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Abstract: Acute kidney injury (AKI) is a common syndrome characterized by various etiologies and
pathophysiologic processes that deteriorate kidney function. The aim of this study is to identify
potential biomarkers in the urine of non-acute kidney injury (non-AKI) and AKI patients through
Raman spectroscopy (RS) to predict the advancement in complications and kidney failure. Selected
spectral regions containing prominent peaks of renal biomarkers were subjected to partial least
squares linear discriminant analysis (PLS-LDA). This discriminant analysis classified the AKI patients
from non-AKI subjects with a sensitivity and specificity of 97% and 100%, respectively. In this
study, the RS measurements of urine specimens demonstrated that AKI had significantly higher
nitrogenous compounds, porphyrin, tryptophan and neopterin when compared with non-AKI. This
study’s specific spectral information can be used to design an in vivo RS approach for the detection
of AKI diseases.

Keywords: acute kidney injury; Raman spectroscopy; partial least squares; linear discriminant
analysis; urine

1. Introduction

Acute kidney injury (AKI) is one of the most non-infectious and potentially treatable
but serious clinical diseases that affects between 5% and 13% of the general population
across the world [1]. Although there have been improvements in dialysis and kidney
transplantation techniques over the past three decades, high mortality and morbidity rates
remain. Worldwide, over 750 million patients are affected by kidney disease, and an
estimated 2 million patients per year are affected by kidney failure [2].

This disease usually remains asymptomatic until the advanced stages. The diagnosis
of AKI relies on blood tests (creatinine, blood urea), serum creatinine levels, an abrupt
decrease in glomerular filtration, urine output tests, and, sometimes, several urinary
markers of kidney injury supplemented with time-consuming kidney biopsies that have
low sensitivity and specificity [3]. The late diagnosis of AKI is associated with disease
advancement, which requires expensive treatments and results in delayed or impaired
recovery and an increased mortality rate [4].

This necessitates the identification of a simple, quick and non-destructive diagnosis
technique for the detection of AKI. When kidney disease is present, the chemical com-
position and constitution of identified materials in urine change [5]. Remarkable urine
biomarker investigations of the detection of chronic renal disease have taken place in
research settings.

J. Clin. Med. 2022, 11, 4829. https://doi.org/10.3390/jcm11164829 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11164829
https://doi.org/10.3390/jcm11164829
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0001-6130-1980
https://orcid.org/0000-0002-6973-5908
https://orcid.org/0000-0002-7342-335X
https://orcid.org/0000-0003-2174-2022
https://doi.org/10.3390/jcm11164829
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11164829?type=check_update&version=1


J. Clin. Med. 2022, 11, 4829 2 of 9

Urine is of particular relevance since it allows for a painless and non-invasive sample
collection process and because it includes over 3000 metabolites or metabolic species that
can be exploited for diagnostic purposes [6]. The most common organic chemicals found in
urine are urea, creatinine, hippuric acid and citric acid.

Raman spectroscopy (RS) is the most widely used optical technique for providing
specific fingerprint-type information on molecules. It uses laser light to explore a molecule’s
vibrational modes (which are sensitive to its chemical bonds) through an inelastic scattering
of incident radiation by the polarization of molecules [7]. Urine analysis using RS offers
several advantages over standard chemical methods, such as there being no need for
dilution and reagents, shorter evaluation times, more comprehensive information and a
small volume of samples [8].

In the last few years, spectroscopic approaches combined with multivariate statisti-
cal analyses have provided new approaches to the early screening of different types of
cancer [9–13].These approaches help to monitor minor spectrum deviations that can be
associated with specific diseases. Furthermore, they provide quick and non-destructive
analyses without sample preparation, making it ideal for screening tests. There are numer-
ous examples of biofluid-based RS being used to successfully screen for various cancer
types in the literature [14–21].

This study aims to evaluate Raman spectra in the fingerprint region (500–1800 cm−1)
of urinalysis in urine, providing a tool for differentiating non-AKI and AKI patients for the
future control of kidney disease. We developed a quantitative model using partial least
squares linear discriminant analysis (PLS-LDA) that can be applied to the RS of urine to
evaluate the concentrations of all significant metabolites in the body that can be useful for
AKI diagnosis.

2. Methods and Materials
2.1. Patients and Samples

The Chang Gung Memorial Hospital’s Institutional Review Board (IRB) approved this
study through IRB No: 103-1993B and 202001691B0. Between June 2014 and July 2017, this
study was conducted in the heart surgery intensive care unit (ICU) of a tertiary care referral
center in Taiwan. The clinical data and pathological reports were collected in the Chang
Gung Memorial Hospital’s Department of Nephrology. In this study, we used 200 urine
samples. The mean age of the patients was 61.0 ± 14.8 years, and 66.8% of the patients
were male.

