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Bogazici University, Istanbul, Turkey
ahmet.ucan@boun.edu.tr

Abstract. External assistance in the form of strings called advice is
given to an automaton in order to make it a non-uniform model of com-
putation. Automata with advice are then examined to better understand
the limitations imposed by uniformity, which is a typical property shared
by all feasible computational models. The main contribution of this paper
is to introduce and investigate an extension of the model introduced by
Küçük et al. [6]. The model is called circular deterministic finite automa-
ton with advice tape (cdfat). In this model the input head is allowed to
pass over input multiple times. The number of allowed passes over the
input, which is typically a function of input length, is considered as a
resource besides the advice amount. The results proved for the model
include a hierarchy for cdfat with real-time heads, simulation of 1w/1w
cdfat by 1w/rt cdfat, lower bounds of resources provided to a cdfat in
order to make it powerful enough to recognize any language, utilizable
advice limit regardless of the allowed pass limit, a relation between uti-
lizable pass limit and advice limit, and some closure properties.

Keywords: Formal languages · Automata theory · Advised
computation

1 Introduction

Advised computation, where external trusted assistance is provided to a machine
to help it for computational tasks, was introduced by Karp and Lipton [4] in 1982.
Damm and Holzer [1] considered giving advice to restricted versions of Turing
machines. Recent work on finite automata with advice include the papers of
Yamakami [8–11], Tadaki et al. [7], Freivalds et al. [3], Küçük et al. [6] and Ďurǐs
et al. [2]. Today, there are many different models in literature, partly because of
the several options available for a machine to access its advice. However, all such
models share some common properties. There is an advice function, which maps
input lengths to advice strings and not needed to be computable. Advice strings
are composed of characters from an advice alphabet. The machine has to use the
same advice string when operating on inputs of the same length. We investigate
the class of languages recognized by a machine when it consults some advice
function having some bounded growing rate. We then play with that upper bound
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to see what happens to the aforementioned class. An advised automaton takes
advantage of an advice string by reading the character under the advice head and
choosing appropriate transition from its transition function accordingly. So the
same machine may recognize different languages using different advice functions.

We focus on the advice tape model introduced by Küçük et al. in [6]. Since
that model becomes extremely powerful (able to recognize all languages) when
allowed to use a 2-way input head, and is remarkably limited for the 1-way head
case, [2, Theorem 2], [6, Theorem 13], we examine a limited version of two-way
input access.

Some common terminology to be used in this paper are as follows: n denotes
input length, M denotes an automaton, L denotes a language, h denotes an
advice function, w denotes a string, Σ denotes input alphabet, Γ denotes advice
alphabet, � means any, ALL denotes the set of all languages, and |w|c denotes
the number of occurrences of character c in string w.

Here are some definitions of concepts that will be used in our discussion,

Definition 1 [6]. w1 ≡L,n,k w2 ⇐⇒ w1, w2 ∈ Σk ∧ ∀z ∈ Σn−k[w1z ∈ L ⇐⇒
w2z ∈ L].

Definition 2 [2, Definition 5]. Let {Rn}∞
n=1 be a family of relations Rn ⊆ Σn ×

Σf(n) for some f : N → N such that ∀x0, x1 ∈ Σn, x0 
= x1, there is a y ∈
Σf(n) such that Rn(xi, y) and ¬Rn(x1−i, y) for some i ∈ {0, 1}. Let LR be
the language LR := {xy|x ∈ Σ�, |y| = f(|x|), R|x|(x, y)}. We call LR a prefix-
sensitive language for relation family R.

Definition 3. We call L a prefix-sensitive language iff there exists a relation
family R such that LR is a prefix-sensitive language for relation family R.

