
Research Article
Hybrid Convolutional Neural Network for Localization of
Epileptic Focus Based on iEEG

Linfeng Sui ,1,2 Xuyang Zhao,2,3 Qibin Zhao,2 Toshihisa Tanaka,2,3 and Jianting Cao 1,2

1Graduate School of Engineering, Saitama Institute of Technology, 369-0293, Japan
2RIKEN Center for Advanced Intelligence Project (AIP), 103-0027, Japan
3Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 184-8588, Japan

Correspondence should be addressed to Jianting Cao; cao@sit.ac.jp

Received 7 November 2020; Revised 14 March 2021; Accepted 6 April 2021; Published 28 April 2021

Academic Editor: Michele Fornaro

Copyright © 2021 Linfeng Sui et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Epileptic focus localization by analysing intracranial electroencephalogram (iEEG) plays a critical role in successful surgical therapy
of resection of the epileptogenic lesion. However, manual analysis and classification of the iEEG signal by clinicians are arduous and
time-consuming and excessively depend on the experience. Due to individual differences of patients, the iEEG signal from different
patients usually shows very diverse features even if the features belong to the same class. Accordingly, automatic detection of
epileptic focus is required to improve the accuracy and to shorten the time for treatment. In this paper, we propose a novel
feature fusion-based iEEG classification method, a deep learning model termed Time-Frequency Hybrid Network (TF-
HybridNet), in which short-time Fourier transform (STFT) and 1d convolution layers are performed on the input iEEG in
parallel to extract features of the time-frequency domain and feature maps. And then, the time-frequency features and feature
maps are fused and fed to a 2d convolutional neural network (CNN). We used the Bern-Barcelona iEEG dataset for evaluating
the performance of TF-HybridNet, and the experimental results show that our approach is able to differentiate the focal from
nonfocal iEEG signal with an average classification accuracy of 94.3% and demonstrates an improved accuracy rate compared to
the model using only STFT or one-dimensional convolutional layers as feature extraction.

1. Introduction

Epilepsy is a chronic disease of the brain, and it is character-
ized by recurrent and unpredictable seizures, which are brief
episodes of involuntary movements and even accompanied
by transient loss of consciousness [1]. Currently, with approx-
imately 50 million epilepsy sufferers worldwide according to
the World Health Organization (WHO), epilepsy is one of
the most common neurological diseases globally, making it a
significant challenge for healthcare and social services [1].
The cause of seizure episodes is excessive electrical discharging
in a group of brain neurons. Electroencephalography is there-
fore a commonly used method to measure brain activity
through the recording of electrical activity and has been widely
used for the diagnosis and treatment of varied neurological
conditions such as brain death, epilepsy, Alzheimer’s, and
coma [2]. Considering it is uncertain that symptoms will pres-

ent in the iEEG signal at all times, and iEEG should be moni-
tored and recorded in the long term. During this process, huge
amounts of data are generated and experienced neurological
experts subsequently analyse abnormalities in brain activities
via visual inspection. This task is time-consuming that could
lead to a serious delay of days or even weeks of treatment. In
recent years, various automatic diagnostic methods have been
proposed to assist neurologists by accelerating the interpreting
process, thereby reducing workload [3, 4]. Current methods
mainly focused on tasks such as seizure detection, seizure pre-
diction, and seizure type classification. Statistics show that up
to 70% of patients could be successfully treated with the
proper use of antiepileptic drugs (AEDs) [1]. Nevertheless,
for patients who respond poorly to drug treatments, resection
surgery for epileptogenic tissues might be one of the most
promising treatments in controlling epileptic seizures. Hence,
it is crucial to determine the seizure area in surgical therapy,
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and there is a very strong demand for the automatic detection
of epileptic focus localization. iEEG is recorded directly from
the cerebral cortex, and iEEG signals recorded from the epilep-
togenic area are more stationary and less random than iEEG
signals recorded from the normal area [5]. This nature makes
it enable to be used for identification of location effectively.
The task of seizure focus localization is not largely developed
owing to factors such as the complex nature of the task and
rare clinical datasets [6]. The mainly used dataset is the pub-
licly available Bern-Barcelona iEEG dataset, which was col-
lected by Andrzejak et al. at the Department of Neurology of
the University of Bern [7].