The baseline mean serum creatinine was 1.1 ± 0.7 mg/dL. The most common cardiac
surgery was coronary artery bypass graft (CABG) in 75 patients (37.5%), followed by heart
valve surgery in 74 (37%), aorta surgery in 33 (16.5%) and CABG combined with valve
surgery in 11 (5.5%). Postoperative AKI occurred in 80 patients (40%). Among these,
42 patients were diagnosed with AKI stage 1 (52.5%), 20 with AKI stage 2 (25%) and 19
with AKI stage 3 (23.8%).

The enrolled participants were admitted to the ICU immediately after cardiac surgery,
and they provided written, informed consent for the collection of urine specimens. Patients
on dialysis who were younger than 20 years old, had an estimated glomerular filtration
rate of less than 30 mL/min/1.73 m2, had any prior organ transplantation, or had anuria
immediately after surgery were excluded. Fresh urine samples were collected in sterile
non-heparinized tubes during the first 4 h after surgery, and they were then centrifuged at
5000× g for 30 min at 4 °C to remove cells and debris.

The urine was dispensed into a centrifuge tube and stored in a freezer at −80 °C to
prevent altering their morphology until use and was thawed to room temperature before
measurements. To determine the predictive ability of RS for differentiating AKI and non-
AKI, the primary outcome was the development of AKI within 7 days after cardiac surgery.

We defined the development of AKI using serum creatinine-based criteria of the
Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines for
AKI. The current study included 200 consecutive patients who were all undergoing cardiac
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surgery. Thirty µL of urine samples were collected from each sample. Five spectra of each
urine sample were obtained at different locations. Thus, 1000 spectra were obtained from
the two types of urine samples.

2.2. Raman Spectral Data Acquisition

The Micro Raman Identify (MRI) system (ProTrusTech Co., Ltd., Tainan, Taiwan)
was used, which has a laser with an excitation wavelength of 532 nm and a laser power
of 126 mW. The integration and acquisition times were 5 and 15 s, respectively, and the
average value of the spectrum was 3. This spectrometer provides a spectral resolution of
1 cm−1. Before undertaking the analyses, the specimens were taken out of the refrigerator
and defrosted to room temperature for about an hour, after which 30 µL was pipetted onto
aluminum foil. The RS was then used to record the Raman spectra of the urine.

2.3. Pre-Processing of the Spectra

MATLAB (R2018a, MathWorks, Natick, MA, USA) was used to process and analyze
the data. To reduce interference, a Savitzky–Golay filter with an order of 3 was employed
to smooth the recorded spectra. Then, after the baseline correction, normalization was
performed to eliminate data redundancy.

2.4. Data Analysis

The spectral preprocessed data contained a set of 965 intensity variables from 500 cm−1

to 1800 cm−1. The classification was performed using linear discriminant analysis (LDA).
To improve the diagnostic capability of the LDA classifier, it was necessary to reduce the
dimensions of the urine’s Raman spectral data. Partial least squares (PLS) was used to
extract features from the pre-processed Raman spectra of urine. The mean-normalized
spectrum was analyzed using PLS-LDA, which is a multivariate statistical method.

The primary reason for using this multivariate statistical model is because the PLS
method removes redundancy and noise in high-dimension datasets and because it allows
the dimension reduction features to be used as the input for the LDA algorithm [22]. The
PLS model was used for estimating the concentrations of renal function markers, including
creatinine, urea, uric acid and others, along with the corresponding Raman spectra. In
PLS discriminant analysis, the latent variables (LVs) are rotated to achieve maximum
group separation. As a result, the LVs assess diagnostically important changes rather than
significant variations in the dataset [18].

The LDA classifier was used to investigate the boundary between classes and classifica-
tion probability [23]. To evaluate the classified results, the classifier models were optimized
using a training dataset, and their performance was evaluated using a test dataset. The first
nine components had a strong correlation coefficient of 0.84 between the X and Y scores in
the PLS model. The PLS model’s output was fed into the LDA classifier, and the analysis
broadly categorized the patients into either the non-AKI group or the AKI group. Five
spectra were collected from the entire sample area that was measured for each sample
measurement, and the mean of these five spectra was employed in the further data analysis.

To generate a three-dimensional scatter plot of PLS, the PLS components 1, 2 and
3 were used. A receiver operating characteristic (ROC) curve was used to visualize the
classification of non-AKI and AKI patients and was drawn by plotting the sensitivity (true
positive rate) against the 1-specificity (false positive rate).

2.5. Validation of Model Using a Testing Data Set

We divided our data set randomly into training and testing data sets. The training
dataset consisted of 140 urine samples (84 non-AKI and 56 AKI patients), whereas the
testing dataset consisted of 60 samples (36 non-AKI and 24 AKI patients), as detailed in
Table 1. The spectra of 140 urine samples were used to train the classification model. The
testing dataset was used to evaluate the model.
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Table 1. Classification of all tested urine samples under Raman spectroscopy: Training set and test set.

