±0.03; p<0.001), schizophrenia (n = 42; 4.24 ±0.04; p<0.001), AD (n = 40; 4.14 ±0.03; p<0.001)

and MCI (n = 25; 4.17 ±0.03; p<0.001; Fig 1B and 1C; Table 2). Interestingly, the variability

across participants within each group, denoted as Qstdt,group, also differed significantly between

the control group and each neuro-psychiatric disorder group (control: n = 95, 0.16 ±0.01;

depression: n = 28; 0.46 ±0.06; p<0.001; schizophrenia: n = 42; 0.39 ±0.05; p<0.001; AD:

n = 40; 0.15 ±0.02; p<0.001; and MCI: n = 25; 0.16 ±0.03; p<0.001; Fig 1D–1F, Table 3). The

study further intended to identify the participants’ specific neuro-psychiatric disorder in accor-

dance with the quantum-like structure of the brain. For this purpose, a comparison was done

among the Qmet,group and all groups of participants (control, AD, MCI, depression, and schizo-

phrenia). This enables us to use Qmet,group as a specific biomarker in identifying participants

with different neuro-psychiatric disorders. The cumulative distribution function (CDF) of

Qmet,group and the variability (Qstdt,group) differentiated highly significantly between the disease

groups, with the exception of the variability between AD and MCI (Fig 1 and Tables 2 and 3).

QP cross-correlation between participant electrodes

EEG signals have traditionally been used to examine the functional cortical connectivity

between different areas of the brain. Connectivity measurements using scalp recording signals,

Table 1. Participants’ demographics.

N f/m Age (y ±SD; range)

Control 95 63/32 52.2 ±16.8; 19–80

Depression 28 20/8 69.7 ±14.8; 33–91

Schizophrenia 42 15/27 41.4 ±16.8; 18–76

Cognitive Decline 65 31/34 72.9 ±7.2; 60–87

AD 40 20/20 72.7 ±7.9; 60–87

MCI 25 11/14 73.5 ±6.0; 62–85

stMCI 6 0/6 74.3 ±4.6; 67–80

dtMCI 9 6/3 73.2 ±5.6; 65–82

AD–Alzheimer’s Disease; MCI–mild cognitive impairment; stMCI–stable MCI; dtMCI- deteriorating MCI; SD–

standard deviation; range–range of age in years

https://doi.org/10.1371/journal.pone.0255529.t001
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include the Pearson coefficient of correlation, coherence, phase lag, and synchronization likeli-

hood [32]. The EEG signal received at each electrode is correlated to the signals at other elec-

trodes in space and time. In contrast to this traditional approach, the quantum-like structure

Fig 1. Distribution of p-adic QP values extracted from EEG of neuro-psychiatric patient groups. (A) Cumulative

distribution function (CDF) of Qmet,group for control patients (n = 95), patients with depression (n = 28), schizophrenia

(n = 42), AD (n = 40), and MCI (n = 25). (B) mean of Qmet,group the for comparison (SEM; control: 4.15 ±0.03;

depression: 4.26 ±0.03; schizophrenia: 4.24 ±0.04), AD: 4.14 ±0.03; MCI:4.17 ±0.03). (C) Qmet,group significance p-value

matrix of pairwise group comparison. (D) cumulative distribution function (CDF) of Qstdt,group of all five patient

groups. E, mean of the Qstdt,group (SEM; control: 0.16 ±0.01; depression: 0.46 ±0.06; schizophrenia: 0.39 ±0.05; AD: 0.15

±0.02; MCI: 0.16 ±0.03). F, Qstdt,group significance p-value matrix of pairwise group comparison.

https://doi.org/10.1371/journal.pone.0255529.g001

Table 2. Mean of quantum potential for participants groups.