In recent years, various automatic focus detection methods
through the classifying iEEG signal into focal and nonfocal
have been proposed [8]. Most of those are usually divided into
three main steps, preprocessing, feature extraction, and classifi-
cation. In the preprocessing step, various filtration or normali-
zation is applied to the raw signal. In the feature extraction step,
to extract the most discriminative features, commonly used
methods include empirical mode decomposition (EMD) [9],
entropy, and time-frequency analysis methods like Hilbert-
Huang transform, Fourier transform (FT) [10], STFT [11],
and wavelet transforms (WT) [12, 13]. Particularly, STFT has
been established that it is suitable for iEEG signal processing
by extracting time-frequency domain features [14]. In the
classification step, support vector machines (SVM) [9], logistic
regression (LR) [15], and K-Nearest Neighbor (KNN) method
[16] are usually be used. With the rapid development of deep
learning models, automatic feature-based approaches have
been successfully applied to classification problems [17]; in par-
ticular, CNN is regarded as one of the most successful and
widely used deep learning models. In our previous research
work [18, 19], two individual feature extraction methods, the
Time-Frequency Convolutional Neural Network (TFCNN)
and the Mixed-CNN, were proposed and have proven to be
effective. The main contribution of this paper is that we pro-
pose TF-HybridNet, a deep learning model to diversify features
by combining time-frequency analysis and learnable automatic
feature extraction methods. We compare the TF-HybridNet
accuracy with the TFCNN and Mixed-CNN, and experiments
show that the multifeature extraction method produces higher
iEEG classification accuracy compared to the individual feature
extraction method. The proposed framework does not only
have strong feature learning capabilities but also have adaptive
iEEG features for higher classification performance without
much human intervention.

The rest of the article is organized as follows: Section 2
describes the dataset used in the experiment and the method
of CNN and STFT. Section 3 describes a comparison of the
architecture of three deep learning models proposed. The
experimental results are presented in Section 4, and the last
is the conclusion of this paper.

2. Materials and Methods

In this section, we firstly introduce the Bern-Barcelona iEEG
dataset. Then, we discuss the STFT, a powerful general-
purpose tool for time-frequency domain feature extraction.
The working principles used in this paper are described at last,

including a 1d convolutional layer, 2d convolutional layer, and
various neural network components. This collection of work-
ing principles and components provides an essential basis for
the three deep learning models proposed in Section 3.

2.1. Dataset. The Bern-Barcelona iEEG dataset was recorded
from five patients suffering from long-standing drug-
resistant temporal lobe epilepsy which were candidates for
surgery. The signal recorded from the focus region (lesion)
was labeled as the focal signal; otherwise, the signal was
labeled as the nonfocal signal. The dataset contains 3750
focal iEEG signal pairs and 3750 nonfocal iEEG signal pairs.
Each pair of iEEG signal from adjacent channels was sampled
for 20 seconds at a frequency of 512Hz and was band-pass
filtered between 0.5 and 150Hz with a fourth-order Butter-
worth filter. The iEEG signal recorded during the seizure
and three hours after the last seizure was excluded to guaran-
tee to discard the seizure iEEG signal. An example of the focal
and nonfocal iEEG signal is shown in Figure 1, respectively.

2.2. Short-Time Fourier Transform. On account of the insta-
bility of the iEEG signal, it is extremely difficult to extract the
key features by some commonly used time-frequency analy-
sis methods such as Fourier transform [20]. The STFT, as a
Fourier-related transform, is used to equally divide the raw
signal into shorter segments of length by a window function
which is nonzero for only a short period of time, so that the
segments of the signal are approximately stationary. The
Fourier transform of the shorter segments is computed as
the window function is sliding along the time axis, obtaining
the spectrum, a 2-dimensional representation of the signal.
Hence, it is demonstrated that the time-frequency domain
features extracted by STFT are suitable for classifying iEEG
signal of epilepsy [20]. For a determined signal xðtÞ, the
time-frequency domain at each time point can be obtained by

STFT x tð Þf g τ, ωð Þ =
ð∞
−∞

x tð Þw t − τð Þe−jωtdt, ð1Þ

wherewðtÞ is the Hann window function centered around zero.
Examples of the spectrogram of the iEEG signal (focal

and nonfocal) are shown in Figure 2.

2.3. Convolutional Neural Network. CNN is a subset of deep
learning which has recently been successfully used in numer-
ous tasks in different research fields of images and time series
classification (TSC), such as biomedical imaging, iEEG/Elec-
trocardiography (ECG) signal, and motion sensor data and
speech. The CNN model consists of an input and an output
layer, as well as multiple hidden layers, and the early layers
following input layers are general convolutional layers. Con-
volution is a mathematical operation that is used to extract
the feature map by sliding the convolution kernel over the
input data, which helps extract particular features.

