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Abstract: Proteins are crucial to the functioning of all lifeforms. Traditional understanding
posits that a single protein occupies a single structure (“fold”), which performs a single
function. This view is radically challenged with the recognition that high structural
dynamism—the capacity to be extra “floppy”—is more prevalent in functional proteins
than previously assumed. As reviewed here, this dynamic take on proteins affects our
understanding of protein “structure”, function, and evolution, and even gives us a glimpse
into protein origination. Specifically, this review will discuss historical developments
concerning protein structure, and important new relationships between dynamism and
aspects of protein sequence, structure, binding modes, binding promiscuity, evolvability, and
origination. Along the way, suggestions will be provided for how key parts of textbook
definitions—that so far have excluded membership to intrinsically disordered proteins
(IDPs)—could be modified to accommodate our more dynamic understanding of proteins.

Keywords: protein dynamism; intrinsically disordered; structure; function;
promiscuity; evolution

1. Introduction

Proteins constitute a diverse class of biomolecules [1] that underlie most of life’s functionalities [2,3].
While the last decade has seen remarkable progress in whole proteome studies, another more silent
revolution has been occurring in our understanding of how structural dynamism plays an intricate role in
defining the structure, function and evolution of individual proteins. Proteome studies indicate that a good
percentage of proteins (over 25%) in complex organisms are highly structurally dynamic [4], with many
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associated with disease states (such as cancers [5,6], Parkinson’s disease [7], and other afflictions [8]).
This has elevated the need to understand the role of structural dynamism and disorder in biology. Here
I will attempt to outline the relatively new connections (or newly re-established connections [9–12])
between structural dynamism, evolvability and function.

Aside from discussing some relevant history and definitions, this review will focus on three “new
views” of protein science: (1) structural dynamism—the capacity to be extra “floppy”—is more
prevalent in bioactive proteins than previously assumed; (2) structural dynamism allows for high
functional/binding promiscuity [13–15]; and (3) functional/binding promiscuity plays a big role in
the evolution of novel function [16,17]. These features of dynamism fundamentally contribute to the
emergence of modular and complex life [4,18]. An inevitable outcome of these relationships is the
need to reassess the textbook definitions of what constitutes a protein structure and what differentiates
a protein from a peptide. Given the broad implications of these developments, I will refer to a number
of useful reviews provided by others. However, while each previous review discusses one part of the
picture, I have not found a synthesis of all connections in one venue (e.g., excellent focuses on related
ideas, such as enzyme promiscuity [13,19,20], intrinsic disorder [21–24], and sequence evolution of
new function [25] exclude topical discussions on each other). This is the reason of this review; I have
attempted to compile these pictures in one venue. Given this aerial-view sketch of the field, the work
cited is representative of a larger body.

Early and Enduring Relationships (a Historical Account). To set up the scene for the “new” views
discussed later, the following two sub-sections will discuss the traditional relationships between
sequence, structure and function (binding). The equally important historical relationships between the
evolution of sequence and function will be discussed later in Section 4.2 under evolution.

1.1. Sequence→ Ordered Structure

Discussed here is the development of the rule that a single biological protein sequence conforms
to a specific protein fold, which is the cornerstone of structural biology. Even before the first protein
conformation was revealed, Linderstrøm-Lang [26] presented an ordered hierarchical description of
protein structure. In this representation, the protein chain, possibly on account of its amino acid
sequence (“primary structure”), is able to conform to structurally discrete and ordered motifs (“secondary
structures”) that were theoretically shown to exist by Pauling et al. [27–30]. These secondary structural
elements, according to Linderstrøm-Lang, would then be arranged compactly into the final functional
molecule (“tertiary structure”). Indeed, the first crystal structure [31] did describe a “folded” collection
of regular structural motifs—secondary structures—albeit strung together by irregular loops. The picture
that a protein sequence could specifically describe snugly-fitted folds (i.e., specific conformations) was
strengthened by Anfinsen and Haber’s finding [32] that the amino acid sequence of a protein may dictate
the exact tertiary structure that it folds into. These results established the importance of the protein fold
(or conformation) as the primary currency for protein activity, which is a rule that has remained largely
unchallenged for more than half a century.
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1.2. Ordered Structure→ Specific Function (Binding)

The view developed in the 1950’s—that specific protein sequences dictate specific folds—suited the
then established lock-and-key model [33,34] of protein binding (binding is the first and very important
prerequisite to protein functionality). The lock-and-key model (Figure 1a) posits that preexisting shape
(and, implicitly, chemical) complementarity between a protein and its partner allows for binding to
occur [34]. While the lock-and-key mode of protein binding even today matches the working of some
proteins [34], Koshland presented an alternative induced fit model (Figure 1b) that matched the working
of proteins with more pliable binding sites [35]. Induced fit posits that a binding partner is able to induce
complementarity within a protein’s binding site, upon which binding occurs [35].

