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SUMMARY
We present a study of rare germline predisposition variants in 954 unrelated individuals with multiple
myeloma (MM) and 82 MM families. Using a candidate gene approach, we identified such variants across
all age groups in 9.1% of sporadic and 18% of familial cases. Implicated genes included genes suggested
in other MM risk studies as potential risk genes (DIS3, EP300, KDM1A, andUSP45); genes involved in predis-
position to other cancers (ATM, BRCA1/2, CHEK2, PMS2, POT1, PRF1, and TP53); and BRIP1, EP300, and
FANCM in individuals of African ancestry. Variants were characterized using loss of heterozygosity (LOH),
biallelic events, and gene expression analyses, revealing 31 variants in 3.25% of sporadic cases for which
pathogenicity was supported by multiple lines of evidence. Our results suggest that the disruption of DNA
damage repair pathwaysmay play a role inMM susceptibility. These results will inform improved surveillance
in high-risk groups and potential therapeutic strategies.
INTRODUCTION

Multiple myeloma (MM) is an incurable malignancy, character-

ized by the clonal proliferation of malignant plasma cells in the

bone marrow, monoclonal immunoglobulins in urine and serum,

and organ dysfunction.1,2 It is often preceded by a premalignant

condition called monoclonal gammopathy of undetermined sig-

nificance (MGUS), which progresses to asymptomatic smol-

dering MM (SMM), and ultimately, MM.3–6

Risk factors associated with MM include age, male gender,

race/ethnicity, family history, and history of MGUS.7–9 Individ-

uals of African ancestry have a 2– to 3-fold higher risk of devel-

oping MGUS and MM and develop MM at earlier ages than

others.9–15 Additionally, first-degree relatives of MGUS/MM indi-

viduals have a 2– to 4-fold increased disease risk,16–19 suggest-

ing a germline contribution to MGUS and MM.

Our knowledge of inherited MM susceptibility has been

informed mostly by genome-wide association studies (GWASs),

which have identified 35 common risk single nucleotide polymor-

phisms (SNPs) at independent loci.20–28 However, common var-

iants rarely give a complete picture of disease inheritance.29–34

The 35 risk loci explain less than 20%ofMMheritability, suggest-

ing that other genetic factors, such as rare germline events, play

significant roles.32–41 Prior studies have investigated rare germ-

line predisposition variants (GPVs) inMM, identifying a fewcandi-
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date predisposition genes, such as DIS3,42,43 CDKN2A,42,44,45

and KDM1A,42,46 as well as genes with suggestive associations

with MM, including ARID1A,42,47 EP300,42,48 KIF18A,49 and

USP45.42,47 Although promising, these studies only involved

populations of European ancestry not identifying variants rele-

vant to other groups, and some may have been underpowered

for the identification ofmoderately penetrant variants due to rela-

tively small sample sizes. Moreover, they do not offer a compre-

hensive analysis of variant pathogenicity. Advancing beyond

these limitations calls for larger cohorts, inclusion of additional

ancestries, and more comprehensive detection and interpreta-

tion of rare germline variants.

Whole exome (WES) and/or whole genome sequencing

(WGS) data from normal and tumor tissues, and from healthy

controls, support the detection of both common and rare

GPVs and genes through the analysis of both germline and so-

matic data. In recent years, >100 cancer predisposition genes

(CPGs) (i.e., genes in which rare pathogenic germline variants

confer an increased cancer risk) have been reported, broad-

ening our understanding of cancer predisposition.50,51 More-

over, studies of CPGs involving multiple cancers (i.e., pan-can-

cer) suggest that predisposing factors may be shared across

cancer types.51,52

Recently, our group has published a pan-cancer study (>10K

cases) that revealed new insights on GPVs across 33 cancer
, 111620, January 17, 2025 ª 2024 Published by Elsevier Inc. 1
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Figure 1. Discovery of germline predisposition variants in 954 MM cases from the MMRF cohort and 82 families

(A) Recruitment of research subjects and sample collection details for both theMultiple Myeloma Research Foundation (MMRF) and University of Chicago familial

datasets.

(B) Characteristics of the 954 MMRF and 99 familial samples, including sample size, female ratio, age distribution, and genetic ancestry for each cohort. Age is

depicted as the average age +/� one standard deviation (MEAN+/�SD). Female ratio is the percentage (%) of female individuals in each cohort. Genetic ancestry

is estimated from WES data by training a random forest classifier on variants detected in each cohort overlapping with the 1000 Genomes dataset, classifying

samples into African (AFR); Ad Mixed American (AMR); East Asian (EAS); European (EUR); or South Asian (SAS). Accuracy on the test set was >99% for both

datasets (see Figure S1).

(C) Summary of germline variant calling and CharGer results for both datasets, showing the percentage of affected cases by ancestry group. Variants passing

manual review are used in downstream analyses.

iScience
Article

ll
OPEN ACCESS
types, and informed guidelines for the detection and classifica-

tion of rare germline variants.51 This study, however, did not

include MM. Here we present progress in characterizing the

landscape of rare germline variants underlying MM predisposi-

tion by leveraging these approaches and boosting analyses

with the integration of two cohorts: 1) 954 cases of sporadic

MM from the Multiple Myeloma Research Foundation (MMRF)

CoMMpass (relating Clinical outcomes in MM to the personal

assessment of genetic profile) Study; and 2) 82 families with

a personal/family history of MM, other hematopoietic malig-

nancies, and/or young-onset solid tumors (Figures 1A and

1B). Using a candidate gene approach, we focus on several

candidate CPGs and other genes related to MM in different

contexts. We hypothesize that the missing heritability of MM

is largely explained by rare pathogenic GPVs in known and

novel MM predisposition genes and CPGs. Revealing the full

spectrum of GPVs in MM, their functional impacts, the interac-

tions between them, the genetic background of individuals, and

somatic mutations, move us closer to the personalized treat-

ment of this disease.
2 iScience 28, 111620, January 17, 2025
RESULTS

Germline variant detection and quality control
We analyzed germline WES from 954 MMRF samples and 82

families (n = 99; Figures 1A and 1B) which passed quality control

criteria, reaching R10X coverage across 158 candidate CPGs

curated from the literature reported to carry rare, pathogenic var-

iants associated with different cancer types, including genes

with suggestive associations with MM (STAR Methods; Fig-

ure S1A; Table S1 - tab ST1A), as well as R20X coverage over

target regions (Figure S1B). WES data were also used to predict

genetic ancestry using a random forest classifier, achieving

�99% accuracy for both datasets (STAR Methods; Figure S1C;

Table S1 - tabs ST1E and ST1F).

Samples passing quality control criteria were used to detect

germline variantsusingGermlineWrapper (STARMethods),which

implements three tools: VarScan2,53 GATK,54 and Pindel.55 Vari-

ants were filtered and annotated (STAR Methods), resulting in a

total of 22,962,558 and 2,495,449 exonic calls for the MMRF

and familial cohorts, respectively (Figure 1C). As expected, we
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observe a higher number of variants for individuals of African

(AFR) ancestry compared to others, with an average of 28,138

and 29,319 variants in the MMRF and familial datasets, respec-

tively, compared to 23,300 and 24,338 respective variants for in-

dividuals of European (EUR) ancestry (Figure S1D). Variant quality

controlmeasures confirmedhighdata quality,with>99%concor-

dancewithdbSNP (release151;FigureS1E), andanaverage tran-

sition-transversion (TiTv) ratio of 2.84 for both cohorts.

Discovery of candidate predisposition variants, genes,
and DNA damage repair pathways in multiple myeloma
susceptibility
We classified germline variants into pathogenic (P), likely patho-

genic (LP), or prioritized variants of uncertain significance (PVUS)

using CharGer,56 which prioritizes variants based on guidelines

by the American College of Medical Genetics and Genomics -

Association for Molecular Pathology (ACMG-AMP)57 (STAR

Methods). CharGer prioritized 955 and 248 rare variants (allele

frequency [AF] %0.05% in the 1000 Genomes Project or gno-

mAD r2.1.1) in the respective MMRF and familial cohorts (Fig-

ure 1C). From these, 684 passed manual review in both normal

and tumor samples in MMRF, from which 93 were found in the

158 candidate CPGs listed in Table S1 (tab ST1A) (36 P, 14 LP,

43 PVUS) in 9.1% of the cohort (n = 87), with P/LP variants

affecting 5.1% of cases (n = 51; Table S2 – tabs ST2A and

ST2B). We also detected a subset of 31 variants for which path-

ogenicity was supported by multiple lines of evidence in 3.25%

of theMMRF cohort (n = 31; Tables S2 and S8; also see Figure 5).

For the families, 115 rare variants passed manual review, with 20

in CPGs (11 P, 3 LP, 6 PVUS) affecting 18%of the cohort (n = 18),

with P/LP variants in 13.1% of cases (n = 13; Table S2 – tabs

ST2A and ST2E). Of the 87 affected MMRF cases, the majority

were of European ancestry, with 75.9% EUR, 18.4% of African

ancestry (AFR), and 5.7% of Admixed American (AMR) ancestry

(Table S2 – tab ST2B; Figure 1C). Moreover, affected individuals

had an average age of 62.83 years (±10.45) and 52% were fe-

males. Of the 18 affected familial cases, 83.3% were EUR and

16.7% AFR, with an average age of 59.16 years (±8.62) and

66% were females (Table S2 – tab ST2E). For transparency of

results, the full list of 684 variants detected in the MMRF cohort

and 115 variants detected in the familial cohort are provided in

Table S2 (tabs ST2D and ST2G, respectively). Later in discus-

sion, we comment on findings pertaining to variants in the list

of 158 candidate CPGs and other MM-related genes.