2 Our Model

We defined this model and decided to work on it because the model seems to
provide a smooth passage from one-way input head to two-way input head. The
name of the new model is circular deterministic finite automaton with advice tape
(cdfat) which may have real-time or 1-way input and advice heads (4 possible
versions). Circular machines read their input circularly, that is, when the input
endmarker has seen and the next transition dictates machine to move its input
head to right, the input head immediately returns to the beginning position.
Advice head is not allowed to perform such a move.

Note that when restricted to a single pass on input, this model is exactly the
same with the standard deterministic finite automaton with advice tapes model
(except the two-way input head version) introduced by Küçük et al. [6].

2.1 Definition

A circular deterministic finite automaton is a 9-tuple (Q,Σ, Γ, TI , TA, δ,
q0, qacc, qrej) where
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(i) Q is a finite set of internal states,
(ii) Σ is a finite set of symbols called the input alphabet that does not contain

the endmarker symbol, $, such that $ /∈ Σ and Σ′ = Σ ∪ {$},
(iii) Γ is a finite set of symbols called advice alphabet that does not contain

the endmarker symbol, $, such that $ /∈ Γ and Γ ′ = Γ ∪ {$},
(iv) TI ∈ {{S,R}, {R}} represents the set of allowed input head movements

where S and R means stay-put and right respectively,
(v) TA ∈ {{S,R}, {R}} represents the set of allowed advice head movements

where S and R means stay-put and right respectively,
(vi) q0 ∈ Q is the initial state on which the execution begins,
(vii) qacc ∈ Q is the accept state on which the execution halts and accepts,
(viii) qrej ∈ Q is the reject state on which the execution halts and rejects,
(ix) δ : Q × Σ × Γ → Q × TI × TA is the transition function such that,

δ(q1, σ, γ) = (q2, tI , tA) implies that when the automaton is in state q1 ∈ Q
and it scans σ ∈ Σ′ on its input tape and γ ∈ Γ ′ on its advice tape,
a transition occurs which changes the state of the automaton to q2 ∈
Q, meanwhile moving the input and advice tape heads in the directions
specified respectively by tI ∈ TI and tA ∈ TA,

A cdfat M = (Q,Σ, Γ, TI , TA, δ, q0, qacc, qrej) is said to accept (reject) a string
x ∈ Σ∗ with the help of an advice string a ∈ Γ ∗ if and only if M , when started at
its initial state q0 with x$ on the input tape and a$ on the advice tape and while
the tape heads scan the first symbols, reaches the accepting (rejecting) state,
qacc (qrej), by changing states and moving the input and advice tape heads as
specified by its transition function, δ.

A language L defined on the alphabet Σ, is said to be recognized by such a
cdfat M with the help of an advice function h : N → Γ ∗ if and only if

– L = {x | M accepts x with the help of h(|x|)}, and
– L̄ = {x | M rejects x with the help of h(|x|)}.

A language L is said to be recognized by a cdfat, M, using O(g(n))-length
advice if there exists an advice function h with the following properties:

– |h(n)| ∈ O(g(n)), and
– M recognizes L with the help of h(n).

A language L is said to be recognized by a cdfat, M, using f(n) passes over
the input if and only if during the execution of any input of length n, transitions
of the form δ( , $, ) = ( , R, ) are used at most f(n) times in total.

Note that it is not allowed for a cdfat to have a transition of the form
δ( , , $) = ( , , R), however, there can be transitions δ( , $, ) = ( , R, ). The
endmarker of the input is for informing the machine. It may be a different model
if we omit it, for the sake of backward compatibility we continue to use it.

For the notational purposes, L{rt−f(n)} denotes the set of languages recog-
nized by cdfat with real-time heads, (n + 1)f(n) length advice and f(n) passes.
When a head is allowed to stay-put on its tape, we use a different notation. For
instance L{1 − [f(n)]/g(n)} denotes the set of languages recognized by cdfat
with 1-way input head and real-time advice head, using g(n) length advice and
f(n) passes.
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2.2 Results

Theorem 1. A language L is prefix-sensitive if and only if for all k ∈ N, there
exists n ∈ N such that ≡L,n,k has |Σ|k equivalence classes.