Figure 1. Traditional models of protein structure and function (via binding). In the textbook
picture, a linear protein sequence of specific amino acids (i) folds into a specific structure or
fold (i). That fold then binds to its partner by either of two modes (“lock and key” [33,34] or
“induced fit” [35]) depending on the fold’s flexibility/rigidity (iii).

Both models of protein binding (Figure 1) require the existence of a specific fold that either binds
to its partner without a fuss (lock and key) or with some convincing (induced fit). This relationship
between folded conformation and function (via binding) [2,3] underlies the substantial efforts invested
in elucidating conformations via experiment [36] and theory [37]. It is certainly the case that these
atomistically-resolved folded conformations have assisted in uncovering a trove of functional and
evolutionary understandings [36], while also validating [34,38] the two traditional models of binding.
The connection to a folded, structured protein, however, is also the reason that these two models fall
short in explaining the binding modes of dynamic proteins, discussed next.

2. First “New View”: Protein Dynamism and Structure

This section describes how, over decades, exceptions to the neat relationships discussed above—that
specific sequence dictates static structure that dictates specific function—have left us with today’s need
to reintroduce dynamism as an important factor in protein structure and function.

2.1. The Increasingly Disordered View of “Perfect” Protein Structure

The first structure to usher in the age of structural biology—Kendrew et al.’s myoglobin [31]—also
apprehended well the now traditional view of protein structure: every backbone atom position of the
reported myoglobin structure [39] was precise, setting the stage for the one conformation view of protein
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structure. This “perfect” view of protein structure (where all backbone positions are precisely defined)
was supported by the relatively well-formed structures that were reported in the early years of the protein
databank (PDB) [36,40]. This is likely because “rigid” proteins are more likely to be crystallized (and
then structurally characterized) than floppy ones [41].

Today, however, with the improvement of crystallization and NMR techniques, structures within the
PDB display consistent deviation from perfect structure, with∼5% of amino acids in deposited structures
being disordered (invisible) [42]. Computational simulations of folded proteins further painted a more
dynamic picture of protein structure [43–45].

As if disorder/ambiguity in the solved structures themselves is not enough, a majority of PDB
structures were found to cover only small portions of the protein sequence found in nature: as of 2007,
∼40% of PDB structures contain disordered stretches of moderate length (between 10 and 30) [46] and
∼10% display stretches of disorder greater than 30 residues in length [46] (not to mention those proteins
that are too dynamic altogether for crystallization [41]); even in the 1980’s, the first spherical virus
capsid structure—PDB ID 2TBV—was found to possess a stretch of hundred amino acids missing from
the structure [47]. These reports have been priming the field for a more systematic treatment of disorder
in regions of a protein. Before commencing with these discussions, it is important to first distinguish the
idea of a protein structure from protein conformation.

2.2. Refreshing the First Textbook Definition: Protein Structure is an Ensemble

While the single-sequence-to-single-conformation picture of proteins gained prominence, other
models existed for decades but were not as easily accepted/validated. As early as the 1930s, protein
structure has been described as an ensemble of conformations that are inter-convertible and nearly
degenerate in energy [11,12,48–50]. Despite attempts to describe enzymes as ensembles (reviewed
in [10]), theory and experiments from the fifties and early sixties [27,31,32] helped bolster the idea
that a protein structure describes a very tight distribution around one particular conformation (or fold),
which strengthened the idea that a protein structure is a protein conformation (and vice versa). The
implicit thermal perturbations visible within the protein (as shown by NMR [51]) were considered to
be just variations of the average structure. This viewpoint, while suitable for most well-folding proteins,
has resulted in substantial resistance to the idea that massive disorder and protein dynamism may play
important roles in the protein world.

The discovery, however, of highly dynamic and sometimes even completely disordered proteins
(discussed next) requires this single-fold/conformation view of protein structure to be re-addressed.
Particularly, the simplification that a protein structure constitutes one fold or conformation must be
lifted, and the original description of protein structure—one that never really left the field but took a
back seat—must be re-emphasized in structural biology. That is, a structure must only be described as
an ensemble of conformations (Box 1), folded or not.

http://www.pdb.org/pdb/explore/explore.do?pdbId=2TBV
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BOX 1 A Conformation Does Not a Structure Become

Structure 6= conformation

Structure = ensemble of conformations

.

Unlike the synonymous use of the words “structure” and “conformation” in the macroscopic world (e.g., the

structure of a building and its conformation/configuration are indistinguishable), at the molecular level, a

structure is a collection of accessible conformations that together constitute the temperature-dependent

native state structural ensemble. The native state ensembles of some proteins are more diverse than

others, making some proteins more dynamic than others.

2.3. Intrinsically Disordered Regions (IDRs) Are Important to Function

Many dynamic loops that were thought to be byproducts of folded structures (or connectors
between secondary structures [26]) are now known to provide crucial molecular functionality (especially
promiscuous functionality; Section 3). An example of such a protein is ubiquitin, which, while describing
a general fold, displays a region that is structurally highly variable that binds specifically to more than
fifty distinct proteins [52,53]. The strengthening relationship between disordered regions and function,
along with the prevalence of disorder in the PDB [46], have fueled a renewed focus in the role of disorder
in structure and function.