Among affected genes in our list of 158 candidate CPGs (listed

in Table S1), we observe DIS343 and KDM1A46 previously re-

ported to harbor MM-associated GPVs, as well as genes with

suggestive associations with the disease, including EP30048

and USP4547 (Figure 2; Table S2 – tabs ST2B and ST2E). Addi-

tionally, we found variants in genes beyond this list, linked to

some of the 35 common, low-risk variants associated with

MM20–25,27,28 (Table S2 – tabs ST2C and ST2F; genes listed in

Table S1 – tab ST1D). For example, a P frameshift variant in

POT1 (p.Q358fs) in a 48 year old (y/o) male with a family history

of breast cancer (BRCA) and lymphoma (mother) in the familial

dataset. This tumor suppressor gene (TSG) plays a role in telo-

mere protection and chromosomal stability,58,59 is somatically

mutated in MM,60 associated with melanoma predisposition,61
and commonly mutated in chronic lymphocytic leukemia.62–64

We also detected a P stop-gain mutation in DNAH11 (p.R1445*)

in a 62 years/o male with unknown history of cancer in the

MMRF (Table S2 – tab ST2C). Both POT1 and DNAH11 contain

common low-risk variants, rs58618031 and rs4487645,20,25

respectively, but were not implicated as the main functional can-

didates for the loci. Further studies are needed to determine their

involvement in MM risk. We also observed germline variants in

other genes reported as somatically mutated in MM (FGFR3,

KDM5C, SAMDH1, TGDS, TRAF3IP1)60,65–67, and genes from a

recent germline study (AMPD3, ANO10, DARS2, DSP, FLNC,

MYH7, PROM1, SLC6A19, WFS1)68 (Table S2 – tabs ST2C

and ST2F).

Interestingly, we detected candidate GPVs in genes predis-

posing to other cancers, including a P BRCA1 missense variant

(p.M1796R) within MMRF, and truncating and missense variants

affectingBRCA2 in both cohorts (Table S2). Besides, well-known

in ovarian cancer (OV) and BRCA predisposition,51,52 and as

Fanconi anemia genes,69 germline variants in these genes are

associated with a risk of developing therapy-related myeloid

neoplasms (t-MN) and other hematopoietic malignancies,70–74

including MM. In particular, BRCA2 has been reported as a

candidateMMpredisposition gene in a family study.75Moreover,

a recent study investigating BRCA1/2 deleterious germline vari-

ants in patients with hematopoietic malignancies without previ-

ous diagnosis of other solid tumors and who had not undergone

any kind of chemotherapy or radiotherapy showed a high preva-

lence of MM in BRCA2 variant carriers.76 Other known CPGs

carrying candidate GPVs for MM include ERCC2, FANCA,

PMS2, and PRF1.

Mutation burden analysis using the total frequency test

(TFT)51,77 (STAR Methods) against the Genome Aggregation

Database (gnomAD) non-cancer cohort (n = 118,479), used as

controls, revealed significant enrichment of P/LP events (FDR%

0.05) in BRCA2 (FDR = 0.023), CHEK2 (FDR = 0.045), and

KDM1A (FDR = 0.045), and suggestive enrichment (FDR %

0.15) in ATM (FDR = 0.067), POT1 (FDR = 0.069), PMS2 (FDR =

0.081), TP53 (FDR=0.116), andPRF1 (FDR=0.116) in the familial

cohort (Figure 2C; Table S3). These findings confirm previously

reported gene-MM associations, such as BRCA276,78 and

KDM1A,46 and point to the involvement of genes that have only

been reported as somatically mutated in MM, but also involved

in susceptibility to other cancers, such as ATM, CHEK2, POT1,

and TP53. Finally, they suggest novel gene-MM associations,

such as ATM, PMS2, and PRF1.

To find shared predisposition factors between MM and other

cancers, and potential MM specific associations, we also tested

the burden of P/LP events in our MM cohorts using The Cancer

Genome Atlas (TCGA) dataset51 for comparison, which includes

>10K adult cancer cases across 33 cancer types, excluding

MM (STAR Methods). Several genes reported in somatic MM

studies were potentially associated with MM risk in the families,

such as ATM (FDR = 0.1) and CHEK2 (FDR = 0.09) (Figure S2A;

Table S3). In the TCGA cohort, ATM is associated with stomach

(STAD), prostate (PRAD), pancreatic (PDAC), lung adenocarci-

noma (LUAD), and BRCA.51 BRCA2 is associated with MM in

our familial cohort (FDR = 4.92E-02), and with BRCA, OV, and

PDAC in TCGA,51 suggesting shared predisposition factors
iScience 28, 111620, January 17, 2025 3
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Figure 2. Distribution of rare germline predisposition variants across genes
(A) Sum of unique P, LP, and PVUS per gene in each dataset, represented by stacked bars.

(B) Number of cases (represented by dot size) affected by P/LP/PVUS across genes in each dataset.

(C) Burden test results for MMRF and Familial datasets against the gnomAD non-cancer cohort. Results from our TCGA germline study by Huang et al.51 were

included for a pan-cancer level comparison. The numbers in each box indicate the percentage (%) of carriers (carrier frequency) of P/LP variants of each gene per

cohort. The black outline indicates significant (FDR%0.05) enrichment for P/LP variants of that gene; the gray outline indicates suggestive (FDR%0.15)

enrichment. Only variants in the 158 candidate CPGs and other MM-related genes are represented. See Table S2.
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between MM and other cancers. Moreover, we observe sugges-

tive specific associations of TSC2 (FDR = 0.14) and XPC (FDR =

0.1) with MM when comparing the MMRF dataset to TCGA.

TSC2 is a TSG within the PI3K/Akt/mTOR pathway, which is

commonly activated in MM, playing an important role in MM

cell survival and growth.79 Truncations of this gene lead to

increased mTOR signaling and phosphorylation of its down-

stream effectors, resulting in cell growth and tumor develop-

ment.80–83 Loss-of-function of XPC impairs its ability to recog-

nize DNA defects together with RAD23, CENT2, and UV-DDB,

disrupting the NER pathway in MM.84,85

To account for the potential impact of genetic ancestry in our

results, we also performed a burden test including only individ-

uals of European ancestry from the MMRF and familial cohorts

against the gnomAD non-cancer Non-Finnish subset (n =

51,377; STAR Methods). We can observe that our results do

not differ significantly when controlling for this confounding vari-

able (Figure S2B; Table S3). In fact, BRCA2 remains significantly

enriched for P events in the Familial EURdatasetwhen compared
4 iScience 28, 111620, January 17, 2025
to the gnomAD non cancer Non-Finnish cohort (FDR = 8.18E-03;

Figure S2B). CHEK2 appears with suggestive enrichment in the

families compared to gnomAD non-cancer (Figure S2A) and

significantly enriched in that cohort after controlling for ancestry

(FDR = 4.01E-02; Figure S2B). The results across the TCGA can-

cer types are also consistent.

Further, we find overlapping events between our MM co-

horts and TCGA, suggesting a pleiotropic effect of these vari-

ants and genes. In total, 16 and 5 variants detected in TCGA

were called in the MMRF and familial datasets, respectively

(Table S3). We observe a P frameshift in BRCA2 (p.V220fs)

associated with OV and BRCA in TCGA. This variant was found

in a 61 years/o female in MMRF with no family history of can-

cer, supporting a role for this gene in MM risk, consistent with

previous studies.76 Another example is a CHEK2 frameshift

(p.L465fs) associated with PDAC, lymphoid neoplasm diffuse

large B-cell lymphoma (DLBC), and testicular germ cell tumors

(TGCT) in TCGA. This variant was found in a 66 year/o female

in the familial cohort with a family history of MM (mother) and
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prostate cancer (brother), supporting the role of CHEK2 in MM

susceptibility.

Finally, functional enrichment analyses of KEGG and Reac-

tome pathways for affected genes belonging to our list of 158

CPGs (genes listed in Table S1 – tab ST1A) and other MM

related genes (genes listed in Table S1 – tabs ST1B and

ST1C; STAR Methods) revealed significant enrichment (FDR

%0.05) of DNA damage repair pathways, such as Homologous

Recombination (HR), which play a role in MM and other can-

cers84,86–95 (Figures S3 and S3E; Table S4). The presence of

P/LP events in ATM, BRCA1, and BRCA2 may indicate the po-

tential disruption of the HR pathway, likely not in the form of Ho-

mologous Recombination Deficiency (HRD) as it is observed in

solid tumors, given that the presence of HRD in MM has been

refuted and a topic of major discussion and controversy in the

literature.91–93,95,96 In the occurrence of the disruption of the

HR pathway, Non-Homologous End-Joining (NHEJ) tends to

be activated,97 exemplified here by the significant enrichment

of NHEJ in the MMRF (Figure S3A). Other pathways enriched

in MMRF include Mismatch Repair (MMR) and Nucleotide

Excision Repair (NER; Figures S3A and S3B). In the families,

we see the enrichment of the Base Excision Repair (BER) and

oncogenic signaling pathways,98 such as cell cycle and p53

signaling. Additionally, although not significant, we observe P,

LP, and PVUS events affecting genes in key signaling pathways

in MM, such as JAK/STAT, NF-kB, RTK/Ras/Raf/MEK/MAPK,

PI3K/Akt/mTOR, and Wnt signaling79 (Figure S3C), and other

important oncogenic signaling pathways, such as Notch, and

TGF-beta (Figure S3D).

Analyses of two-hit events strengthen the
characterization of germline predisposition variants
We examined loss-of-heterozygosity (LOH) events using allele

fractions from matched tumor-normal data from MMRF to iden-

tify variants positively selected in the tumor in the context of the

two-hit hypothesis.52,99,100 We also investigated cis biallelic

events to identify cases with both germline P/LP variants and

missense or truncating somatic mutations in the same gene.

We identified 16 germline variants in CPGs and other MM-

related genes undergoing significant (FDR%0.05) LOH in tumors

(6 P, 2 LP, 8 PVUS) (Figure 3A; Table S5). Of these, 12 are in TSGs

and 4 are in genes not classified as TSG or oncogene. Addition-

ally, we observe 5 variants showing suggestive (FDR %0.15; tu-

mor VAF >0.6 and normal VAF <0.6) LOH in tumors (3 P, 2 PVUS),

of which 4 are in TSGs and one in an oncogene.

Three variants with significant LOH affect genes previously

suggested tobeassociatedwithMMriskby single studies46,47,49:
Figure 3. LOH and biallelic events in the MMRF dataset

(A) Comparison of variant allele frequencies (VAFs) in tumor and normal samples

line indicates equal tumor and normal VAFs (i.e., neutral selection); green represe

blue represents events not statistically significant.

(B) Number of variants showing different types of LOH classified based on som

highlight the LOH of an ATM P stop-gain variant (p.R2598*) due to copy number d

number of variants.