Proof. Assume that for some language L it holds that for all k ∈ N, there
exists n ∈ N such that ≡L,n,k has |Σ|k equivalence classes. Let f be a function
which maps any k ∈ N to an n so that ≡L,n,k has |Σ|k equivalence classes.
Define an infinite family of relations {Rk}∞

k=1 such that Rk ⊆ Σk × Σf(k)−k

and for all x ∈ Σk and all y ∈ Σf(k)−k, xy ∈ L ⇐⇒ Rk(x, y). It holds
that ∀x0, x1 ∈ Σk, x0 
= x1, there is a y ∈ Σf(k)−k such that Rk(xi, y) and
¬Rk(x1−i, y) for some i ∈ {0, 1}. Because if there were no such y for some
x0 and x1, then x0 ≡L,f(k),k x1 would be true and the number of equivalence
classes would not be |Σ|k. According to the Definition 2, we concluded that L is
prefix-sensitive.

For the other direction, let L be a prefix-sensitive language. According to
the Definition 2, L = {xy|x ∈ Σ�, R|x|(x, y)} where f : N → N is a function
and {Rk}∞

k=1 is an infinite sequence of relations such that Rk ⊆ Σk × Σf(k) and
∀x0, x1 ∈ Σk, x0 
= x1, there is a y ∈ Σf(k) such that Rk(xi, y) and ¬Rk(x1−i, y)
for some i ∈ {0, 1}. It holds that for all k ∈ N, ≡L,k+f(k),k has |Σ|k equiva-
lence classes. Because if the number of equivalence classes of ≡L,k+f(k),k is less
than |Σ|k for some k, then there would be two strings x0 and x1 such that
x0 ≡L,k+f(k),k x1 and that would imply that there is no y of length f(k) such
that Rk(xi, y) and ¬Rk(x1−i, y) for some i ∈ {0, 1}. �
Theorem 2. L{rt − 2O(n)} = ALL.

Proof. Let h(n) = w1c1w2c2 . . . w|Σ|ncΣn where each wi is a distinct input word
of length n and each ci /∈ Σ is either the accept or the reject symbol. Devise a
machine M such that, it tries to match the input word and advice character by
character in real-time execution. If a mismatch occurs while trying to match the
input word, machine M will advance its input head until it is at the beginning
position again. Note that the advice head will be at the first character of the
next word on advice at the end of this process. Then it tries to match the next
word and so on. At some point matching ends with success, that is, machine M
will see the endmarker of input while trying to match the characters. At that
point it will accept or reject the string depending on which ci character it is
seeing on the advice. �
Theorem 3. For any function f : N → N, L{rt − f(n)} = L{rt − O(f(n))}.
Proof. The idea is that for any given machine M , one can devise a new machine
M ′ such that M ′ uses k times less passes than M for all n and for an arbitrary
k ∈ N, and still recognizes the same language with the help of some other advice
function. Let us group the passes of machine M so that ith group consists of
passes from (i−1)k +1 to ik. With a single pass, machine M ′ simulates a group
of k passes of M . First pass simulates the first group and second pass simulates
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the second group and so on. Since M ′ does not know which state to begin with a
pass without knowing the result of the previous one, it simulates all possibilities
and remembers the final state of the previous group of passes using again its
states. Therefore the size of the state set of M ′ is sks+1 where s is the number
of states of M .