2.4. Intrinsically Disordered Proteins (IDPs) Bolster the Dynamic View

In addition to folding proteins that display highly dynamic/disordered regions [46], another class of
proteins called intrinsically disordered proteins (IDPs) [14,54–61] push the envelope when it comes to
expanded structure ensembles. IDPs were discovered only in the last couple decades, in large part due to
improved experimental methods for observing intrinsic disorder [54,59,62] and breakthroughs in picking
out sequences and regions of sequences that code for intrinsic disorder [4,15,18,63–66]. Today, IDPs are
believed to have little-to-no well-defined conformations in their structural ensemble (i.e., no persistent
conformation exists, although residual structure is believed to exist and be of indispensable value to
binding [67,68]; Section 3). Interestingly, even without a single stable and dominant conformation,
these proteins do display biologically relevant binding events, where the presence of the right partner
often results in the collapse of the various structural possibilities into dominantly one conformation
complementary to the partner [24] (Section 3).

A protein with many names. While the name “intrinsically disordered protein” or the acronym “IDP”
has been gathering popularity and consensus, the last decade witnessed a number of names that were
initially given to this class of protein including binary combinations of the two sets of words {natively,
inherently, intrinsically, exceptionally, naturally} and {denatured, unfolded, unstructured, disordered,
flexible} (reviewed in [69,70]). The exciting introduction of the journal Intrinsically Disordered Proteins
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this year [70] indicates that the field is equilibrating to a common term (intrinsically disordered protein
or IDP), and, that the steady confluence of concepts, methods and goals regarding IDPs are maturing
well, making the coming decade an exciting one for unstructural biology [71].

With these dynamic additions to the protein repertoire (Box 1) a number of new modes of protein
binding have emerged, which will be discussed soon. But first, from today’s textbook definitions of what
makes a protein (versus a peptide), these dynamic proteins are illegitimate. This must change.

2.5. Refreshing the Second Textbook Definition: Proteins versus Peptides

What distinguishes proteins from peptides? Given the established relationship that a protein first
folds and then functions, the idea prevailed for decades that proteins are distinguished from peptides
primarily because of their capacity to fold [72] and secondarily by their longer lengths [2]. Then came
small folded protein domains (such as the zinc finger domain [73,74]) and long dynamic proteins such
as those discussed above [24,64]. These rule-breakers to the canonical definition of a protein, while first
considered to be exceptions, today constitute a substantial portion of the proteome (e.g., over 25% of
eukaryote proteins are intrinsically disordered [4]). These accumulating “exceptions” must compel us
to revise the distinction between protein and peptide, as these textbook distinctions are imparted at the
undergraduate level onwards and serve as schisms to understanding the true nature of a whole proteome.
I therefore propose a new set of definitions for what distinguishes a protein from a peptide (Box 2), partly
because no general consensus exists today, as far as I am aware.

BOX 2 Distinguishing Proteins from Peptides

Both peptides and proteins are linear chains of amino acids. What distinguishes a protein from a peptide?

Old distinction: A protein is a long (>50 amino acid [2]) peptide chain that folds [72] reliably into a single

(or few) distinct conformation(s).

Expanded distinction: A protein is a peptide chain that folds [72] reliably into a single (or few) distinct

conformation(s) or binds reliably to at least one specific cognate partner.

The new view assigns highly dynamic, often disordered, but still functional chains—a legitimate entity in

the proteome—as legitimate within the protein family.

3. Second “New View”: Protein Dynamism and Promiscuous Function

The two prevalent models of protein binding introduced above (Figure 1)—“lock and key” [33,34]
and “induced fit” [35]—have worked remarkably well in explaining the behavior of well-folding
proteins [2,3]. These traditional binding modes, however, can not account for proteins that display high
structural dynamism, for which a new set of binding models have emerged (Figure 2c,d). These “newer”
models that accommodate the behavior of hyper-dynamic proteins/regions will be discussed below.
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Figure 2. The dynamic “new view” of protein structure and function. In the “new” view, a
protein chain occupies an ensemble of conformations as its structure (i) by virtue of its amino
acid sequence and environment. Depending on the number of conformations and capacity
to cycle through the various conformations, we arrive at a spectrum of dynamic proteins
that range from relatively rigid (well-folding proteins describing only one major average
conformation) to highly dynamic and extended (such as intrinsically disordered proteins).
The dynamism of a protein often dictates the modes of binding available to it (ii), which is a
crucial requirement of most functioning proteins. Given an ensemble view of structure, while
traditional binding modes such as lock-and-key (a) [75–77] and induced-fit (b) [78–80] are
accommodated, “new” modes of binding emerge for dynamic (c) [9,81,82] and intrinsically
disordered (d) [62,83–86] proteins, which allow for promiscuous functionality. In addition to
binding modes, bound configurations display a range of dynamic states (iii) [87,88], which
provides an additional dimension to binding in which dynamism possibly plays a role in
modulating proteome-wide interactions [89].