(C) Lolliplot representing a candidate biallelic event of the same ATM variant coup

family history of cancer. See Table S8.

(D–F) Trans germline-germline (D) and germline-somatic events (E and F). Germlin

event, colored by sample. See Table S5.
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an LP splice variant inKDM1A (c.517 + 1G>A, FDR = 1.48E-13); a

PVUS frameshift in KIF18A (p.P648fs, FDR = 1.36E-11); and an

LP stop-gain in USP45 (p.C38*, FDR = 4.39E-04). KDM1A and

KIF18A are part of the PI3K/Akt/mTOR and cell cycle pathways,

respectively, whileUSP45 is involved in NER (Figures S3C–S3E).

Additionally, these events affect cases with no family history of

cancer, suggesting a contributing role in these patients’ disease.

Further studies and stronger evidence, however, are needed to

confirm whether there is a true association of these genes with

MM risk.

Two truncating BRCA2 P variants (p.W993* and p.V220fs)

showed strong LOH in these tumors (FDR = 5.39E-06 and

FDR = 4.17E-09, respectively). Although these variants have P

evidence from multiple submitters in ClinVar linked to OV and

BRCA, both affect women with an unknown history of other can-

cers, suggesting their involvement in MM (Table S5). We also

detect a BRCA2 missense PVUS (p.T544I) with significant LOH

(FDR = 1.82E-02) in a 69 year/o male with a family history of

breast, lung, and colorectal cancer, and MM/MGUS (maternal

grandmother), indicating the potential segregation of this variant

with disease and common susceptibility between MM and the

other cancers. Together, these results further underscore a

role for BRCA2 in MM susceptibility, consistent with previous

studies.75,76 Variants in CPGs not yet associated with MM sus-

ceptibility also showed significant LOH, including p.E297G in

ABCB11 (FDR = 1.52E-02), p.F581fs in BUB1B (FDR = 3.13E-

04), p.R167W in ERCC1 (FDR = 1.16E-02), and p.R415* in XPC

(FDR = 1.32E-07; Table S5).

Two loss-of-function variants in ATM showed significant LOH.

This gene is somatically mutated in MM,60,65,101 but is not yet

associated with MM risk. One is a stop-gain PVUS (p.E649*,

FDR = 1.21E-05) in a 59 year/o female with an unknown family

history of cancer. The other is a P frameshift (p.T237fs, FDR =

6.35E-03) in a 67 year/omale with a family history of BRCA. Inter-

estingly, we observe a P stop-gain mutation (p.R2598*) in ATM

undergoing suggestive LOH (tumor VAF = 0.86, normal VAF =

0.5) in a 45 year/o female with no family history of cancer. Anal-

ysis of tumor copy number variation (CNV) using GISTIC2 (STAR

Methods) indicates that this LOH event may be due to the dele-

tion of the wild-type allele (Figure 3B). Moreover, analyses of cis

biallelic events indicated that this variant is coupled with a so-

matic missense (p.T2853R) that disrupts the catalytic domain

of ATM disrupting its DNA repair functionality (Figure 3C). The

presence of copy number deletion of ATM and this downstream

somatic event supports the two-hit abruption of the gene and

suggests a causal role for p.R2598*. Further experiments would

be needed to investigate these events.
reveals events undergoing LOH in the tumor. Dots represent variants; diagonal

nts suggestive LOH (FDR%0.15); red represents significant LOH (FDR%0.05);

atic copy number changes; only significant LOH events were classified. We

eletion of the wild-type allele (shown in red). Data are represented as the total

led with a somatic event (p.T2853R) in a 45 year/o, female MM patient with no

e-germline events were also evaluated for the families. Dots represent a trans
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Figure 4. Effect of candidate predisposition variants on gene expression in the MMRF

(A) Genes significantly associated (FDR%0.05, linear regression)with higher or lower expression in carriers of P/LP/PVUS. Significance is represented as -log10(FDR)

(y axis), and the estimated change in gene expression level is given as log2 fold change (coefficient on the x axis). Dots represent genes.

(B) Gene expression distribution in carriers of P/LP/PVUS. Dots indicate gene expression percentile in the carrier relative to other cases, depicted in the y axis.

Variants in oncogenes associated with >50% expression are labeled, and those associated with >75% expression are written in red. Variants in TSGs associated

with <50% expression are labeled, and those associated <25% expression are written in blue. Variants in genes not classified as tumor suppressor genes or

oncogenes are also labeled.
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Expanding beyond the classical two-hit hypothesis, we also

investigated what we refer to as trans events, i.e., genes in the

same biological pathway affected by P/LP/PVUS germline vari-

ants (germline-germline), or by both P/LP/PVUS germline variants

and missense or truncating somatic events (germline-somatic)

(STAR Methods; Table S6). In the MMRF, we observe a 41 year/

o woman with a missense and a stop-gain germline mutations in

TP53 and ATR, respectively (p.C141S and p.R177*) (Figure 3D).

Both genes are part of the cell cycle and p53 signaling pathways,

which are disrupted in cancer.98 The same case also carries trans

germline-somatic events affecting key MM signaling pathways,

including PI3K/Akt/mTOR, RTK/Ras/Raf/MEK/MAPK (TP53

germline p.C141S and NRAS somatic p.Q61R), and the Wnt

signaling pathway (TP53 germline p.C141S and DVL1 somatic

p.S190R) (Figure 3E). The latter pathway is involved in MM cell

differentiation, proliferation, apoptosis, and migration.79,102–105

DVL1 has an important role in Wnt signaling,106–108 promoting

LRP6 phosphorylation and activating Wnt transcriptional activ-

ity.109,110 Mutations in this gene are associated with aberrant

Wnt signaling in several cancers, including MM.105,107,111–114 We

also found a 62 year/o male in the familial cohort with both a

splice and stop-gain P variants in ATM and CHEK2, respectively

(c.444 + 1G>A and p.Q2641*) (Figure 3D). These genes are

involved in the cell cycle, p53 signaling, and double-strand break

repair pathways.

Other examples of trans germline-somatic events detected in

the MMRF affect other MM signaling pathways, such as JAK-

STAT and NF-kB (Figure 3E), and oncogenic signaling pathways,

including cell cycle, p53 signaling, NOTCH, and NRF2 (Fig-

ure S4). We also observe many germline-somatic events in

genes within DNA damage repair pathways, including Fanconi

anemia, HR, NHEJ, NER, and single strand annealing pathways

(SSA), supporting the notion that DNA repair pathways may play
a role in MM (Figure 3F). For example, we found a 61 year/o

female with a P frameshift in BRCA2 (p.V220fs) coupled with

splice andmissensemutations inPOLE and TOP3A, respectively

(c.2320-2A>C and p.Y8N), which are are part of the HR pathway.

Gene expression changes in variant carriers in the
Multiple Myeloma Research Foundation dataset
We calculated the percentile of gene expression for carriers of

P/LP/PVUS events relative to non-carriers in the MMRF and per-

formed a differential expression analysis to identify altered genes

in carriers (STAR Methods). Our results show that the TSGs

KDM1A and NBN are associated with lower expression in P/LP

variant carriers (FDR = 3.63E-03 and FDR = 7.54E-03, respec-

tively; Figure 4A; Table S7).

We observe truncating variants in TSGs and variants in onco-

genes associated with lower and higher expression percentiles,

respectively (Figures 4B and S5). Notably, truncations in KDM1A

and USP45, which showed significant LOH, were associated

with the bottom 25th expression percentile. These results are

consistent with the two-hit hypothesis and previous reports of

KDM1A and USP45 having a TSG role in MM.46,47

We see 2 P frameshift variants in BRCA2 associated with rela-

tively lower expression values (<50%), one of which is undergo-

ing LOH in the tumor (p.V220fs). CHEK2 and ATR variant carriers

showed expression values in the bottom 25th percentile (�13%

and 24%, respectively). Both variants affect femaleswith a family

history of BRCA. Carriers of variants in other known predisposi-

tion TSGs were also associated with the bottom 25th expression

percentile, such as DDB2 (8.6%), ERCC2 (1.8%), FANCI (2.4%),

MUTYH (2.2%), NBN (13.5%), and XPC (5.8%).

Carriers of variants in the known predisposition oncogenes

MPL (splice variant c.79 + 2T>A) and TSHR (missense variant

p.C41S) were associated with the top 25th expression percentile
iScience 28, 111620, January 17, 2025 7



Figure 5. Germline predisposition variants supported by multiple lines of evidence in the MMRF cohort

UpSet plot showing variants prioritized by CharGer that present additional evidence of pathogenicity through analyses of LOH, expression association, and co-

occurrence with somatic mutations and copy-number variants.
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(92% and 82%, respectively). The MPL thrombopoietin receptor

activates JAK-STAT signaling to drive MM and other hematolog-

ical malignancies.79,115 Deleterious MPL variants act as auto-

somal recessive variants, conferring risk for congenital amega-

karyocytic thrombocytopenia.116 However, some MPL variants,

including the Ashkenazi Jewish founder splice donor variant

(c.79+2T>A)117 seenhere linked toMM,havealsobeendetected

as heterozygous alleles associated with hereditary thrombocy-

themia118 and predisposition to BRCA, uterine corpus endome-

trial carcinoma, sarcoma, andpheochromocytomaandparagan-

glioma in TCGA.51 TSHR is part of the cAMP signaling pathway,

which is commonly activated in cancer. Although variants in

this gene have not been associated with MM, high expression

of TSHR is consistent with reports from patients with MM under

treatment with immunomodulatory drugs (IMiDs), such as thalid-

omide, which can result in thyroid disorders, including hypothy-

roidism, characterized by high levels of thyroid-stimulating hor-

mone and TSHR.119,120

Multiple lines of evidence confirm the pathogenicity of
putative predisposition single nucleotide variants and
indels in the Multiple Myeloma Research Foundation
cohort
We soughtmultiple lines of evidence to corroborate the pathoge-

nicity of candidate GPVs in the MMRF, for which access to

matched tumor-normal data allowed for the analyses of LOH,

expression effect, and co-occurrencewith somatic SNVs, indels,

or copy-number variants within the same gene (STAR Methods).