Data Set Non-AKI AKI Total

Training 84 56 140
Testing 36 24 60

3. Results and Discussion

A total of 200 urine samples were measured using RS. Of these 200 samples, 140 sam-
ples were used to develop the AKI detection algorithm or classification model using the
training dataset. The remaining 60 samples were used to validate the model using the
testing dataset. The samples consisted of urine from 120 non-AKI and 80 AKI patients.
For all AKI patients, there were 42 in the first stage, 19 in the second stage and 19 in the
third stage.

3.1. Spectral Analysis

Figure 1 represents averaged, baselined and vector normalized urine spectra for the
120 non-AKI and 80 AKI patients in the wave-number region of 500–1800 cm−1. In our
study, we observed that the mean spectra of these two groups were relatively similar, and
the major contributions comprised urea, creatinine, porphyrin, nitrogenous compounds,
hydroxybutyrate, tryptophan, CH2 bending mode and uric acid. More intense peaks of
nitrogenous compounds (1,079,880 cm−1), porphyrin (1621 cm−1), tryptophan (838 cm−1)
and neopterin (1540 cm−1) were observed in the AKI spectra than in the non-AKI spectra
with normal kidney function.

However, prominent peaks of urea (587, 1006 and 1170 cm−1), creatinine (670 and
1423 cm−1) , CH2 bending (1301 cm−1), hydroxybutyrate (1456 cm−1) and uric acid (1423,
1595 and 1650 cm−1) were seen in the non-AKI urine samples. There was also a sharp peak
of porphyrin (1621 cm−1) in the AKI urine samples, which was possibly due to the effect of
a metabolic disorder that causes an enzyme deficiency [24]. The nitrogenous compounds,
which were mostly observed as ethanolamine bands at 880 and 1079 cm−1, were most likely
created by the urea cycle’s amino acid metabolism, and higher concentrations were found
in the urine of chronic kidney disease patients [25].

Urea and creatinine are important components of urine that can provide essential
information about the health of the kidney and can assist with the detection of initial
renal disorders [26,27]. In kidney disease, the metabolic capacity of the kidney is reduced,
resulting in low signals of these substances (urea and creatinine) as shown in Figure 1.
Tryptophan is a type of amino acid, and it was observed that it was elevated in the AKI
patients compared with that of the non-AKI group. There was a sharp and intense peak
at 1456 cm−1 in each group’s urine samples, which was present due to hydroxybutyrate
assignment, and this decreased during kidney disorder or disease as shown in Figure 1.

The vibration of neopterin at 1540 cm−1 was observed both in the AKI and non-
AKI subjects but had a higher intensity in the AKI patients than the non-AKI subjects.
Assignment of uric acid (a metabolite of purine) at 1595 cm−1 was also observed in both
groups, with minor differences in intensity. There were two small and sharp peaks of
creatinine at 673 and 1423 cm−1 [17], with higher intensity in the control subjects.

The classification accuracy of the model improved with the number of components
and tended to stay constant after a specific value had been reached, which is justified in
Figure 2. Figure 3a illustrates the loading of the three main PLS components or LVs for the
Raman spectral dataset. The loadings of PLS2 and PLS3 contained the following specific
Raman peaks for uric acid, urea and creatine: 1006 cm−1, 1079 cm−1, 1170 cm−1, 1423 cm−1

and 1650 cm−1. The loading on the Raman peaks captured by the first PLS component was
mainly associated with urea and nitrogenous compounds as demonstrated by the peaks at
1079 cm−1 and 1006 cm−1.

The first nine PLSs were selected to build classification models; however, the first three
contributing components were extracted to create the scatter plot shown in Figure 3b.



J. Clin. Med. 2022, 11, 4829 5 of 9

Figure 1. The mean Raman spectrum from 120 non-AKI and 80 AKI patients.

Figure 2. Accuracy rates vs. the number of PLS components in the urine sample dataset.

(a) (b)

Figure 3. PLS (a) three loading factors and (b) 3D scatter plot.
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3.2. Evaluation of Model Using Testing Set

To avoid over-fitting, 70% of the data was used in the training dataset, and 30% was
used in the testing dataset. To identify the AKI, k-fold cross-validation (k = 5) was employed
with the LDA classifiers. The data were separated into k equal folds. The algorithm was
then trained to work with the k-5 folds with the remaining fold being used as the testing
dataset. The results were averaged across k folds. This test set comprised 300 Raman
spectra obtained from 60 urine samples, 24 of which were AKI patients, and 36 of which
were non-AKI subjects. A test dataset for a PLS-LDA model was performed for the PLS
components from 1 to 15 (Figure 2).