3.1. Binding Model #3: Conformational Selection

Important to the lock-and-key model is the idea that particular conformations bind to particular
partners. For structurally dynamic proteins, each of the conformations available in their structural
ensembles, may potentially bind to a specific binding partner. In this dynamic binding model—now
known as “conformational selection” (Figure 2c; reviewed in [10])—a binding partner would, during
binding, stabilize a particular (presumably complementary) and already preexisting conformation within
the protein’s ensemble, thereby shifting the conformational population within the ensemble. Examples of
conformational selection are found in the binding of ubiquitin [52,53] and immature (germ line)
antibodies [82,90], which appear to display multiple unbound conformations that correspond to
complements of specific binding partners. These examples raise interesting connections between
conformational diversity (or structural dynamism) and functional/binding promiscuity, which is
discussed soon.
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“Conformational selection” is the same as “fluctuation fit” from the 1960’s. It is noteworthy that this
dynamic mode of protein binding is not as new as it might seem, as elements of this model (e.g., ensemble
degeneracy [11,12] and conformational selection [12]) were brought up by Landsteiner [11] and
Pauling [12] in their 1930’s trailblazing attempts at understanding the binding versatility of antibodies.
Additionally, shortly after “induced fit” contended for the textbooks [35], Straub and colleague
synthesized a prototype of today’s conformational selection, which he then called the fluctuation fit
model [91,92]. The mechanism of fluctuation fit, unfortunately, could not be experimentally resolved
from that of induced fit at the time of its introduction [10], and so these concepts were left dormant until
further and more discerning experimental and computational techniques emerged [10]. From Straub till
today, this dynamic mode of binding has gathered many monikers some of which are: “fluctuation fit”,
“conformational selection”, “conformational selectivity”, “population shift”, “selected fit”, “stabilization
of conformational ensembles”, and “preexisting equilibrium” (reviewed in [10]). However, given that
Straub’s “fluctuation fit” accommodated only “nearly identical” conformations within the ensemble [92],
this review sticks with what appears to be the popular term of today: “conformational selection.”

3.2. Promiscuous Binding

Early accounts arising between the 1930s [11,12,48–50] and 1960s [91,92] recognized that dynamic
proteins that display more conformations within their ensembles pose the possibility of binding to
multiple partners. This mode of thinking, however, took a back seat to single-conformation theories (such
as lock and key and induced fit; both of which have one dominant conformation in their unbound states),
particularly because more dynamic theories could not be experimentally validated till only relatively
recently [10]. Today, a number of promiscuous binders have been found [9,13,19,20,93], and the link
between dynamism and promiscuity is now firmly established [19,20,94] (of course, large proteins may
also attain binding “promiscuity” by displaying multiple binding domains). This link provides a richer
picture of how evolution may progress at the molecular level (discussed soon).

3.3. Binding Model #4: IDPs Often Bind by Losing Structural Diversity

Being on the extreme spectrum of structural dynamism (Section 2), IDPs have stretched the utility of
all contemporary structure/binding models. While some IDPs and IDRs (intrinsically disordered regions)
are shown to remain dynamic even when bound to their partners (discussed in Section 3.4), many IDPs
bind their partners with a concomitant reduction in the conformational ensemble size. Two main models
exist for this reduction or “collapse” in structural ensemble size: (1) by the previously discussed mode
of “conformational selection”, where conformations present within the unbound ensemble partake in
binding (Figure 2c); and (2) by a folding (or collapsing) event induced by a binder (Figure 2d). The
difference between the two processes is that in the former mode, the binding conformation is already
available within the pre-bound ensemble, and in the latter mode, the bound structure does not exist
pre-binding, but is induced into forming.

Conformational selection in IDPs. Evidence for conformational selection can be found in a number
of IDPs/IDRs [62]. For example, the C-terminus portion of Ubiquitin is an IDR that, even in the unbound
state, cycles through conformations that appear similar to those when bound to specific partners [52,53].
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Induced folding or the fly-casting model in IDPs. “Induced folding” is evidenced in cell cycle
inhibitors such as p27(Kip1) [83–85] and the transactivation domain of p53 [86]. In this mode of
binding—sometimes likened to “fly-casting” [95,96]—the binding partner comes into contact with small
parts of the mostly disordered (but residually and locally structured [83,85,97,98]) protein, followed by
the evolution of a stronger binding pose accompanied by a folding event (Figure 2d) [62,96]. At least
three features are expected to be true for this mode of binding: first, the local residual structure such as
helices [83,85,97] potentially help in binding events; second, on account of being extended, the effective
capture radius of the protein is increased [95]; and third, the entropic cost of binding is potentially
defrayed by the coupling of binding to IDP folding [99]. While large capture radii would increase
binding rates, an important counter to this effect—an IDP’s potentially small translational diffusion
constants—might counter the benefits of the larger capture radius [99]. The interplay of all these
properties (effective capture radius, diffusion constants) and events (binding, folding) is potentially
complicated (and possibly depends on the specific protein), and so the question of which of the properties
allows for IDPs to efficiently bind to their targets is still being explored.