Considering variantswith >1additional piece of evidenceof path-

ogenicity, we observed 13/49 high confidence P variants and

4/14 high confidence LP variants from the original 107 P/LP/

PVUS events in the 158 candidate CPGs and other MM-related

genes (Figure 5; Table S2 – tab ST2A; Table S8). We also nomi-

nated 14 GPVs from the initial list of 44 PVUS. Together, these

31 nominated P/LP/PVUS variants affect 3.25% of the MMRF

cohort.

Among our high confidence P events, we see the BRCA2

variants p.W993* and p.V220fs, which undergo significant LOH.

We also identified the missense p.T544I in BRCA2 amongst our
8 iScience 28, 111620, January 17, 2025
nominated PVUSs, providing further support for this gene in MM

risk. Our results also include NBN, KDM1A, CHEK2, USP45, and

ATR truncations whose carriers all presented the bottom 25%

expression compared to other cases, and a P TSHR missense

variant associated with the top 25% expression.

Analyses of rare germline copy number variants identify
pathogenic and likely pathogenic events in multiple
myeloma
We searched for rare germline copy number variants (gCNVs) in

WES data from bothMMRF and familial cohorts using the exome

Hidden Markov Model (XHMM).121,122 Variants were assessed

for pathogenicity according to the 2019 ACMG guidelines123 us-

ing ClassifyCNV124 (STAR Methods).

We observed a total of 1,727 rare gCNVs (AF <0.6% consid-

ering 50% overlaps) in the MMRF (Figure 6A; Table S9), with an

average of 0.7 overlapping deletions and 1.1 overlapping dupli-

cations per case. Of these, 57% affect single genes, while 43%

overlap multiple genes (Figure 6B). We observed 109 gCNVs

affecting genes in our list of 158 candidate CPGs and other MM

related genes (Figure 6C), from which 12 were classified as P

and 7 as LP.We detected a P deletion of PKD1 involving a partial

deletion of TSC2 in a 67 year/o male of EUR ancestry. This case

also shows the bottom quantile expression of TSC2 (22.9%;

Figures 6D and 6E). Additionally, we observed a P deletion of

SDHD in a 75 year/o male of AFR ancestry that shows a lower

expression of this gene (33.6%). SDHD is a TSG involved in

predisposition to paragangliomas and adrenal/extra-adrenal

pheochromocytomas.51,125–129 It has also been proposed that

the succinate dehydrogenase (SDH) complex plays a role in the

development of hematological malignancies,130 while SDHD de-

letions are associated with mitochondrial dysfunction, affecting

survival and maintenance of hematopoietic stem cells, and

myeloid and B-lymphoid progenitors.131

Among gCNVs of uncertain significance in the MMRF, we de-

tected a few affecting known CPGs and suggested MM predis-

position genes, such as a partial deletion of KIF18A (exons 1–6)

in a 68 year/o female of EUR ancestry. This case also shows

the bottom expression of KIF18A (26.6%). We also pinpoint a
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Figure 6. Rare germline copy number variants (gCNVs) in MM
(A) Rare gCNVs (AF <0.6% considering 50% overlaps) detected fromWES using XHMM. CNV value is represented by the normalized read depth of the genomic

region (x axis).

(B) Percentage of gCNVs affecting single vs. multiple genes.

(C) Distribution and pathogenicity of rare gCNVs across 158 CPGs and other MM-related genes.

(D) gCNVs along with its CNV value and expression percentile. Only gCNVs validated by qPCR in the families are shown. For theMMRF, only gCNVs for which the

expected transcriptional effect was observed are shown.

(E) Expression quantile associated with each gCNV in MMRF. Dots represent gCNVs, colored by pathogenicity. See Table S9.
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deletion encompassing the entirety ofCHEK1 in a 75 year/omale

of AFR ancestry, which exhibits lower expression of this gene

(30.6%). Although we were able to validate the transcriptional ef-

fect of some gCNVs in theMMRF, not all events corresponded to

the expected gene expression changes requiring further investi-

gation, including P CHEK2 and ATM deletions not associated

with bottom quantile expression.

In the families, we identified 500 rare gCNVs, from which 22

affected the 158 candidate CPGs and other MM related genes

(Figure 6; Table S9). We detected 3 P and 3 LP gCNVs, including

a P deletion of the entireCHEK2 gene in a 70 year/o male of EUR

ancestry whose maternal uncle and cousin were also diagnosed

with MM. This individual was not shown to carry other P/LP vari-

ants in any genes of interest, suggesting a causal role for the

CHEK2deletion in this patient’sdisease. This gCNVwasvalidated

viaqPCR.Wealso observedapartial deletionofCHEK2 (exons3–

4) in a66year/o femaleofEURancestrywitha family history of leu-

kemia (son) and BRCA (sister). Although this gCNV was not iden-

tifiedbyXHMMdue to its limitedability to detect single exon/short

CNVs, it was detected through qPCR during clinical testing. This

case also carries an LPsplice acceptor variant inKDM1A (c.1623-

1G>A), which may also be involved in this patient’sMM suscepti-

bility. Therefore, further investigation is needed for a causality role

for either variant. Finally,wedetect twoduplicationsandonedele-

tion of uncertain significance involving theELANEgene inpatients

with no other P/LP variants detected. Although validated via

qPCR, their role in these patients is unknown, and further investi-

gation is needed. ELANE is known to promote angiogenesis, tu-

mor development, andmetastasis.132Autosomaldominantmuta-

tions in this gene are associated with hematological disorders,

such as severe congenital neutropenia (CN),133–138 and patients

with ELANE related CN have been shown to have a greater risk

of developing MDS-acute leukemia.139–142 However, its role in

MM is unclear.

Segregation analyses reveal segregating BRCA2, ATM,

and CHEK2 variants in patients with familial multiple
myeloma
We searched for variants segregating with MM in families for

which we had sequencing information for >1 family member

(Figure 7; Table S10). We detected a heterozygous P frameshift

in BRCA2 (p.V2179fs) in the proband, a male diagnosed with

prostate cancer at age 59 and MM at 65 (Figure 7A). The variant

is also present in the proband’s brother, a healthy 55 years/o

male, and in the sister diagnosed with BRCA at 45. It is unknown

whether this event is in other family members across different

generations, as those were not tested. This variant has been

associated with hereditary cancer syndromes, breast and colo-

rectal cancer.143–145 Although we see several cancer types in

different pedigree members, we do not observe breast or colo-

rectal cancer in the proband, suggesting a role for this variant

in this individual’s disease. Further testing of additional family

members would be necessary to validate these results.
Figure 7. Segregating variants in patients with familial MM

(A) Pedigree of familial MM kindred carrying BRCA2 p.Val2179fs mutation.

(B) Pedigree of MM kindred carrying ATM p.Ile2179Thr mutation across 3 gener

(C) Pedigree of familial MM kindred carrying CHEK2 p.Ile200Thr mutation across
Interestingly, we see a heterozygous rare missense variant

(p.I2179T, gnomAD MAF = 4.061E-06) in ATM across three

generations in an MM family (Figure 7B). This variant did not

reach a high enough CharGer score to be classified as P or

LP, and has multiple VUS reports in ClinVar. However, it is de-

tected in the proband, a male diagnosed with head and neck

cancer at age 43 and MM at 63; in the proband’s mother,

diagnosed with MM at age 90; and in the brother, diagnosed

with MM at 55. It is also in the proband’s niece, a healthy 20

years/o at the time of testing. The presence of this variant

across three generations and the absence of other cancer

types in almost all tested family members, except for the pro-

band, indicates a possible causal role for this variant in this

family’s MM and offers further support for ATM as an MM pre-

disposition gene.

WithinMMfamilies,we identifiedvariants seenmorecommonly

in populations that were detected by both WES and clinical

testing in this study. One was a heterozygous CHEK2 missense

(p.I200T, gnomAD MAF = 0.004256) (Figure 7C) detected in the

proband, a female diagnosed with myelodysplastic syndrome at

age44andBRCAat45. Thisevent is also in theproband’smother,

diagnosedwithMM at age 64, in the uncle, diagnosed with B-cell

lymphoma, and in the brother, a healthy individual at the time of

testing. This variant impairs the activation of CHEK2 by DNA

damage and its ability to bind and phosphorylate its downstream

targets, leading to uncontrolled cell growth and proliferation.146

It is associated with various cancers,147–153 including lymphoid

and myeloid malignancies,154–161 and is a risk factor for clonal

hematopoiesis.162 Here, we observe several cancers in different

members of this pedigree. Although further analysis involving

additional relatives would be needed to validate these findings,

this CHEK2 variant is present in all family members with hemato-

logical malignancies, suggesting a potential role in MM risk.

Clinical association analyses suggest that putative
predisposing variants influence multiple myeloma risk
across age groups
We did not find any associations between age at onset and pre-

disposition genes, which may reflect insufficient statistical po-

wer. Additionally, we do not observe any overall age differences

between carriers and non-carriers of P/LP/PVUS events for

either cohort (MMRF Wilcoxon p-value = 0.474; families Wil-

coxon p-value = 0.986; Figures S6A–S6C). The median age of

diagnosis for carriers and non-carriers of rare germline variants

in predisposition genes for the MMRF was 64 and 63, respec-

tively, and 63 and 61 for the familial cohort.

A similar power limitation applies to the identification of vari-

ants or genes associated with ancestry. However, given the

diverse nature of our cohort, we still explored the distribution

of variants across different groups (Figure S6D). We observe a

missense PVUS (p.N1126S) in EP300 in a 62 year/o male of

AFR ancestry within MMRF with no family history of cancer.

EP300 is involved in cellular proliferation, cell cycle regulation,
ations.

2 generations. See Table S10.
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DNA damage repair, apoptosis, is known to carry rareMM-asso-

ciated GPVs,48 and is somatically mutated in MM.60 Variants in

this gene were not observed in other ancestry groups. Other

genes exclusively mutated in the AFR group include BRIP1,

FANCM, and KIF18A. Although underpowered to make any con-

clusions about ancestry-specific genes or variants, these results

may point to candidates for the higher risk of MM in individuals of

AFR ancestry.

We also investigated variants in the MMRF affecting individ-

uals with a known family history of cancer (Figure S6E). We

observe family history of breast and gynecological cancer for

carriers of BRCA2 variants, as expected. However, we also

observe the history of MM/MGUS (maternal grandmother) in a

carrier of a BRCA2 variant (p.T544I) supporting the involvement

of this gene inMM.We also see a family history of BRCA and leu-

kemia in carriers of CHEK2 variants, and BRCA in a carrier of an

ATM variant, supporting the idea of shared predisposition fac-

tors across cancer types.