Then, by determining a saturation point for accuracy as a function of the PLS number,
an optimal number of PLS components was selected. These significant PLS components
were used as input for the LDA. The PLS-LDA model correctly classified 36 of the 36 non-
AKI subjects and 23 of the 24 AKI patients with the urine spectra. This model had an
accuracy of 98.5%, a sensitivity of 97% and a specificity of 100% for classification (Table 2).
The ROC curves for the PLS–LDA model are presented in Figure 4, which shows that the
maximum value of the area under the ROC curve (AUC) was 99.7.

Table 2. Test set misclassifications and performance tables of the PLS-LDA model.

Dataset Confusion Table Performance Parameters

PLS-LDA Non-AKI AKI Total Accuracy (%) Sensitivity (%) Specificity (%)

Non-AKI 36 0 36 98.5 97 100
AKI 1 23 24

Figure 4. ROC curve of the classification results for the PLS-LDA model.

We demonstrated that RS is a useful tool for diagnosing AKI from urine samples.
According to KDIGO, AKI is classified into three severity categories (AKI stage 1, 2 and 3)
based on serum creatinine levels, reduced urine output and the necessity for renal replace-
ment therapy. However, a limited number of patients who suffer from these three stages
were included. As a result, we did not attempt to distinguish the stage of kidney disease in
this investigation. Urine is a product of the kidney and can be collected non-invasively and
is considered a promising source of information for renal biomarker studies.

Using RS to identifythe chemical constituents present in urine, such as nitrogen com-
pounds, urea, creatinine and uric acid, as well as their rate of excretion was proposed [28].
The kidney is capable of filtering 90% of the urea that is metabolized. Urea measurement
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has previously been used to assess nutritional factors from urine, including insufficient
protein consumption and food deprivation.

Although it is not clearly defined for any kidney-related disorders, it is still responsive
to early-stage kidney problems [27]. Creatinine is a product of muscle metabolism that is
related to the body’s muscle mass. As daily metabolic creatinine is generally constant in
healthy people, creatinine detection is one of the most popular methods for diagnosing
kidney function [26].

A PLS–LDA model was used to analyze the statistical efficiency of this tool. The PLS
data were calculated for non-AKI and AKI patients in the fingerprint region 500–1800 cm−1.
The spectral data were analyzed according to the first nine PLS components. The PLS–LDA
model is preferable to spectral data and is the most effective multivariate statistical tech-
nique [29]. A ROC curve was used to investigate this model’s clinical potential, and the
AUC provided an estimation of the sensitivity and specificity to any degree of significance.

Most of the biomolecular information from urine is crucial for distinguishing AKI
patients from the non-AKI patients, according to this model. In this study, all of the urine
samples were obtained from heart surgery patients, and we attempted to acquire a higher
sensitivity and specificity using the PLS-LDA classification model. In this study, we found
that the Raman spectra of AKI urine specimens demonstrated that it had significantly higher
nitrogenous compounds, porphyrin, tryptophan and neopterin than non-AKI, while the
Raman spectra of non-AKI urine specimens demonstrated that it had significantly higher
urea (587, 1006 and 1170 cm−1), creatinine (670 and 1423 cm−1), CH2 bending (1301 cm−1),
hydroxybutyrate (1456 cm−1) and uric acid (1423, 1595 and 1650 cm−1) compared with AKI.

AKI patients had a lower amount of urea, creatinine and uric acid in comparison
to non-AKI Patients. In this study, the difference between the AKI and non-AKI groups
is minor. The reason may be that most AKI patients belong to the first stage, which is
producing the small variation in both types of spectra.

Although the medical field has currently made considerable progress, new diseases
and complications still pose a great threat to human life. In comparison to new diseases,
we are more aware of the various complications that accompany AKI; however, sometimes
treatment is delayed because of a failure to detect it in time or because of errors in the
diagnosis, resulting in sequelae or even death of the patient. Using RS, the biomolecules
present in urine can be analyzed rapidly, which may reduce this occurrence.

4. Conclusions

This study presents a non-invasive, rapid and simple method for diagnosing the
condition of kidney disease in patients. Changes in the distribution and conformation of
urinary metabolites, such as creatinine, urea, uric acid, porphyrin, nitrogenous compounds,
hydroxybutyrate and tryptophan, may be responsible for the spectral differences observed
between non-AKI subjects’ and AKI patients’ urine. PLS-LDA was used to analyze the
spectral data with an accuracy of 98.5%. However, this study’s sample size was limited. In
the future, this research should be extended by having a larger sample in order to support
this preliminary finding and further explore the potential of RS combined with advanced
machine-learning techniques to facilitate the early diagnosis of AKI.
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