3.4. Binding Modes Describe a Spectrum, as Do Bound Complexes

Just as protein dynamism may be described as a continuous spectrum of states, and not just as
“rigid” and “flexible”, the modes of protein binding, facilitated by the state of the pre-bound protein’s
dynamism, could function using a spectrum or combination of binding modes [100]. For example, even
a lock-and-key binder is expected to accommodate some change in the states of sidechains at the binding
site (which is a feature of induced fit). Similarly, even conformational selection (the dynamic analog of
lock-and-key) is expected to conform to an extent to a bound partner [101] (which is the hallmark of
induced folding [62,96] and induced shift [81,102] modes of binding). To provide a concrete example,
the measles nucleoprotein first undergoes a minor conformational selection with its binding partner
(via transient helical conformations) after which an induced folding event occurs [103] (in a manner that
is similar to but not the same as fly-casting [95] discussed in Section 3.3). In one sense, the pedagogical
models of binding should be considered to be more like instructional lessons/caricatures or rules of
thumb; since the lines distinguishing each binding mode will inevitably be blurred by unruly, messy,
real proteins.

Fuzzy complexes (Figure 2(iii)). So far, participants in the binding models described above
(Figure 2a–d) presumably display a single dominant conformation per bound complex. However,
Tompa and Fuxreiter showed that a number of binding partners interact in more than one
conformation [89] and sometimes even are disordered in the bound state [71,88,89,104,105]. Like
the spectrum of structural states and binding modes (discussed above), disorder in bound states—
“fuzziness” [88,89]—also takes on a spectrum of possibilities from those complexes displaying little
disorder (e.g., in lock and key binders), segmental disorder (e.g., linkers in bipartite clamps [105]),
and even complete disorder or high “fuzzyness” (e.g., some histone acetyl transferase-associated
proteins [87]). This description is related but not identical to binding modes, and was proposed [89]
to help characterize the interactome (the network of protein-protein interactions within an organism).
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3.5. Sequence Determinants (and Bioinformatics) of Promiscuous Function and Dynamic Structure

Before drawing connections between structural/functional promiscuity and evolvability (Section 4),
this section steps back and visits the question of how sequence determines a protein’s binding
promiscuity and dynamic nature.

Binding promiscuity determinants. Anecdotal studies show that binding promiscuity obtained by
structural disorder may occur on the two extremes of the hyrophobicity scale: (1) on the low
hydrophobicity end (and concomitantly, high polar and charged end), solvated and relatively extended
segments of proteins are likely to display multiple conformations useful in binding (e.g., [9,106]); and
(2) on the high hydrophobicity end, hydrophobic interactions are known to be non-directional or
degenerate, which is a common prerequisite to promiscuity (e.g., patches of hydrophobic residues are
implicated in promiscuous protein-protein interactions [93] and enzymatic reactions [19,94,106]).

Intrinsic disorder determinants. It is interesting that the former general sequence determinant
of binding promiscuity (low hydrophobicity and, consequently, high polar/charged groups) also are
characteristics of sequences describing intrinsic disorder [21]. Particularly, Uversky et al. [14,64] used
sequence analysis to show that IDPs were distinguished from folding proteins by displaying both low
hydrophobicity and high net charge magnitude, both of which would presumably prevent hydrophobic
collapse [107]. Additionally, IDPs may be separated into at least two structurally distinct classes—those
that describe “random” coil (or extended) states with high stokes radii, and those that describe more
compact “premolten” globules that display stokes radii between the canonical molten globule and purely
extended states [14]. Interestingly, limited but intuitive observations [108] indicate that these two classes
of intrinsic disorder may be distinguished by the percentage of charged amino acids [%ERDK] in the
sequence divided by the percentage of hydrophobic amino acids [%FILVWA] within the sequence [108],
with higher values describing extended/relaxed coils and a threshold ratio (approximately between
0.5–0.6) triggering the transition from premolten globule to coil [108].

While important in establishing sequence determinants for intrinsic disorder, these bioinformatics
programs [4,15,18,63–66] have truly revolutionized our understanding of just how prevalent IDPs and
IDRs are in proteomes and life processes. For example, more than ∼25% or more of eukaryotic proteins
are mostly disordered [4,18], and more than 50% of eukaryotic proteins possess IDRs. These findings
have helped propel unstructural biology from the fringes to an increasingly brightening spotlight [15,22].

4. Third “New View”: The Role of Protein Dynamism in Evolution

As discussed above, structural dynamism has greatly expanded our picture of what proteins “look
like” (Section 2) and how they often function promiscuously (Section 3). Given the intimate link between
function and evolution it follows that protein dynamism finally must affect protein evolution.