2.3.1. One-Dimensional Convolutional Layer. The overlapping
values of the kernel and the input vector for each position the
kernel is sliding are multiplied together, and the sum of the
results will be the value of the feature map at the point on
the input vector where it corresponds to the midpoint of the
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kernel. For an input vector f with length n and a kernel g with
lengthm, f ∗ g is the convolution of f and g and is defined as

f ∗ gð Þ xð Þ = 〠
m

u=1
g uð Þ · f x − u +

m
2

� �
: ð2Þ

2.3.2. Two-Dimensional Convolutional Layer. For 2d convolu-
tion, just as 1d convolution, we slide the 2d kernel over each
pixel of the input image and then multiply the corresponding
entries of the input image and kernel; the sum of the results
will be the value of the feature map. The activation map is
obtained by computing the dot product of the input file and
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Figure 1: An example of the focal and nonfocal iEEG signal.
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Figure 2: STFT of the focal and nonfocal iEEG signal.
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the filter. Then, after additive bias and a nonlinear map by
activation functions, feature maps of the convolutional layer
are output to feed to the next layer in the CNN model.

2.3.3. Pooling Layer. After the convolution layer, feature
maps are usually passed to the pooling layer and different
from the convolution operation; pooling has no parameters.
In the pooling layer, the feature maps are separated into
many rectangle regions, and then, each region feature is
obtained. It enables downsampling each feature map inde-
pendently to reduce the dimensionality, lower the calculation
complexity, and prevent overfitting. Various pooling opera-
tions, for instance, max pooling operation, select only the
maximum value in the pooling window, while mean pooling
obtains the mean value of the pooling window.

2.3.4. Batch Normalization Layer. The batch normalization
layer is applied to normalize the output feature map obtained
from the previous layer by subtracting the batch mean and
dividing by batch standard deviation, to fight the internal
covariate shift problem and increase the stability of neural net-
works. For the input x obtained from the previous layer, the
batch normalization layer first calculates the mean μB and
variance σ2B of a minibatch B of size m by equations (3)
and (4). Then, normalized values xi are calculated as equation
(5) where ε is a constant added to the minibatch variance for
numerical stability. Finally, the xi are shifted and scaled as
equation (6) that the parameters γ and β are to be learned.

μB =
1
m
〠
m

i=1
xi, ð3Þ

σ2B =
1
m
〠
m

i=1
xi − μBð Þ2, ð4Þ

�xi =
xi − μBffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2B + ε

p , ð5Þ

yi = γ�xi + β: ð6Þ
2.3.5. Fully Connected Layer. In the fully connected layer, all
the 2d feature maps from the upper layer are represented by
a one-dimensional feature vector as the input of this layer. In
this paper, the output is obtained by doing dot products
between the feature vector and learnable weight vector, adding
learnable bias and then responding to the activation function.

3. Neural Network Architecture

Conventional CNNs are hierarchical architectures based on
an alternation of convolutional layers with pooling layers
and batch normalization layers and followed by a fully
connected layer.

3.1. Time-Frequency Convolutional Neural Network. In our
previous research, we proposed an architecture that combines
time-frequency analysis and a two-dimensional convolutional
neural network. A TFCNN network consists of an STFT layer,
five subsequent stages, five FC stages, a dropout layer, and a
final output layer, which is illustrated in Figure 3(a).

In that architecture, the iEEG signal is firstly transformed
by the STFT layer to extract local features individually based
on the local correlation among the time-frequency domain.
Then, discriminative features that are built by connecting the
local features are learned, and classification is performed by
the TFCNN. The specific training process is as follows: the
time-frequency spectrogram with size 257 × 101 is firstly
convoluted by using a 3 × 3 filter by sliding with stride 1
and set 10 channels to feature map, and each feature map
has the same size as the input spectrogram. Then, batch nor-
malization (BN) and max pooling operation are successively
implemented in the batch normalization layer and max pool-
ing layer. And these two steps are repeated 5 times, except
that the size of input and output is decided by the former
layer, and channels of the feature map increase exponentially.