Mean SD N p-values

Control Depression Schizophrenia AD MCI

Control 4.149 0.02656 95 1 3.0088e-234 1.1298e-176 5.21198e-09 4.76607e-14

Depression 4.24 0.03509 28 3.0088e-234 1 1.91703e-10 3.1218e-251 1.1569e-173

Schizophrenia 4.256 0.02983 42 1.1298e-176 1.91703e-10 1 5.7517e-197 2.9676e-122

AD 4.166 0.03236 40 5.21198e-09 3.1218e-251 5.7517e-197 1 9.47087e-34

MCI 4.136 0.02891 25 4.76607e-14 1.1569e-173 2.9676e-122 9.47087e-34 1

https://doi.org/10.1371/journal.pone.0255529.t002
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of the brain, according to de Broglie-Bohm, allows quantifying connectivity as a function of space

and time as well as of instantaneous quantum effects in space (non-locality) [27]. We examined

both instantaneous (non-local) and non-instantaneous (local) interactions between the QP

(QPelec,t,participant) of each participant’s EEG electrodes. In order to identify the non-instantaneous

(local) interactions between these QPs, we examined for each participant, the maximal absolute

correlation coefficient between the participant’s electrodes over the whole recording time. This

represents the local non-instantaneous effect between pairs of electrodes. Results are shown as

heat maps of the mean of all participants’ cross correlation (Fig 2A and 2D; Table 4).

To characterize the temporal relationship between the QP (QPelec,t,participant) of two elec-

trodes, we identified the time lag (tlag) between maximal correlation coefficients of each of the

two EEG electrodes (Fig 2B, 2E; Table 5). The non-local (lag = 0) instantaneous effect of the

absolute correlation coefficient between each pair of electrodes were significantly different

between all participant groups except between control and AD group (Fig 2C, 2F; Table 6).

QP power spectrum analysis of Qelec values

Power spectral density (PSD) has been used to determine levels of brain activity in EEG record-

ings in order to assess the power of each frequency observed in various states of consciousness

[33, 34]. Next PSD analysis was used to evaluate in the various clinical groups, the QP power over

a range of frequencies, as described in the methods. A normalized PSD of QPelec,t,participant was cal-

culated using fast Fourier transformation (FFT), for each participant group (Fig 3). The QP power

discriminated between the participant groups. Namely, each group showed a distinct pattern as

for example, while in participants with depression no power differences were detected at various

frequencies, the control group showed significant differences (p<0.05; ANOVA) in all except one

(2e-1 vs. 2e-2) frequency comparison. Most interestingly, when comparing participant groups to

each other (multiple comparisons ANOVA), the power of the QPelec,t,participant of the depression

and schizophrenia groups differed significantly when compared to all other participant groups at

any frequency while no power differences were found at any frequency between control, AD, and

MCI groups (Table 7). Comparing the PSD across all frequencies and participant groups by nor-

malizing the maximum power of each frequency band resulted in significant differences between

participants with depression (0.879± 0.08) or schizophrenia (0.688± 0.08) versus all other groups

(p<0.0001 for both) while participants with AD (0.456± 0.05), MCI (0.478± 0.05), and control

participants (0.463± 0.04) did not differ from each other (p>0.05; Table 8; Fig 3).

EEG QP accuracy in differentiating neuropsychiatric diseases from controls

In order to employ the method described above to classify individual participants by their clin-

ical neuropsychiatric diagnosis we combined the mean values and the dynamic variability of

the EEG QP. It was shown earlier that the value of the EEG QP represented by Qmet,group as

Table 3. Variability of quantum potential for participants groups.

Variability SD N p-values

Control Depression Schizophrenia AD MCI

Control 0.1635 0.01475 95 1 0 0 7.4345e-05 4.0350e-12

Depression 0.3854 0.04649 28 0 1 5.7772e-67 0 0

Schizophrenia 0.4608 0.05635 42 0 5.7772e-67 1 0 0

AD 0.157 0.02644 40 7.4345e-05 0 0 1 9.96e-02

MCI 0.1541 0.01998 25 4.0350e-12 0 0 9.9619e-02 1

AD–Alzheimer’s Disease; MCI–mild cognitive impairment; SD–standard deviation

https://doi.org/10.1371/journal.pone.0255529.t003
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well as the dynamics of EEG QP embodied by the results from the spectral analysis