DISCUSSION

We present a large study of rare GPVs in MM, analyzing 954 un-

related individuals from the MMRF and 82 families (Figure 1). We

identified 93 rare P/LP/PVUS variants in 9.1% of the MMRF

cohort, with P/LP variants affecting 5.1% of cases, and 115

rare P/LP/PVUS variants in 18% of the familial cohort, with

P/LP variants affecting 13.1% of cases. We also detected 31

P/LP/PVUS variants for which pathogenicity was supported by

multiple lines of evidence (LOH, expression effect, co-occur-

rence with a somatic event) in 3.25% of the MMRF cohort (Fig-

ure 5; Table S2 – tab ST2A; Table S8).

This study provides additional evidence for previously sug-

gested gene-MM associations, such as DIS3,43 EP300,48

KDM1A,46 and USP45,47 and genes linked to the 35 common,

low-risk loci associated with this disease, such as POT1 and

DNAH1120,25 (Figure 2). We also found putative GPVs in genes

reported in somatic MM studies (FGFR3, KDM5C, SAMDH1,

TGDS, and TRAF3IP1),60,65–67 and in a germline study by Cata-

lano et al.68 (AMPD3, ANO10, DARS2, DSP, FLNC, MYH7,

PROM1, SLC6A19, and WFS1). Interestingly, we identified

genes known to be involved in predisposition to other cancers

(ATM, BRCA1, BRCA2, CHEK2, PMS2, POT1, PRF1, and

TP53) with ATM, PMS2, and PRF1 being potential novel gene-

MM associations. CHEK2 was also reported to carry copy num-

ber deletions in the familial cohort, supporting its role in MM risk

(Figure 6). Furthermore, we detected suggestive specific associ-

ations of TSC2 and XPC with MM when comparing the MMRF

dataset to TCGA,51 and a potential pleiotropic effect of variants

and genes among different cancer types (Figure S2).

The detection of putative P/LP/PVUS germline variants in

genes such as ATM, BLM, BRCA1, BRCA2, CHEK2, and

RAD51D, among others, suggests that the disruption of DNA

damage repair pathways, including HR, MMR, NHEJ, NER, and

BER,mayplay a role inMM risk. This alignswith previous findings

that DNA damage repair pathways can influence genomic

changes in MM, and disruption of these mechanisms - such as

through deleterious mutations in key genes - may offer an expla-

nation for the genomic instability seen in MM.84–95,163–166 Given
12 iScience 28, 111620, January 17, 2025
that germline variants are present in every cell of the human

body, pathogenic germline variants in key DNA damage repair

genes may indicate a global disruption of such repair mecha-

nisms. In particular, the presence of deleterious germline variants

in ATM, BRCA1/2, although well known in predisposition to solid

tumors, such as breast and ovarian cancer, has also been asso-

ciatedwith the risk of developingmyeloid neoplasms hematopoi-

etic malignancies in patients who have been exposed to DNA-

damaging agents, such as chemotherapy or radiotherapy, i.e.,

therapy-related myeloid neoplasms (t-MN).70–74 Recently, dele-

terious germline variants in BRCA1/2 have been shown in

patients with hematopoietic malignancies without a prior diag-

nosis of other cancers or exposure to chemotherapy or radio-

therapy, with a high prevalence of MM in BRCA2 variant car-

riers.76 Inactivation of ATM has also been shown to contribute

to genomic instability in MM and other hematological malig-

nancies, as this gene promotes DNA repair and activates check-

points to suppress abnormal Ig and T cell receptor (TCR) rear-

rangements.91,166–168 Therefore, further studies are needed to

investigate how germline variants in key DNA repair genes

interact with known genomic driver events in the pathogenesis

of MM.

This study has provided the basis for a number of interesting

findings related toMMsusceptibility. Overall, our results suggest

that rare GPVs influence MM risk at all age groups, challenging

the common belief that GPVs always result in malignancies

diagnosed at earlier ages than typically seen.169 Our results

also may suggest the involvement of genes EP300, BRIP1, and

FANCM in MM susceptibility in individuals of AFR ancestry.

We also observe a family history of breast, gynecological, and

lung cancer, and MM/MGUS in a BRCA2 variant carrier in the

MMRF, further supporting the role of this gene in MM risk. None-

theless, improved collection and curation of clinical and family

history data would be pivotal for further investigation of these

predisposition variants.

Regarding our familial dataset, we also acknowledge the lim-

itations imposed by the lack of sequencing data from relatives

of all 82 probands. However, despite these constraints, segrega-

tion analyses revealed three pedigrees showing the respective

segregation of variants in BRCA1, ATM, and CHEK2 with MM

and other tumor formation (Figure 7), further underscoring the

role of these genes in MM susceptibility.

In conclusion, this study allowed for the discovery of putative

germline variants and genes underlying MM risk, which we hope

will inform the development of better prevention and early detec-

tion strategies for this disease, especially in high-risk groups.

Careful attention to the collection of personal and family history

ofmalignancy in individuals withMMwill be key in elucidating the

role of GPVs in MM. Further validation of the functional impact of

the genetic changes presented here is needed to better under-

stand their prognostic and therapeutic implications in MM and

to provide a higher level of precision in the personalized treat-

ment of this disease.

Limitations of the study
This article should be interpreted considering its limitations. First,

we recognize that our ability to detect variants and genes associ-

ated with specific clinical features, such as age and ancestry,
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maybe limited.While our dataset, which includes both theMMRF

CoMMpass Study cohort and a familial cohort, is among the

largest available for multiple myeloma (MM), we remain under-

powered to detect these associations due to sample size. Addi-

tionally, the absence of sequencing data for relatives of all 82

probands in the familial cohort further limits our analyses, espe-

cially our ability to perform further segregation analyses of candi-

date predisposition variants detected in those probands. Conse-

quently, future studies with larger, more statistically powered

cohorts are needed. In addition, a more detailed and systematic

collection of clinical and family history information will be essen-

tial for deeper investigationof predisposition variantsproposed in

this study.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

KAPA Hyper Prep Kit KAPA Biosystems Cat # 7962363001

xGen Exome Research Panel v1.0 IDT Technologies https://www.idtdna.com

Deposited data

Whole Exome Sequencing,

RNA Sequencing, and clinical

data for individuals from the MMRF

The Multiple Myeloma Research

Foundation (MMRF) CoMMpass

(Relating Clinical Outcomes in MM

to Personal Assessment of Genetic

Profile) Study (NCT01454297)

dbGaP Study Accession: phs000748;

https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs000748.v7.p4

Whole Exome Sequencing

data for 82 families from

the University of Chicago

This study Protected data available to approved researchers;

Synapse ID: syn26844264;

https://www.synapse.org/#!Synapse:syn26844264

Please contact L.A.G. or F.M.R. to request access.

Germline variant callset for

the Familial cohort

This study Protected data available to approved researchers;

Synapse ID: syn26844264;

https://www.synapse.org/#!Synapse:syn26844264

Oligonucleotides

Primer: ELANE gene exon 4 - qPCR primer

Forward: CCTGGGAGCCCATAACCTCT

Reverse: AAGTTTACGGGGTCGTAGCC

Product size: 93 bps

Covered region (GRCh38):

chr19:853,286–853,378 (exon 4)

This study N/A

Primer: RECQL4 gene intron

9–10 - qPCR primer

Forward: ACTGCTGCTTGTCCCCTAAC

Reverse: TTTGACCTGCTGCCAAGACT

Product size: 85 bps

Covered region (GRCh38):

chr8:144,515,001–144,515,085 (intron 9–10)

This study N/A

* Validation of CHEK2 gCNVs were

performed by Ambry Genetics;

primer sequences are not provided

Ambry Genetics N/A

Software and algorithms

Ancestry prediction Li Ding Lab https://github.com/ding-lab/ancestry

bam-readcount v0.8 McDonnell Genome Institute https://github.com/genome/bam-readcount

BWA v0.7.17-r1188 Li, 2013170 http://bio-bwa.sourceforge.net/

CharGer v0.5.4 Scott et al., 201956 https://github.com/ding-lab/CharGer/tree/v0.5.4

ClassifyCNV v1.1.1 Gurbich and Ilinsky, 2020124 https://github.com/Genotek/ClassifyCNV

clusterProfiler v3.18.1 Yu et al., 2012171 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

CNVkit v0.9.6 Talevich et al., 2016172 https://github.com/etal/cnvkit

Ensembl Variant Effect Predictor (VEP) v95 McLaren et al., 2016173 https://github.com/Ensembl/ensembl-vep

FastQC v0.11.8 Andrews, 2010174 https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

featureCounts Rsubread v1.6.4 Liao et al., 2014b175 http://subread.sourceforge.net/

GATK DepthOfCoverage v3.8-0 McKenna et al., 201054 https://github.com/broadinstitute/gatk

GATK HaplotypeCaller v4.0.0.0 McKenna et al., 201054 https://github.com/broadinstitute/gatk

GATK VariantEval v3.8-0 McKenna et al., 201054 https://github.com/broadinstitute/gatk

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

GermlineWrapper pipeline v1.1 Li Ding Lab https://github.com/ding-lab/germlinewrapper

GenePattern GISTIC 2.0.22 module Reich et al., 2016;

Mermel et al., 2011176,177
https://www.genepattern.org/

modules/docs/GISTIC_2.0

Integrative Genomics Viewer (IGV) v2.8.2 Robinson et al., 2011178 https://software.broadinstitute.org/software/igv/