4.1. Dynamism and Promiscuity Hastens Evolution of New Functionality

The idea that structural/functional promiscuity [94] might allow for higher evolvability has existed in
some form since the 1930’s, when Landsteiner [11] and Pauling [12] (reviewed in Ref. [16]) puzzled over
how antibodies could eventually bind strongly to virtually any molecular partner (hapten). The results
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of their work will be discussed shortly as an illustration of all salient points of this review (Section 5).
Regarding the relationship between promiscuity and evolvability, however, their work presaged what is
now becoming more and more apparent: dynamism provides a protein with conformations alternative
to the functional conformation, and each conformation represents a potential new function [13,16,94]
for adaptive evolution to work on. Especially interesting is the idea that new functionality (and
configurations) can accumulate with little loss of original functionality, e.g., in the evolution of hormone
receptors [109,110] and directed evolution of transcription factor effectors [111].

How does this conformational diversity come to exist? How specifically does it affect evolution?
These questions ultimately must dovetail with the nature of sequence evolution, as the evolution
of protein sequence, structure and function must be thought of as facets of the same evolutionary
phenomenon. For that reason, the history and present understanding of sequence evolution must be
assessed before making final connections.

4.2. Molecular (Sequence) Evolution from a Historical Perspective

In the early 1960’s, the first wave of sequenced proteins provided the first important rule of molecular
evolution: sequences of functionally similar proteins can be highly dissimilar or divergent [112]. While
today this notion is the norm (and is the basis for molecular clocks [112–115] and phylogenetics [116]),
then, however, the prevalent view expected that the rate of evolution (molecular or otherwise) is
dominantly dependent on natural selection, i.e., proteins with conserved folds and functions should
have equally conserved sequences (discussed in Refs. [117,112]). Contrary to this view, while protein
structure and function was found to negligibly change, their sequences were evolving at a rate that
you could set a proverbial evolutionary clock to (something that came to be called the molecular clock
hypothesis [113–115]).

To explain the relatively rampant rate of sequence evolution, neutral [118–120] (and nearly
neutral [121–124]) evolution was introduced. In these models, sequences dominantly evolve by either
neutral [118–120] or nearly neutral [121–124] (possibly slightly deleterious) mutations that do not
substantially affect the protein’s structure and function [125], and are tolerable due to the evolving
organism’s population size. Of course, (nearly) neutral evolution can not solely exist, as adaptive
mutations allowing for gain of function had to have occurred at some time [126–129]. Despite the
strong (and sometimes loud [130]) debates regarding the relative importance of neutral versus adaptive
mutations, the resulting picture that emerged over the decades is qualitatively the same (Figure 3a):
(1) neutral and nearly neutral evolution provides a steady accumulation of mutations that do not
perceptively modify protein structure and function [118–124]; and (2) episodic mutations associated
with adaptation occur during events such as speciation due to environmental selection factors [126–128]
that possibly substantially modify perceived mutation rates [131–136], protein stability, structure
and function.



Proteomes 2014, 2 139

Figure 3. The traditional/biochemical view (a) versus the new view (b) of the evolution of
new functionality and binding partners. Traditionally (a), mutations that facilitate sequence
evolution allowed for three outcomes: (1) death due to a deleterious mutation; (2) no change
in fitness or protein functionality/stability due to a (nearly) neutral mutation; and (3) increase
in organismal fitness due increase in the stability of the original structure, improvement of
original function, emergence of new functionality, etc. [2]. Today, dynamism and neutral
drift provide an integrated picture of how new functionality might appear (b): (i) neutral
drift maintains the proteins original functionality while either maintaining or increasing
dynamism that supports promiscuous functionality; and (ii) with the help of gene duplication,
alternative and novel functionality would be selected due to happenstance pressures.

The view discussed above, that neutral mutations occur at a steady state (like a ticking clock),
while adaptive mutations come and go episodically, has been a cornerstone of sequence evolution.
However, the re-discovery of the role of structural dynamism and functional promiscuity in evolution
(discussed above), along with the role of neutral sequence evolution in facilitating states of dynamism
and promiscuity, has allowed for some illuminating links between two seemingly disparate and hotly
debated viewpoints of neutralism and non-neutralism.

4.3. Neutral Drift Increases Evolutionary Fodder (Structural Dynamism and Functional Promiscuity)

While neutral and adaptive sequence evolution may explain some observations, an outstanding
question, among others [124], remains: does neutral drift play a part in the evolution of
structure/function? The recent progress and new views of structural and functional promiscuity
have allowed for this question to be more readily accessed. Particularly, it is being found that
while neutral evolution may not change the primary function (and dominant conformation) of a
protein [25,137,138], it does appear to help enrich the presence of alternative conformations in the
protein’s structural ensemble [25,137–139], which, as we have seen in Section 4.1, serves as a nursery for
the emergence of potential alternative functionality. The importance of this statement requires reiteration:
The accumulation of neutral mutations—neutral drift—allows for the generation of genetic diversity
that provides a rich structural reservoir for the evolution by adaptation of novel molecular
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functionality [25,138], while maintaining the structural requirements of the protein’s primary
function [25,138].