(<SPelec>participant>window) can distinguish between the participant groups and healthy con-

trols. Thus, a combined score of the mean and variability of the EEG based QP (qpmvs) was

calculated for each participant (see methods above). The accuracy of the identification of

Fig 2. Cross correlation of time series QP between EEG electrodes. (A)Heatmaps of maximum correlation

coefficients between each pair of electrodes QP (QPelec,t, participant) time series. Each correlation coefficient was

normalized to the maximum correlation coefficient of all patient groups. (B) Heatmaps of temporal difference (lag) of

maximum correlation coefficient between each pair of electrodes QP (QPelec,t,participant) time series. Each temporal

difference was normalized to the maximum temporal difference of all patient groups. (C) Heatmaps of instantaneous

correlation coefficients (lag = 0) between each pair of electrodes QP (QPelec,t,participant) time series. Each instantaneous

correlation coefficient was normalized to the maximum instantaneous correlation coefficient of all patient groups. (D)

Mean maximum correlation coefficients. (E) Mean of temporal difference (lag) of maximum correlation coefficient. (F)

Mean of instantaneous correlation coefficients (lag = 0). Error bars indicate standard error of mean (SEM).

https://doi.org/10.1371/journal.pone.0255529.g002
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participants’ diagnoses (healthy, depression, schizophrenia, AD and MCI) that was based

solely on the qpmvs derived from routine EEG recordings, was examined by ROC analysis and

the resulting AUC values. ROC analysis showed high accuracy for the qpmvs when comparing

control participants to participants with schizophrenia (AUC = 0.8981± 0.028, 95% CI:

(0.8426–0.9535), p<0.0001), depression (AUC = 0.9033± 0.028, 95% CI: (0.8479–0.9586),

p<0.0001), AD (AUC = 0.9143± 0.042, 95% CI: (0.8312–0.9974), p<0.0001), and MCI

(AUC = 0.8309± 0.06228, 95% CI: (0.7088–0.9529), p<0.0001; Fig 4).

EEG QP accuracy in differentiating between the neuropsychiatric and

neurocognitive disease groups

The qpmvs accuracy was tested for its ability to discriminate between pairs of neuropsychiatric

and neurocognitive groups. High accuracy was obtained in differentiating schizophrenia from

depression (AUC = 0.8992± 0.055, 95% CI: (0.7910–1.000), p<0.0001), AD (AUC = 0.8762±
0.048, 95% CI: (0.7818–0.9706), p<0.0001) or MCI (AUC = 0.8914± 0.059, 95% CI: (0.7756–

1.000), p<0.0001), as well as depression from AD (AUC = 0.8777± 0.048, 95% CI: (0.7828–

0.9726), p<0.0001), or MCI (AUC = 0.8929± 0.058, 95% CI: (0.7781–1.000), p<0.0001; Fig 5).

These results reveal that, participants with neuropsychiatric or neurocognitive disorders can

be differentiated with a high level of accuracy not only from the healthy controls but also from

each other, pointing to the qpmvs as a potentially useful diagnostic marker for differentiating

between the hereby tested diagnoses.

EEG QP accuracy in differentiating between the neurocognitive disease

groups (AD and MCI)

A suboptimal accuracy was found in the differentiation between the two neurocognitive

groups, AD vs. MCI (AUC = 0.7660± 0.06559, 95% CI: (0.6374–0.8946), p = 0.0003). In a

Table 4. Cross correlation analysis between participant’s electrodes–local.

Variability SD N p-values

Control Depression Schizophrenia AD MCI

Depression 0.6686 0.2091 28 1 0.0170 0.001<< 0.001<< 0.001<<

MCI 0.7229 0.1916 25 0.0170 1 0.001<< 0.001<< 0.001<<

AD 0.8492 0.1473 40 0.001<< 0.001<< 1 0.4266 0.0027

Control 0.8192 0.1192 95 0.001<< 0.001<< 0.4266 1 0.001<<

Schizophrenia 0.9129 0.1213 42 0.001<< 0.001<< 0.0027 0.001<< 1

ANOVA–multiple comparison; AD–Alzheimer’s Disease; MCI–mild cognitive impairment; SD–standard deviation

https://doi.org/10.1371/journal.pone.0255529.t004

Table 5. Cross correlation analysis between participant’s electrodes–lag.