Mosdepth v0.2.4 Pedersen and Quinlan, 2018179 https://github.com/brentp/mosdepth

Mutect v1.7.7 Cibulskis et al., 2013180 https://github.com/broadinstitute/mutect

Picard Toolkit v2.22.4–0 Broad Institute of MIT and

Harvard181

https://github.com/broadinstitute/picard

Pindel v0.2.5 Ye et al., 2009 https://github.com/genome/pindel

Python v2.7 and v3.7 Python Software Foundation https://www.python.org/

R v4.0.3 R Development Core Team https://www.R-project.org

ReactomePA v1.34.0 Yu and He, 2016182 https://bioconductor.org/packages/

release/bioc/html/ReactomePA.html

SNPRelate v1.24.0 Zheng et al., 2012183 https://www.bioconductor.org/

packages/release/bioc/html/SNPRelate.html

STAR v2.5.0a Dobin et al., 2013194 https://github.com/alexdobin/STAR

Strelka v2.9.2 Kim et al., 2018184 https://github.com/Illumina/strelka

TinDaisy CWL pipeline Li Ding Lab https://github.com/ding-lab/TinDaisy

Trimmomatic v0.38-1 Bolger et al., 2014185 https://github.com/usadellab/

Trimmomatic/tree/V0.38

VarScan v2.3.8 Koboldt et al., 201253 https://dkoboldt.github.io/varscan/

XHMM Fromer and Purcell, 2014121 https://zzz.bwh.harvard.edu/xhmm/
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Multiple Myeloma Research Foundation (MMRF) dataset
We obtained Whole-Exome Sequencing (WES) data from 965 tumor-normal sample pairs for individual cases (n = 965; 479 males,

482 females, 4 with gender not reported; mean age 62.66 ± 10.71) generated by TheMultipleMyeloma Research Foundation (MMRF)

CoMMpass (Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile) Study (NCT01454297). Of 965 cases, 605

were self-reported Caucasian individuals. Other demographic information, such as ethnicity, was not available. RNA-Sequencing

data for 797 of those tumors corresponding to individual patients were also obtained from MMRF, as well as clinical information.

dbGaP Study Accession is phs000748. After quality control measures, 954 tumor-normal sample pairs were used in this study

(n = 954; 475 males, 475 females, 4 with gender not reported; mean age 62.74 ± 10.67; 599 self-reported Caucasian individuals).

See ‘‘germline variant calling and filtering’’ methods section for more details on sample quality control strategies. Ancestry was esti-

mated based on whole-exome sequencing data for more accuracy (as detailed in the ‘‘ancestry prediction’’ methods section). Final

ancestry predictions are provided in Table S1 – tab ST1E and Figure 1B.

Recruitment of research subjects for the familial dataset
All patients diagnosed with monoclonal gammopathy of undetermined significance (MGUS), multiple myeloma (MM), smoldering

myeloma (SMM), plasma cell leukemia, plasmacytoma, and amyloidosis, who underwent bone marrow biopsy at The University

of Chicago were queried for their personal and family history of cancer. Clinical germline testing was offered if: (i) the individual

(also called proband) had been diagnosedwith a second cancer, excluding non-melanoma skin cancer; or (ii) the individual was diag-

nosed with MM < 50 years old46; or (iii) the family history included a solid tumor diagnosed in an individual <50 years old within two

generations of the proband. All of the research subjects included in this study chose to undergo clinical germline testing by the Ge-

netic Services Laboratory at The University of Chicago as described186 and consented to research participation under an IRB-

approved protocol, 11–0014, for which Dr. Godley (L.A.G) served as Principal Investigator. Clinical testing was performed on DNA

derived from cultured skin fibroblasts as previously described.186 After anonymization, samples were shared with Washington Uni-

versity in Saint Louis for whole-exome sequencing. All of the variants identified in clinical testing were identified by the analysis at

Washington University in Saint Louis. Samples overlapping the MMRF dataset, identified via identity-by-descent (IBD) analyses,

were excluded from this dataset (n = 5 probands), leaving 82 probands and 17 relatives (n = 99; mean age 59.45 ± 12.12). See ‘‘iden-

tity-by-descent (IBD) analyses’’ methods section for more details. Of the 99 cases, 43 were males, 55 females, and 1 did not have

gender information reported. Also, 65 were self-reported Caucasians, 16 African-Americans, 2 Hispanic/Latinos, and 16 did not self-

report race information. Ethnicity information was not available. Ancestry was estimated based onwhole-exome sequencing data for
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more accuracy (as detailed in the ‘‘ancestry prediction’’ methods section). Final ancestry predictions are provided in Table S1 – tab

ST1F and Figure 1B.

Skin fibroblast culture
Skin fibroblast cultures for samples from the familial dataset were generated as previously described.186 Fibroblast cultures were initi-

ated from3mmskinpunches.Usingasterile technique, subcutaneous fatwas removed, and the remainingdermal andepidermal layers

weremanuallymincedwith a scalpel in type I collagenase/a-MEM. The specimenwas incubated overnight in collagenase at 37�Cwith

5% CO2. To further dissociate the cells, the tissue was aspirated through a 20-gauge needle and cultured in AmnioMax medium

(Thermo Fisher Scientific, Waltham, MA) in a T25 vented flask. DNA extraction was performed using Qiagen isolation. All of the cells

used in this studywereperiodically tested freeofmycoplasmacontaminationbyMycoFluorMycoplasmaDetectionKit (ThermoFisher).

METHOD DETAILS

DNA isolation, library preparation and whole-exome sequencing (WES)
WES data for the MMRF dataset was provided by the MMRF itself, as described. Familial samples from skin fibroblast cultures were

sequenced at the McDonnell Genome Institute (MGI) at Washington University in Saint Louis. Genomic DNA (150-250ng) was frag-

mented on the Covaris LE220 instrument targeting 250bp inserts. Automated dual indexed libraries were constructed with the KAPA

Hyper Prep Kit (KAPA Biosystems, Cat # 7962363001) on the SciClone NGS instrument platform (PerkinElmer). Samples were ampli-

fied post ligation (9 cycles) and then size selected with AMPure XP beads (1x) to tighten the final distribution size of each sample.

Libraries were then pooled (1 pool of 8, 1 pool of 9) at an equimolar ratio yielding�4-4.5mg per library pool prior to the hybrid capture.

Library pools were hybridized with the xGen Exome Research Panel v1.0 reagent (IDT Technologies) that spans a 39Mb target region

(19,396 genes) of the human genome. The concentration of the library capture pools were accurately determined through qPCR uti-

lizing the KAPA library Quantification Kit according to the manufacturer’s protocol (KAPA Biosystems/Roche) to produce cluster

counts appropriate for the Illumina NovaSeq6000 instrument. Library pools were run over 0.068 of a NovaSeq6000 S4 flow cell using

the XP workflow and a 151 3 10 3 10x151 sequencing recipe in accordance with manufacturer’s protocol.

Sequence alignment
Exome sequencingdata for theMMRFwere obtainedasBAMfiles, already aligned to the hs37d5human referencegenome. Paired-end

exome sequencing data from the familial cohort sampleswere first trimmed for adapter sequences and low quality reads using Trimmo-

matic185 (v0.38-1 using its paired-end mode with default parameters, except where -threads 2, -phred33, ILLUMINACLIP:TruSeq3-

PE.fa:2:30:10:8:TRUE, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:36). After trimming, samples were aligned to the

GRCh38 human reference genome using the BWA-MEM algorithm from the Burrows-Wheeler Alignment Tool170 (BWA, v0.7.17-

r1188 with default parameters, except where -t 8, -M). Duplicates were removed using Picard (MarkDuplicates; v2.22.24-0 with default

parameters; https://github.com/broadinstitute/picard).

Somatic variant calling for the MMRF dataset
Somatic variants were detected fromWES data in our MMRF dataset, for which we had paired tumor-normal samples. We used our

in-house TinDaisy CWL pipeline (https://github.com/ding-lab/TinDaisy), which implements four standard tools: Strelka2,184 Mu-

tect180 (v1.7.7), VarScan53 (v2.3.8), and Pindel55 (v0.2.5). The hs37d5 reference genome was used, as implemented for BAM gener-

ation by the MMRF CoMMpass Study.

We retained exonic SNVs called by at least two callers among Strelka, VarScan, and Mutect, and indels called by at least two cal-

lers among Strelka, VarScan, and Pindel. To generate high confidence variant calls, we implemented cutoffs of at least 14 total reads

in the tumor and at least 8 in the normal and filtered variants by a minimal variant allele frequency (VAF) of 0.05 in tumors and a

maximal VAF of 0.02 in normal samples. We further excluded indels longer than 100bp and required all variants to have an allele fre-

quency of at least 0.005 based on the highest allele frequency observed between 1000 Genomes,187 NHLBI-ESP,188 or gnomAD,189

as extracted from Ensembl Variant Effect Predictor (VEP)173 (v95) annotation (MAX_AF field). For the remaining candidate exonic so-

matic variants, we also filtered low quality variants by bam-readcount (default parameters except where -q 10 -b 20) (https://github.

com/genome/bam-readcount) and excluded calls present in dbSnP (v151) but not in COSMIC (v88). Finally, sequential SNVs on the

same haplotype were combined into multi-nucleotide variants (MNVs) within TinDaisy by using our in-house tool DNPFilter (https://

github.com/ding-lab/dnp_filter). Finally, somatic variants detected for the MMRF were lifted over to GRCh38 coordinates using Pic-

ard’s LiftoverVcf tool (v2.22.4-0; https://github.com/broadinstitute/picard).

Germline variant calling and filtering
WES data from normal samples for both datasets were first assessed for quality using FastQC (v0.11.8 with default parameters).174

Coverage within target regions was calculated using Mosdepth179 (v0.2.4 with default parameters, except where -Q 20). Coverage

ranged from 19.8X to 283X for the MMRF dataset and 45X to 196X for the familial dataset (Figure S1B). In total, 954 and 99 samples

from MMRF and familial datasets, respectively, passed quality control criteria and had >20X average coverage (mapping quality

R20) across target regions.
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Germline variants for samples passing quality control criteria were identified using the GermlineWrapper pipeline (https://github.

com/ding-lab/germlinewrapper), which integrates multiple tools: germline SNVs were identified using VarScan53 (v2.3.8 with default

parameters, except where –min-var-freq 0.08,–p value 0.10,–min-coverage 3,–strand-filter 1, -min-avg-qual 15, -min-reads2 2, -min-

freq-for-hom 0.75) operating on ampileup stream fromSAMtools (v1.2 with default parameters, except where -q 1 -Q 13) andGATK54

(v4.0.0.0, using its Haplotype Caller in single-sample mode excluding duplicate and unmapped reads and retaining calls with a min-

imum quality of 10). Germline indels were identified using VarScan53 (version and parameters as above) and GATK54 (version and

parameters as above) in single-sample mode. We also applied Pindel55 (v0.2.5b9 with default parameters, except where -m 6, -w

1, and excluded centromere regions [genome.ucsc.edu]) for indel prediction. For analyses of MMRF samples, we used the

hs37d5 reference genome, as used for BAMgeneration by theMMRFCoMMpass Study, and specified an insertion size of 500when-

ever this information was not provided in the BAM header. For familial samples, the GRCh38 reference genome was used. Single

nucleotide variants (SNVs) were based on the union of raw GATK and VarScan calls. We required that indels were called by Pindel

or at least two out of the three callers (GATK, VarScan, Pindel). Cutoffs of minimal 10X coverage and 20% VAF were used in the final

step to report the high-quality germline variants. For consistency across datasets, germline variants detected for the MMRF were

lifted over to GRCh38 coordinates using Picard’s LiftoverVcf tool (v2.22.4-0) (https://github.com/broadinstitute/picard).