Finally, the historically warring [130] sects of sequence evolution—“neutral” and “adaptive”
evolution—are married together as two crucial and inalienable components of the same process
(reviewed in [25]): (1) the accumulation of neutral or nearly neutral mutations allowing for greater
structural variability (Figure 3b-(i)); and (2) the happenstance recruitment of an alternative conformation
to perform an alternative function (Figure 3b-(ii)). Combining both neutral and adaptive mutations in
the evolution of novel functionality (along with with processes like gene duplication), the troubling
“chicken-egg” puzzle of how structure must match an unmet function is quelled, since the structure was
already present in residual amount.

5. Antibody Maturation: A Single System Describing Many Crucial Elements of Dynamism

Antibodies deserve an entire section for two reasons: (1) the historical work on antibodies in the
1930’s [140] presaged many of the new discoveries made on dynamism this and last decade; and (2) while
most other examples of evolution are organismal, antibodies undergo accelerated evolution within a
single organism (via somatic hypermutation [141,142]), thereby allowing us to witness the “natural”
evolution of a specific binding function.

5.1. Possibly the First Reference to IDPs and IDRs

Even in the 1930’s, it was evident that a repertoire of limited antibodies could bind to almost any
foreign molecule (antigens/haptens) [11,12,48–50]. How could such diversity be possible with protein
sequences that were obviously limited in combinations and extent? Two notable models were proposed
based on the capacity of one sequence to display multiple conformations; and while only one model
stood the test of scrutiny (historically discussed in Ref. [140], pp. 127–131), both are remarkable in
anticipating the two types of proteins that would not be truly recognized until the turn of the century.
While both models were discussed in distinct terms, they will be referred to using today’s terms for the
sake of consistency.

The first antibody-antigen binding model was proposed by Breinl [48], Alexander [49] and Mudd [50]
between 1930 and 1932. This model generally assumed that antibodies are intrinsically disordered
proteins (discussed in Section 2) that promiscuously bind to their myriad partners (antigens) via an
induced folding event (Section 3). Recognizing the omission in the first model—that only part (not
all) of the structure appeared “hesitant” or disordered–Landsteiner [11] and Pauling [12] proposed that
antibodies displayed intrinsically disordered regions (now called hypervariable regions) that displayed
numerous conformations within their structural ensembles, each with the possibility of binding distinct
partners (antigens). It is fascinating that these models anticipated almost all the “alternative” models of
structure and function decades before textbook models were even established.
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5.2. Antibody Structure and Function Today

More than seven decades later, Landsteiner and Pauling’s model of antibodies [11,12] serves as an
exemplar of the new views discussed here. For example: (1) the hypervariable region (HVR) of the
antibody is essentially intrinsically disordered [143,144], as predicted [11,12]; (2) HVRs of immature
antibodies attain binding promiscuity through conformational selection, as distinct conformations within
the ensemble bind distinct partners [82,90]; and (3) during an immune response, immature antibodies
proceed from being promiscuous to specific binders in a process called affinity maturation. In one
instance, affinity maturation has been shown to occur by reducing the structural dynamism of the HVR
through sequence mutations [143,144]. This is an excellent example of how, by tuning the dynamism of
the protein (Figure 2(i)), a binding mode is tuned also (Figure 2(ii)).

6. From Protein Evolution to Protein Origination

6.1. Differentiation

The evolution of one specialized functional protein from another through a promiscuous intermediate
(Figure 4a) indicates a “serialness” to the process that may not exist in all situations. A particularly
interesting hypothesis proposed by Jensen in 1976 [145] turns this scenario on its side (Figure 4b):
assuming that ancient organisms have smaller genomes and protein repertoires [146], these proteins with
less specialized and potentially ambiguous functionality could diversify into a number of specialized
enzymes, with the help of gene duplication and sequence evolution [13,145]. This mode of evolution
also called the “differential narrowing of substrate specificities” [147] or differentiation, is expected
to lead to proteins of diverse families and superfamilies today [147–149]. Both the serial (Figure 4a)
and divergent (Figure 4b) modes of protein evolution are models of protein evolution that require the
existence of a fully functioning parent protein [145,147]. At one point in evolution, however, proteins
would have had to originate from random peptides.

Figure 4. Models of the evolution of new functionality. Emergence of a protein displaying
new functionality “j” is possible either by emerging from an existing “specialist” protein
“i” [20] through a dynamic and promiscuous/ambiguous intermediate “ij” (a), or by
emerging through differentiation [145] or specialization from a protein of promiscuous
functionality “ij” (b) also see Figure 3 in Ref. [20]. Arbitrary conformational free energy
landscapes shown.
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6.2. Origination

How did the first protein folds come to exist? This question is especially interesting to the
origins of life, given that (1) protein folds are extensively utilized by simpler organisms (e.g.,
bacteria) for sustaining life; and (2) random peptides are expected to have existed well before the
appearance of evolved organisms (given the abiotic presence of amino acids [150–154] and peptide bond
formers [155–157]).