Variability SD N p-values

Control Depression Schizophrenia AD MCI

Depression 0.9206 0.1131 28 1 0.001<< 0.001<< 0.001<< 0.001<<

MCI 0.8234 0.1583 25 0.001<< 1 0.0013 0.0017 0.1957

AD 0.7654 0.1419 40 0.001<< 0.0013 1 0.9999> 0.4510

Control 0.7665 0.127 95 0.001<< 0.0017 0.9999> 1 0.4980

Schizophrenia 0.7907 0.154 42 0.001<< 0.1957 0.4510 0.4980 1

ANOVA–multiple comparison; AD–Alzheimer’s Disease; MCI–mild cognitive impairment; SD–standard deviation

https://doi.org/10.1371/journal.pone.0255529.t005
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subsequent analysis, the MCI group was divided into two subgroups, one that showed a stable

disease course (stbMCI) and another with a deteriorating disease course (detMCI). Partici-

pants in the two groups did not differ in age or baseline cognitive testing scores and all had

been clinically classified at baseline, as MCI with no indication to predicting their clinical

course (stbMCI versus detMCI: age, 74.3± 4.5 years versus 73.3± 5.6 years, p = 0.72; MMSE

scores, 28.6±1.2 versus 27.2±1.6, p = 0.09). Using the qpmvs, the stbMCI and detMCI groups

were differentiated with a fair level of accuracy (AUC = 0.9815± 0.029, 95% CI: (0.9245–

1.000), p = 0.0022). In addition, the stbMCI subgroup could be clearly distinguished from the

AD group (AUC = 0.950± 0.044, 95% CI: (0.8622–1.000), p<0.0004), while the detMCI group

was indistinguishable from the AD group (AUC = 0.533± 0.112, 95% CI: (0.3142–0.7524),

p = 0.756; Fig 6).

Table 6. Cross correlation analysis between participant’s electrodes–non-local.

Variability SD N p-values

Control Depression Schizophrenia AD MCI

Depression 0.5535 0.2356 28 1 0.001<< 0.001<< 0.001<< 0.001<<

MCI 0.6639 0.2357 25 0.001<< 1 0.001<< 0.001<< 0.001<<

AD 0.7822 0.1938 40 0.001<< 0.001<< 1 0.6427 0.001<<

Control 0.8113 0.1514 95 0.001<< 0.001<< 0.6427 1 0.0071

Schizophrenia 0.8826 0.141 42 0.001<< 0.001<< 0.001<< 0.0071 1

ANOVA–multiple comparison; AD–Alzheimer’s Disease; MCI–mild cognitive impairment; SD–standard deviation

https://doi.org/10.1371/journal.pone.0255529.t006

Fig 3. Power spectral density (PSD) of QP for different patient groups. (A) PSD for each QPelectrode with frequency

band of 2-n (n = 1. . .5) and a window of 64s with 32s overlap, normalized values according to methods. (B) Graphic

depiction of the mean and SEM of the normalized PSD of each patient group.

https://doi.org/10.1371/journal.pone.0255529.g003
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Discussion

Multiple neuropsychiatric diseases including depression, schizophrenia, and neurocognitive

disorders (AD and MCI) can be differentiated by extracting characteristic information pat-

terns from dendrograms that present the hierarchical, treelike structure of information pro-

cessing in the brain, encoded as p-adic numbers. This study attempted to use an EEG pattern

as a marker of an individual’s brain state [27].

In the model used in the current study, QP was defined as information extracted by means

of p-adic encoding of the dendrogram representing the hierarchic, integrated and non-local

structure of each participant’s EEG. As described above the value of each participant group’s

QP was then quantified, exposing a distinct and significant differentiation among the groups

(mean of the Qmet,group). Furthermore, the variability of QP among participants in each group,

indicated by Qstdt,group, differentiated between the groups and represented a variability factor

for each of them.