3.2. Mixed Convolutional Neural Network. In the previous
TFCNN architecture, before feeding into the neural network,
the signal needs to perform extraction and selection of features
manually. The most used time-frequency analysis method like
STFT has the capability to extract local information at a one-
time scale determined by a single filter, limiting the flexibility
of the model. To address this problem, considering a convolu-
tion can be seen as applying and sliding a filter over the time
series; instead of the STFT, we use 1d convolution layers in
the earlier layers. It is easier to optimize the parameter config-
uration when each layer is treated independently, and it also
enables using different input feature maps or receptive field
sizes. A Mixed-CNN consists of eight convolution stages, five
FC stages, a dropout layer, and a final output layer, which is
illustrated in Figure 3(b). From stages 1 to 3, each stage begins
with an 8 × 1 1d convolution layer with a stride of 2, which is
then followed by the BN layer and 3 × 1max pooling layer also
with a stride of 2. The size of the output feature map of stage 3
is 159 × 256. The feature maps from 1d convolution layers are
reshaped and then successively fed to subsequent five 2d con-
volution stages and fully connected layer to perform further
feature extraction and classification.

3.3. Time-Frequency Hybrid Network. Inspired by the perfor-
mances of the previous two models, we propose a hybrid
model combining time-frequency analysis and Mixed-
CNN. As shown in the architecture of TF-HybridNet in
Figure 3(c), before feeding into 2d convolution layers to per-
form further feature extraction, the spectrogram obtained
from STFT and the feature map obtained from 1d convolu-
tional layers are both adjusted into a size of 160 × 257 and
are stacked together in sequence depthwise. The remaining
parts of the model are almost the same as Mixed-CNN.

4. Results and Discussion

The proposed models were implemented on a workstation with
12 Intel Core i7 3.50GHz (5930K), a GeForce RTX 2080 Ti
graphics processing unit (GPU), and 128GB random-access
memory (RAM) using the Python programming language on
the TensorFlow framework. The 5-fold cross-validation and
he 10-fold cross-validation are used in this paper. In 5-fold
cross-validation, 60% of the dataset is used as the training set
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Figure 3: An overview of architectures of TFCNN (a), Mixed-CNN (b), and TF-HybridNet (c).
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and 20% is used as a validation set while the remaining 20%
is used as the test set. And in 10-fold cross-validation, the
distribution proportion is set to 80%, 10%, and 10%. It
requires a lot of computational overhead to use one iteration
of the full training set to perform each epoch; therefore, in
each epoch of the training, the training set is randomly
divided into 100, 120, and 200 batches separately in TFCNN,
Mixed-CNN, and TF-HybridNet, which are fed into the net-
work in turn.

The training performance of the model was monitored
during the training stage until getting the best accuracy on
the training set with minimum train loss. And we validate
the networks by using a validation set after each epoch of
training. The accuracy of the validation set across classifica-
tion by the different models is shown in Figure 4. It can be
seen that there is no overfitting problem in the three models;
during the training period, the validation accuracy is steady
at the end of the training. Finally, for performance evaluation
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Figure 4: The accuracy of the validation set on TFCNN, Mixed-CNN, and TF-HybridNet.

Table 1: Confusion matrices and performance measures of the proposed models.

(a) TFCNN model

Focal Nonfocal Precision Recall Accuracy Kappa score MCC

5-fold
Focal TP = 6829 FN = 671

90.4% 91.1% 90.7% 0.814 0.814
Nonfocal FP = 725 TN = 6775

10-fold
Focal TP = 6921 FN = 579

91.6% 92.3% 91.9% 0.838 0.838
Nonfocal FP = 633 TN = 6867

(b) Mixed-CNN model

Focal Nonfocal Precision Recall Accuracy Kappa score MCC

5-fold
Focal TP = 6898 FN = 602

91.7% 92.0% 91.8% 0.837 0.837
Nonfocal FP = 622 TN = 6878

10-fold
Focal TP = 6948 FN = 552

92.3% 92.6% 92.5% 0.849 0.849
Nonfocal FP = 578 TN = 6922

(c) TF-HybridNet model

Focal Nonfocal Precision Recall Accuracy Kappa score MCC

5-fold
Focal TP = 7002 FN = 498

93.0% 93.4% 93.2% 0.864 0.864
Nonfocal FP = 523 TN = 6977

10-fold
Focal TP = 7075 FN = 425

94.3% 94.3% 94.3% 0.887 0.887
Nonfocal FP = 426 TN = 7074
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of the trained models with the test set, we have selected various
evaluation criteria, including accuracy, precision, recall, Mat-
thews correlation coefficient (MCC), and kappa score κ which
can be calculated by

The abbreviations represent true positive (TP), false
positive (FP), true negative (TN), and false negative (FN).