Variants called by GermlineWrapper were required to have an Allelic Depth (AD) R 5 for the alternative allele. Additionally, we

filtered out any indels longer than 100bp. A total of 162,560,862 and 10,808,394 variants passed these filters for the MMRF and fa-

milial datasets, respectively (Figure 1C). Variants were also filtered based on coding regions of full-length transcripts obtained from

Ensembl release 95 plus the additional two base pairs flanking each exon that cover splice donor/acceptor sites, resulting in a total of

22,962,558 and 2,495,449 exonic variants for the MMRF and familial datasets, respectively (Figures S1D and 1C).

Finally, variants passing filters were assessed for quality by calculating concordance with dbSnP (release 151) and average tran-

sition-transversion (TiTv) ratio using GATK’s54 VariantEval tool (v3.8-0 with default parameters). For the MMRF dataset, we achieved

98.21% concordance with dbSnP, while for the familial dataset we achieved 99.17% concordance (Figure S1E). For both datasets,

our germline exomes displayed high quality, with an average TiTv ratio of 2.84.

Somatic copy number variant (CNV) calling from the MMRF dataset
Somatic copy number variants were called fromWES data following procedures as described in the Genomic Data Commons (GDC)

copy number variation pipeline documentation (https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/). We

first used CNVkit172 (v0.9.6) to perform a circular binary segmentation (CBS)190 analysis on MMRF’s WES data. Then, copy number

segments obtained from CNVkit were used as inputs for GISTIC2176 to obtain focal-level CNV values. GISTIC2 was implemented

using the GISTIC2 module in GenePattern,177 with parameters as described by GDC. A 0.3 threshold was used to classify focal

CNV values into the following categories: loss (�1), for genes with focal CNV values <�0.3; gain (+1) for genes with focal CNV values

>0.3; and neutral (0), for genes with focal CNV values between or equal to �0.3 and 0.3.

Germline copy number variant (gCNV) calling
We used the exome Hidden Markov Model (XHMM) as previously described122 on our WES normal data from 954 to 99 MMRF and

familial samples, respectively, in order to detect rare germline copy number variations (gCNVs). We used GATK’s DepthOfCoverage

tool (v3.8.0; mapping quality R20) to estimate base-resolution coverage for Ensembl coding exon intervals obtained from UCSC

Table Browser. Those exon targets with GC content >90% or <10%, repeat-marked bases >25%, length <10bp or >10kbp, or

mean depth <10 were excluded and the resulting target-by-sample depth matrix wasmean centered by target dimension. Following,

a principal component analysis (PCA) was performed and the components with variance >70% of the mean variances of all compo-

nents were removed. The resulting depth matrix was normalized to sample-level Z score while removing targets with high variance

(standard deviation >50). Finally, the Viterbi Hidden Markov model (HMM) was applied for gCNV discovery using XHMM’s default

parameters and quality metrics for each CNV were obtained by the forward-backward HMM algorithm, as described.121 Final calls

obtained for the MMRF cohort were lifted over to GRCh38 coordinates using the UCSC’s lifOver web application for consistency

across the cohorts (https://genome.ucsc.edu/cgi-bin/hgLiftOver).

Germline CNV confirmation for familial samples
Quantitative polymerase chain reaction (qPCR) analysis was performed to detect predicted copy number variants that had not been

tested in a clinical laboratory. Patients’ genomic DNA samples from skin or saliva were evaluated using the Power SYBR Green PCR

Master Mix. Primers were designed to cover the predicted regions of deletion or amplification and tested for optimal annealing tem-

peratures on normal human placental DNA. Primer sequences are available in the key resources table. Twenty ng of each patient

sample were run in triplicate with 1 mL of each primer at 10 mM, 10 mL of the SYBR Green Master Mix, and distilled water to a total

final volume of 20 mL. Placental gDNA was used as a positive control and a sample lacking DNA was used as a negative control.

PMP22 served as the house-keeping gene for diploid reference and DNA samples were merged to make 5 serial dilutions (1:4) to

serve as standards for calculating the amplification efficiency for each primer set. PCR amplification was performed for 40 cycles

using the Applied Biosystems 7500Real-Time PCRSoftware. After PCR amplification, themelt curves of each reactionwere checked

to ensure specificity of the primers, as indicated by amplification of a single major peak. The cycle threshold values (CT) of the serial

dilutions were plotted against the log values of their known concentrations, with the slope of this plot being used to calculate the
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amplification efficiency: 2(-1/slope). The mean CT value for each triplicate was used to obtain the DCT between the experimental

sample with primers covering genes of interest and the housekeeping gene PMP22. DDCT was then calculated by subtracting

the DCT value of the positive control reaction from each experimental DCTmean. To determine the relative expression level between

the positive control and the experimental samples, the amplification efficiency raised to the power of -DDCT was calculated. The

presence of a copy number variant was declared if the relative expression was about 0.5 for deletions and 2 for duplications.

Ancestry prediction
We identified likely ancestry for each individual in our datasets by using a reference panel of genotypes and clustering based on prin-

cipal components. First, we selected a set of 107,853 coding SNPs with minor allele frequency (MAF) > 0.02 from the 1000 Genomes

Project187 (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) and measured their depth and allele counts in each sam-

ple using the tool bam-readcount (v0.8 with default parameters, https://github.com/genome/bam-readcount). We then genotyped

each sample as follows: 0/0 if reference allele countR8 and alternative allele count <4; 0/1 if reference allele countR4 and alternative

allele count R4; 1/1 if reference allele count <4 and alternative allele count R8; and./. (missing) otherwise. Further, we filtered out

markers with missingness >5%, after which >72k and >65K markers remained for analysis for the MMRF (965 samples) and familial

(104 samples) datasets, respectively. Note that ancestry predictions were performed before some samples were excluded during QC

steps. Therefore, sample sizes depicted here may be larger than the final set. We performed principal component analysis (PCA) for

each group of markers on the 1000Genomes Project data to identify the top 20 principal components and projected our cohorts onto

the 20-dimensional space representing the 1000 Genomes data. We then trained a random forest classifier with the 1000 Genomes

dataset using the 20 principal components we identified, splitting the 1000 Genomes datasets 80/20 for training and validation,

respectively. Our classifier achieved �99% accuracy on the validation dataset using models trained with the markers for both

MMRF and familial datasets (Figure S1C). The fitted classifiers were then used to classify samples into African (AFR), AdMixed Amer-

ican (AMR), East Asian (EAS), European (EUR), or South Asian (SAS). Final ancestry predictions are provided in Table S1 – tabs ST1E

and ST1F.

Identity-by-descent (IBD) analyses
Analysis of identity-by-descent (IBD) was performed to confirm relationships between individuals in our pedigrees, find potential

overlaps between the two cohorts. We used the R/Bioconductor package SNPRelate183 (v1.24.0) to perform relatedness analysis

using identity-by-descent (IBD) measures. A variant call format (VCF) file of the two cohorts combined was converted to GDS file

using the SNPRelate. Linkage disequilibrium (LD) pruning using an LD threshold of 0.2, MAF cut-off of 0.05 and allowing a missing

rate of 0.3 was performed. IBD estimation was done by implementing the maximum likelihood estimation (MLE) method.191,192 Sam-

ples overlapping between the two cohorts (n = 5 probands) were excluded from the familial cohort.

QUANTIFICATION AND STATISTICAL ANALYSIS

Gene list curation for pathogenic variant classification
For this specific study, we extended the list of 152 cancer predisposition genes (CPGs) previously compiled by Huang et al.51 to a

total of 158 genes, by adding 6 genes which have been either shown to contribute to MM susceptibility in previous studies of rare

germline variants in MM, such as DIS343 and KDM1A,46 or in which potential risk rare variants had been suggested but not validated

in individual MMstudies, includingARID1A47, EP30048, KIF18A49, andUSP45,47 as well asCDKN2A,44,45 whichwas already included

in the list of 152 CPGs. Although the latter are not completely recognized as MM risk genes by the scientific community yet, we have

included them in our analysis in order to better understand and further investigate their role in MM. Results in these genes were care-

fully revised. This extended gene list was used as input for our tool CharGer (described below) using the –inheritanceGeneList param-

eter. The source and reference for each gene are provided in Table S1.