As information processing in the brain is assumed to be non-local and resulting from the

integration of neuronal activity in various areas of the brain [35, 36], the quantum-like

Table 7. Intragroup comparison of QP power spectrum frequencies of QPelectrode values.

frequency bands participants group

Depression AD MCI Control Schizophrenia

2e- 1 vs. 2e-2 0.9068 0.2380 0.9971 0.8651 0.9944

2e- 1 vs. 2e-3 0.9078 0.4516 0.3570 0.0004 0.9691

2e- 1 vs. 2e-4 0.7275 0.0003 0.1932 0.0128 0.9468

2e- 1 vs. 2e-5 0.5859 <0.0001 <0.0001 <0.0001 0.0003

2e- 2 vs. 2e-3 >0.9999 0.0050 0.2056 0.0053 0.9993

2e- 2 vs. 2e-4 0.2413 0.0711 0.3390 0.0009 0.7875

2e- 2 vs. 2e-5 0.1584 <0.0001 <0.0001 <0.0001 <0.0001

2e- 3 vs. 2e-4 0.2424 <0.0001 0.0023 <0.0001 0.6543

2e- 3 vs. 2e-5 0.1592 <0.0001 <0.0001 <0.0001 <0.0001

2e- 4 vs. 2e-5 0.9993 <0.0001 0.0005 <0.0001 0.0020

ANOVA—multiple comparison; AD—Alzheimer’s Disease; MCI—mild cognitive impairment

https://doi.org/10.1371/journal.pone.0255529.t007

Table 8. Between group comparison of the QP power spectrum of QPelectrode values.

frequency bands all frequencies

2e-1 2e-2 2e-3 2e-4 2e-5 2e-1 to 2e-5

depression vs. AD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

depression vs. MCI <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

depression vs. control <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

depression vs. schizophrenia <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

AD vs. MCI 0.7773 0.9072 0.8663 0.8274 0.8680 0.1633

AD vs. control 0.9094 >0.9999 0.9737 >0.9999 >0.9999 0.9429

AD vs. schizophrenia <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

MCI vs. control 0.9983 0.9075 0.9959 0.8219 0.8647 0.5232

MCI vs. schizophrenia <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

control vs. schizophrenia <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

ANOVA—multiple comparison; AD—Alzheimer’s Disease; MCI—mild cognitive impairment

https://doi.org/10.1371/journal.pone.0255529.t008
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structure allows not only quantification of connectivity as a function of space and time (local-

ity) but also of instantaneous quantum effects in space (non-locality) [27]. By quantifying the

relationships between elements of the hierarchic structure derived from the EEG electrodes, it

was possible to examine both instantaneous (non-local) and non-instantaneous (local) interac-

tions between each participant’s EEG electrode QP (QPelec,t,participant), showing highly signifi-

cant differences among participants with various neuropsychiatric and neurocognitive

diagnoses. Thus, both instantaneous (non-local) and non-instantaneous (local) interactions

between different parts of the brain are modulated to different degrees, by neuropsychiatric

and neurocognitive disorders. Furthermore, the dynamic (temporal) transition from one EEG

electrode-derived hierarchical structure to another is shown above. The power spectral analysis

of the QP suggests that the transition pattern from one hierarchical structure to the other, is

highly dependent on the clinical state of the participant, very stable across frequency bands

and highly segregated regarding clinical diagnoses.

The accuracy of the combined, hierarchic, whole emergent brain function quantification

represented by the value of the QP, in diagnosing neuropsychiatric and neurocognitive dis-

eases, was evaluated using ROC analysis. Paired ROC analysis of healthy controls vs. partici-

pants with depression, schizophrenia, AD and MCI showed AUCs with extremely high values,

Fig 4. Accuracy of the EEG based quantum potential mean and variability score (qpmvs) in differentiating neuro-

psychiatric patient groups from healthy controls. Receiver operating characteristic (ROC) curves for (A) control vs.

schizophrenia (AUC = 0.8981± 0.028, 95% CI: (0.8426–0.9535), p =<0.0001). (B) control vs. depression