Confusion matrices and performance measures through 5-
fold/10-fold cross-validation obtained for TFCNN, Mixed-
CNN, and TF-HybridNet are shown in Table 1. Our results
show that the developed TF-HybridNet model performed better
than the other two models both during the training and testing
periods. And considering that the result of 10-fold cross-
validation is better than that of 5-fold cross-validation, the per-
formance could be improved with more numbers of iEEG data.
Compared with other published state-of-the-art methods shown
in Table 1, the proposed TF-HybridNet managed to obtain
94.3% accuracy. And the advantage of this method is that it is
less signal preprocessing for feature extraction and selection.

5. Conclusions

Since the manual visual inspection of iEEG is a time-
consuming process, automation of the detection of epileptic

focus by an effective classifier will have the potential to solve
the delay issue in treatment. In the case of signal feature
extraction, STFT may be able to extract some but not all spe-
cific features of the time-frequency domain and the convolu-
tional layer is similarly able to extract partial latent features of
iEEG. In addition, iEEG signal from different patients usually
shows very diverse features due to individual differences of
patients, even if the features belong to the same class. It leads
to that each feature extraction methods usually obtain differ-
ent results on different datasets in the signal processing field.
To solve these problems, we propose to adopt a feature
fusion-based iEEG classification method which can make
up for the shortage of traditional feature extraction and deep
learning techniques. In this paper, we present and compare
the performance of three different models (TFCNN, Mixed-
CNN, and TF-HybridNet) for iEEG signal classification as
the focal and nonfocal iEEG signal. Among the three models,
the TF-HybridNet model performs the best result both 5-fold
and 10-fold. Even though this proposed model could not

Table 2: Detection results of focal and nonfocal EEG signals of published journal articles using the Bern-Barcelona EEG database.

Author (year) Feature extraction methods Classifier Accuracy

Sharma et al. (2015) [21] EMD, entropy SVM 87.0%

Sriraam et al. (2017) [22] Statistical, frequency-based, entropy, FD, Wilcoxon test SVM 92.2%

Sharma et al. (2017) [23] WFB, entropy, t-test LS-SVM 94.3%

Das and Bhuiyan (2016) [24] EMD-DWT, entropy KNN 89.4%

Bhattacharyya et al. (2017) [25] EWT, RPS, CTM LS-SVM 90.0%

Gupta et al. (2017) [26] FAWT, entropy, Kruskal-Wallis test LS-SVM 94.4%

Zhao et al. (2018) [27] Entropy CNN 83.0%

Daoud and Bayoumi (2020) [28] DCAE MLP 93.2%

TFCNN STFT 2d-CNN 91.9%

Mixed-CNN 1d convolution layer 2d-CNN 92.5%

TF-HybridNet STFT, 1d convolution layer 2d-CNN 94.3%

Accuracy =
TP + TN

TP + FP + FN + TN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

MCC =
TP × TN − TP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ × TP + FNð Þ × TN + FPð Þ × TN + FNð Þp ,

κ =
ρo − ρe
1 − ρe

, where ρo =
TP + TN

TP + FP + FN + TN
, ρe =

TP + FNð Þ × TP + FPð Þ + FP + TNð Þ × FN + TNð Þ
TP + FP + FN + TNð Þ2 ,

ð7Þ
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yield the best classification performance as compared to the
published works shown in Table 2, the proposed TF-
HybridNet model still managed to obtain 94.3% accuracy.
This shows that the TF-HybridNet is effective with much
efficiency and timesaving to assist neurological clinicians to
detect the focal epileptic seizure area.

Data Availability

The Bern-Barcelona EEG database: https://www.upf.edu/web/
ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2012-
nonrandomness-nonlinear-dependence-and-nonstationarity-of-
electroencephalographic-recordings-from-epilepsy-patients
?inheritRedirect=falseamp;redirect=https%3A%2F%2Fwww.upf
.edu%2Fweb%2Fntsa%2Fdownloads%3Fp_p_id%3D101_
INSTANCE_xvT6E4pczrBw%26p_p_lifecycle%3D0%26p_p_
state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%
3Dcolumn-1%26p_p_col_count%3D1#.X6ZxJkL7TX9.
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