The “new views” of protein dynamism allow us to cast a fresh perspective on the question of protein
fold origination. Particularly interesting from the discussions on dynamism/promiscuity/evolvability
is the idea that while the probability of encountering a random peptide sequence that folds well is
vanishing [158], the probability of encountering random peptides of particular properties (Figure 5b)
that transiently display novel folded structure and functionalities is much higher. This idea is an extreme
version of Jensen’s differentiation model (Figure 4b) [145], and is called the “pluripotent hypothesis” on
account of the random peptide’s potential to be evolved into one of many transient folds [159].

Figure 5. A model of protein origination that employs dynamism. The differentiation
model that utilizes a promiscuous and presumably dynamic protein as an ancestor
(Figure 4b) may be extended to the origination of a functional folding protein from a
random “pluripotent” peptide (a). Utilizing the link between promiscuity and evolvability
(Section 4.1), certain classes of random peptides, such as oily peptides (those that
display high %FILV [160]), display properties that would allow for the enrichment of
folded conformations within its ensemble (b) [160], thereby making them potentially
superior substrates for ab initio protein fold invention [160]. Interestingly, this prediction
is supported by the finding that our last common ancestor’s proteome had an oily
beginning, as evidenced in the strong negative correlation between a species’ proteome
oil content and the extent (node number) to which it is expected to have diverged
from the last common ancestor (e). The hypothesis highlights the utility of dynamism
(this time extreme dynamism) that could help in formulating simple tests of how
proteins came to be. Panels a/b and panel c were adapted from Refs. [160,161] (reviewed
in [159]), respectively. Arbitrary conformational free energy landscapes shown in panel a.
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The interesting part of the hypothesis is that oily peptides (those described as having high
%FILV [160]) indeed possess all of the properties (e.g., foldedness and dynamism; Figure 5b) important
for protein fold origination [160], thereby allowing for simulation [160] and bioinformatics [161]
to test the hypothesis. The following recent findings are in agreement to the pluripotent hypothesis:
(1) oily peptides are, indeed, superior substrates for directed evolution to “evolvable” folds [159]; and
(2) bioinformatics on whole proteomes [161] indicates that the last common ancestor’s proteomes had
higher than average oil content (Figure 5c).

This hypothesis is one among many possible routes to protein invention; however it is so far the only
one backed by fossil/trace evidence in proteomes [161] (Figure 5c). Another mode of evolution—one
that depends on the origination of all proteins from early intrinsically disordered proteins—remains a
tantalizing possibility. So far, however, the following evidence works against this route as a contender:
(1) extended proteins in unprotected and chemically reactive environments are exposed to chemical
degradation [158]; (2) extended proteins—IDPs and IDRs—rise in prominence only later on in the
evolution of complex organisms[4]; (3) compositions accommodating IDPs and IDRs (high charge and
polar content) are also inefficient at directed evolution into folded proteins of good design (something
that oily peptides excel at even more than other well-folding proteins) [160]. No theory, however, must
be discounted at so early a stage in our investigation of how functional proteins emerged.

7. New Connections and Questions: Links to the Advent of Complex Organisms and Diseases

As reviewed above, the introduction of disorder to the field of protein science has permitted
many molds to be broken on how proteins traditionally look, function and evolve. While well-folding
proteins perform the role of the fastidious and relatively specific catalyzers (or binders), IDPs and IDRs
perform the role of the generalist that each display a broad spectrum of conformations and binding
capabilities [162]. This binding promiscuity, while relatively unimportant when thinking of a protein in
isolation, becomes a crucial aspect when considering the cell as a collection of biomolecular interactions.

Promiscuity and complex life. Particularly, the increase in intrinsic disorder within proteomes is linked
to the increase in organismal complexity (e.g., ∼5% of bacterial proteins are predicted to be mostly
disordered, while ∼25% or more of eukaryotic proteins are mostly disordered [4,18]), possibly because
of multifarious roles afforded by promiscuity that would allow for modularization of protein interaction
networks [163–165]. This association is strengthened with the observations that (1) IDPs and IDRs are
associated with a number of cell signaling activities; (2) the number of “hub proteins”—those described
as highly promiscuous binders in an organism—is positively correlated with organismal complexity; and
(3) hub proteins are often characterized as containing intrinsically disordered regions [163–165]. The
association of IDPs/IDRs with complex life is made stronger with the connections between IDPs/IDRs
and diseases associated with complex organisms such as cancer [6] and Parkinson’s disease [7]; yet little
is known about how intrinsic disorder came to be utilized by complex life [4].

8. Final Words

The tantalizing connections between disorder and both complex life and disease assure sustained
future investigations into the role of structural disorder in proteins. As new ideas subsume old ones in
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the field of structural and unstructural biology, I will end with a French phrase—originally used for the
accession of a new monarch—that indicates continuity and change at the same time: “la structure est
mort, vive la structure!” (the structure is dead, long live the structure!)
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69. Orosz, F.; Ovádi, J. Proteins without 3D structure: Definition, detection and beyond.
Bioinformatics 2011, 27, 1449–1454.

70. Dunker, A.; Babu, M.; Barbar, E.; Blackledge, M.; Bondos, S.; Dosztányi, Z.; Dyson, H.;
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