(AUC = 0.9033± 0.028, 95% CI: (0.8479–0.9586), p =<0.0001). (C) control vs. AD (AUC = 0.9143± 0.042, 95% CI:

(0.8312–0.9974), p =<0.0001). (D) control vs. MCI (AUC = 0.8309± 0.06228, 95% CI: (0.7088–0.9529), p =<0.0001).

https://doi.org/10.1371/journal.pone.0255529.g004
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thus indicating that the qpmvs may be a useful tool for diagnosing the presence of neuropsy-

chiatric or neurocognitive diseases. Furthermore, AUCs also showed high values, namely, high

accuracy, in differentiating between schizophrenia or depression and cognitive decline (AD

Fig 5. Differentiating between neuro-psychiatric patient groups by EEG quantum potential mean and variability

score (qpmvs). Accuracy depicted as receiver operating characteristic (ROC) curves for (A) schizophrenia vs.

depression (AUC = 0.8992± 0.055, 95% CI: (0.7910–1.000), p =<0.0001). (B) schizophrenia vs. AD (AUC = 0.8762±
0.048, 95% CI: (0.7818–0.9706), p =<0.0001). (C) schizophrenia vs. MCI (AUC = 0.8914± 0.059, 95% CI: (0.7756–

1.000), p =<0.0001). (D) depression vs. AD (AUC = 0.8777± 0.048, 95% CI: (0.7828–0.9726), p =<0.0001). (E)

depression vs. MCI (AUC = 0.8929± 0.058, 95% CI: (0.7781–1.000), p =<0.0001).

https://doi.org/10.1371/journal.pone.0255529.g005
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and MCI). In addition, the algorithm used predicted with extremely high accuracy a stable dis-

ease course (stbMCI) or a progressively deteriorating course (detMCI) that would eventually

lead to dementia (Fig 6). EEG analysis did not distinguish between detMCI and AD, despite

participants with detMCI being diagnosed with MCI. These findings show the qpmvs to be a

highly sensitive tool for predicting disease course and to be used as a biomarker for diagnosis

in early disease stages of cognitive decline as well as possibly assisting in identifying the people

at high risk of future cognitive deterioration. One limitation of our study is related to the het-

erogenic group of healthy controls. This group is comprised of patients which underwent rou-

tine EEG without a clear indication and no neuro-psychiatric disorders but might include

those with unspecific headaches including migraine and tension-type headache or dizziness.

Currently we cannot exclude an influence of those complaints on the qpmvs.

To the best of the authors’ knowledge, this is the first medical diagnostic study suggesting

the use of ultrametric analyses, closely coupled with the theory of p-adic numbers, and quan-

tum theory. We use the formalism of quantum mechanics for modelling information process-

ing in the brain, without consideration of quantum physical processes in it: our model is

quantum-like, not genuine quantum [37–43]. Such models have already found numerous

applications in psychology and decision making (see [19–21, 44, 45] and references herein).

Fig 6. Accuracy of differentiating between neurocognitive diseases using the EEG quantum potential mean and

variability score (qpmvs). Accuracy depicted as receiver operating characteristic (ROC) curves for (A) AD vs. MCI

(AUC = 0.7660± 0.06559, 95% CI: (0.6374–0.8946), p = 0.0003). (B) stbMCI vs. detMCI (AUC = 0.9815± 0.029, 95%

CI: (0.9245–1.000), p = 0.0022). (C) stbMCI vs. AD (AUC = 0.950± 0.044, 95% CI: (0.8622–1.000), p =<0.0004). (D)

detMCI vs. AD (AUC = 0.533± 0.112, 95% CI: (0.3142–0.7524), p = 0.756).

https://doi.org/10.1371/journal.pone.0255529.g006
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But this is the first work on real medical diagnostic based on the quantum-like model. As such

a new paradigm that does not involve frequency bands, regular spectral analysis, or feature

extraction, solely based on routine EEG recordings without a specific research setting, is sug-

gested. It is also expected for this combination of quantum theory with a hierarchical (non-

local) treelike representation of information processing in the brain, to find novel applications

in medical and cognitive sciences.
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