Pathogenicity assessment of germline variants
Germline variants called with GermlineWrapper were annotated with the Ensembl Variant Effect Predictor (VEP)173 (v95 with default

parameters, except where –everything) and their pathogenicity was determined with our automatic pipeline CharGer56 (v0.5.4 with

default CharGer scores, https://github.com/ding-lab/CharGer/tree/v0.5.4), which annotates and prioritizes variants based on pub-

lished guidelines by the American College of Medical Genetics and Genomics - Association for Molecular Pathology (ACMG-

AMP).57 CharGer retrieves information from the ClinVar (release as of 08/15/2019 parsed using codes from MacArthur lab ClinVar,

https://github.com/macarthur-lab/clinvar) and gnomAD (r2.1.1)189 databases, as well as computational tools, including SIFT

(v5.2.2)193 and PolyPhen (v2.2.2)194; , to inform the implementation of 12 pathogenic and 4 benign evidence levels for the classifica-

tion of germline variants. The detailed implementation and score of each evidence level, as well as parameters used are as previously

described.51

We further selected rare variants with %0.05% allele frequency (AF) in gnomAD (r2.1.1) or 1000 Genomes.187 We also performed

read count analysis using bam-readcount (https://github.com/genome/bam-readcount; v0.8 with parameters -q 10, -b 15) to eval-

uate the number of reference and alternative alleles for each variant. Both normal and tumor samples were used for the MMRF sam-

ples, while only normal samples were provided for the familial dataset. We required variants to have at least 5 counts of the alternative
iScience 28, 111620, January 17, 2025 e5

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://github.com/genome/bam-readcount
https://github.com/ding-lab/CharGer/tree/v0.5.4
https://github.com/macarthur-lab/clinvar


iScience
Article

ll
OPEN ACCESS
allele and a variant allele frequency (VAF) of at least 20%. Variants remaining after these filters were manually reviewed with the Inte-

grative Genomics Viewer (IGV) software (v2.8.2).178 A total of 684 and 145 variants were retained after manual review (Figure 1C). We

considered variants to be pathogenic (P) if theywere known pathogenic variants in ClinVar; likely pathogenic (LP) if CharGer score >8;

and prioritized variant of uncertain significance (PVUS) if CharGer score >4. A list of all variants passing manual review and their in-

formation are displayed in Table S2. MMRF case IDs have been replaced with study IDs to ensure the privacy of the study partici-

pants. Original MMRF case identifiers linked to study IDs used here are available on Synapse (Synapse ID: syn26844264; https://

www.synapse.org/#!Synapse:syn26844264). Data can be provided upon reasonable request.

Germline CNVs detected through XHMM were assessed for pathogenicity using ClassifyCNV (v1.1.1),124 which applies the 2019

ACMG guidelines for the classification of germline duplications and deletions.123

Burden testing of rare pathogenic and likely pathogenic germline variants
Weperformed burden testing of pathogenic and likely pathogenic variants detected in theMMRF and familial datasets using the Total

Frequency Test (TFT)77 as previously described,51 which implements a one-sided Fisher test to detect genes with potentially

increased burden of pathogenic variants in our datasets in comparison with controls. For this study, we collapsed pathogenic

and likely pathogenic germline variants to the gene level and then implemented the total allele counts of pathogenic and likely path-

ogenic variants detected in the gnomAD (r2.1.1) non-cancer cohort (n = 118,479) using the same CharGer pipeline as controls. In

order to account for the potential impact of genetic ancestry in our results, we also performed a burden test including only individuals

of European ancestry from the MMRF and familial cohorts against the gnomAD non-cancer Non-Finnish subset (n = 51,377) to re-

move the effect of this potentially confounding variable.

We also tested burdens of pathogenic and likely pathogenic variants in MM in comparison with other cancer types previously

analyzed using The Cancer Genome Atlas (TCGA) cohort from a previous study by our group.51 Here, we tested burden for each can-

cer type and each gene using all other cancer types as controls, subtracting out the cohorts with suggestive enrichment for the spe-

cific gene in the gnomAD analyses. As described above, this test was also performed in the EUR subset of MMRF, familial, and TCGA

cohorts against the gnomAD non-cancer Non-Finnish subset (n = 51,377). We used the standard Benjamini-Hochberg procedure to

adjust the resulting p-values to FDR. We define significant events if FDR%0.05, and suggestive events if FDR%0.15. The results for

both the analyses using the complete cohorts and EUR cohorts only are provided.

Functional enrichment analysis
Our list of genes affected by P/LP/PVUS germline variants in both datasets was submitted through functional enrichment analysis for

Gene Ontology (GO) terms and KEGG pathways using the R package clusterProfiler171 (v3.18.1). We also performed enrichment

analysis for REACTOME pathways using the R package ReactomePA182 (v1.34.0). We used an FDR value of %0.05 to consider a

GO term, KEGG, or REACTOME pathway significantly enriched.

LOH and biallelic events
Analysis of loss-of-heterozygosity (LOH) events can help identify germline variants that are positively selected in the tumor by

comparing the VAF in the tumor to that in the normal. Here, we first estimated read counts for each variant in both normal and tumor

samples for our MMRF cases using bam-readcount (https://github.com/genome/bam-readcount) (v0.8 with parameters -q 10, -b

15). Then, LOH events were identified by implementing a Fisher’s exact test between tumor and normal samples in order to identify

any variants for which VAF in the tumor was significantly greater than in the normal for any of the germline variants identified. The

resulting p-values were adjusted to FDR using the Benjamini-Hochberg procedure. We considered a LOH to be significant if FDR

%0.05 and suggestive if FDR%0.15. Moreover, we also considered events with tumor VAF >0.6 and normal VAF <0.6 as additional

suggestive LOH events. Further, we classified significant and suggestive LOH events based on GISTIC CNV results as (1) copy num-

ber deletion of the wild-type allele, or (2) copy number amplification of the alternative allele, following the same procedures as pre-

viously described.51

We also performed an analysis of cis biallelic events, wherewe searched for cases carrying both germline pathogenic or likely path-

ogenic variants and missense or truncating somatic mutations, as well as somatic CNV events in the same gene. Additionally, we

investigated potential trans events, i.e., genes in the same biological pathway affected by germline variants (germline-germline) or

genes in the same pathway affected by both germline and missense or truncating somatic events (germline-somatic). The familial

dataset was also investigated for trans germline-germline events. Genes were annotated with KEGG and Reactome pathways using

the R packages clusterProfiler171 (v3.18.1) and ReactomePA182 (v1.34.0), respectively. The lolliplots are constructed and modified

from the PCGP protein paint (https://pecan.stjude.cloud/proteinpaint).

Selection of candidate predisposing variants via multiple lines of evidence
We sought multiple lines of evidence to corroborate the pathogenicity of candidate GPVs in the MMRF, for which access to matched

tumor-normal data allowed us to perform analyses of LOH, expression effect, and co-occurrence with somatic events in the same

gene (SNVs, indels, or copy-number variants). We used an integrative approach to categorize variants into 3 classes: 1) High con-

fidence P: variants classified as P during manual review that show at least one additional piece of evidence of pathogenicity (strong

LOH, expression effect, or co-occurring with a somatic event); 2) High confidence LP: same as 1) but for variants initially classified as
e6 iScience 28, 111620, January 17, 2025

https://www.synapse.org/#!Synapse:syn26844264
https://www.synapse.org/#!Synapse:syn26844264
https://github.com/genome/bam-readcount
https://pecan.stjude.cloud/proteinpaint


iScience
Article

ll
OPEN ACCESS
LP; and 3) Nominated PVUS: same as 1) but for variants initially classified as PVUS. For expression effect, we considered variants in

TSGs associated with the bottom 25%expression, and variants in oncogenes associated with the top 25%. For LOH, we considered

variants having both suggestive and significant LOH.

RNA quantification and analysis
RawRNA-Seq data were obtained from theMMRFCoMMpass Study, as described. Readswere assessed for quality with FastQC174

(v0.11.8 with default parameters) andmapped to amodified version of the GRCh37 human reference genome based on the 1000Ge-

nomes phase 2 reference assembly sequence, as used in the MMRF CoMMpass Study (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz). Alignment was performed using STAR (v2.5.0a).195

We obtained gene-level read counts, Fragments Per Kilobase of transcript per Million mapped reads (FPKM), and FPKM Upper

Quartile (FPKM-UQ) values following GDC’s mRNA analysis pipeline (https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/

Expression_mRNA_Pipeline/). Read counts were obtained using the featureCounts function of the Rsubread package (v1.6.4)175

that allowed counting the number of reads assigned to genes. These read counts were then converted to FPKM and FPKM-UQ using

the formula described in GDC’s pipeline documentation.

We calculated the expression percentile of each gene in the MMRF cohort using the empirical cumulative distribution function

(ecdf) in R. Following, we implemented a linear regression model to compare the expression percentile differences between carriers

and non-carriers of P/LP variants. Resulting p-values were adjusted using the standard Benjamini-Hochberg procedure.

Segregation analysis in familial dataset
For the probands whose additional family members were available, we performed segregation analysis using either exome

sequencing data or targeted Sanger sequencing. Co-segregating variants shared by exomes are provided in Table S10.

Analysis of age at onset differences between carriers and non-carriers
We implemented a linear regressionmodel to evaluate potential associations betweengermline variant carriers of predisposition genes

and age at onset. We tested genes harboring 3 or more P and LP variants. Resulting p-values were adjusted with the Benjamini-

Hochberg procedure. We also implemented a Wilcoxon Rank-Sum test to determine overall age differences between all carriers of

P/LP/PVUS variants and non carriers for both datasets.
iScience 28, 111620, January 17, 2025 e7

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/

	ISCI111620_proof_v28i1.pdf
	Germline predisposition in multiple myeloma
	Introduction
	Results
	Germline variant detection and quality control
	Discovery of candidate predisposition variants, genes, and DNA damage repair pathways in multiple myeloma susceptibility
	Analyses of two-hit events strengthen the characterization of germline predisposition variants
	Gene expression changes in variant carriers in the Multiple Myeloma Research Foundation dataset
	Multiple lines of evidence confirm the pathogenicity of putative predisposition single nucleotide variants and indels in th ...
	Analyses of rare germline copy number variants identify pathogenic and likely pathogenic events in multiple myeloma
	Segregation analyses reveal segregating BRCA2, ATM, and CHEK2 variants in patients with familial multiple myeloma
	Clinical association analyses suggest that putative predisposing variants influence multiple myeloma risk across age groups

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and subject details
	Multiple Myeloma Research Foundation (MMRF) dataset
	Recruitment of research subjects for the familial dataset
	Skin fibroblast culture

	Method details
	DNA isolation, library preparation and whole-exome sequencing (WES)
	Sequence alignment
	Somatic variant calling for the MMRF dataset
	Germline variant calling and filtering
	Somatic copy number variant (CNV) calling from the MMRF dataset
	Germline copy number variant (gCNV) calling
	Germline CNV confirmation for familial samples
	Ancestry prediction
	Identity-by-descent (IBD) analyses

	Quantification and statistical analysis
	Gene list curation for pathogenic variant classification
	Pathogenicity assessment of germline variants
	Burden testing of rare pathogenic and likely pathogenic germline variants
	Functional enrichment analysis
	LOH and biallelic events
	Selection of candidate predisposing variants via multiple lines of evidence
	RNA quantification and analysis
	Segregation analysis in familial dataset
	Analysis of age at onset differences between carriers and non-carriers