The new advice function h′ is a compressed version of the old one. Let Γ ′

be the new advice alphabet whose symbols represent the k permutations of the
symbols of Γ . |Γ ′| = |Γ |k holds. Let |h′(n)| = |h(n)|/k for all n > 0. Note that
without loss of generality we assume that |h(n)| is an integer multiple of k. We
prepare the new advice strings so that h′(1) represents all strings from h(1) to
h(k), h′(2) represents all strings from h(k + 1) to h(2k) and so on. �
Theorem 4. For any function f : N → N, L1, L2 ∈ L{rt − f(n)} =⇒ L1L2 ∈
L{rt − nf(n)}.
Proof. Let M1,M2 be machines recognizing L1, L2 with the help of advice func-
tions h1, h2 respectively. Let M3 be the machine which is claimed to recognize
the concatenation language L1L2 with the help of advice function h3. The idea
is to predict the words w1 ∈ L1 and w2 ∈ L2 such that w1w2 is the input word.
Machine M3 doesn’t know from where to divide the input, so it just tries all
the possibilities. We replace the advice characters whose locations correspond to
the last character of the first portion of the input with their marked versions in
order to inform the machine M3.

In the first pass over the input, machine M3 first simulates M1 on the first
portion of the input and stores the last internal state of that execution. Then it
simulates M2 on the rest of the input and stores the last state of that execution
too. Then it begins the second pass simulating M1 again but this time starting
from the last saved state of that thread and when it completes, M3 will update
the last state of the thread and so on. Throughout the execution of M3, two
separate threads of execution are simulated at the same time. At the end of at
most f(n) passes, if both threads end with accepting their respective sub-inputs,
M3 accepts the input. Otherwise, M3 continues the computation with a different
division of the input. Note that, given an input word of length n, there are n+1
different pairs of words such that their concatenation is the input word. At the
end of at most (n + 1)f(n) passes, if no division works, M3 rejects the input.
According to the Theorem 3, asymptotic rate of the passes is the important part
so nf(n) passes can do the same job.

Note that we should double the old advice alphabet size and introduce
marked versions of the old symbols in order to mark the position of input sepa-
ration on the advice h3. Also note that advice string h3(n) will be an interleaved
version of the h1(k) and h2(n − k) concatenated for all k ∈ [0, n]Z. �
Corollary 1. L{rt − poly} is closed under concatenation.

Lemma 1. Let L ∈ L{rt − f(n)}. Then for all n and for all k smaller than n,
≡L,n,k has 2O(f(n)) equivalence classes.
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Proof. Let s = |Q| and let Q′ = {q1, q2, . . . qs−2} be the set of all states except
the accept and reject states. Let αw,i : Q′ → Q′ be a mapping which maps
the internal state of machine when input head is for the first time on the first
character of w and advice head is at the ith position to the internal state of
machine when input head is for the first time on the first character right after
the w. Besides its parameters w and i, this mapping depends on the content
of the advice and transition function of the machine. Here we consider a single
machine working on inputs of the same length n therefore the mapping depends
only on its parameters.

Consider execution of a real-time circular machine on two different inputs of
length n, namely w1z and w2z. If we can find two words w1 and w2 such that
αw1,i = αw2,i for all i ∈ {1, 1 + (n + 1), . . . 1 + (f(n) − 1)(n + 1)} then the two
inputs must have the same fate for all z.

Given a single i, there are less than ss distinct functions αw,i. Considering all
f(n) functions mentioned above for a word w, there are less than (ss)f(n) differ-
ent permutations. Assuming that the number of equivalence classes of relation
≡L,n,k is greater than (ss)f(n) for some k and n, there would be two words w1

and w2 such that they are in different equivalence classes and have all the same
mappings. This is a contradiction. �
Theorem 5. Let f(n), g(n) ∈ O(n) and f(n) ∈ o(g(n)). Then L{rt − f(n)} �

L{rt − g(n)}.
Proof. Consider the language family Lρ = {wρ(|w|)| w ∈ Σ∗, ρ : N → N}. Note
that ρ is assumed to be a non-decreasing function and the input length n =
|w|ρ(|w|). Inputs consist of repetitions of a substring w. Define φ(mρ(m)) = m
for all m ∈ N

+. Depending on the choice of ρ, φ(n) ∈ ω(1) ∩ O(n). We will give
three lemmas. Two of them show a hierarchy for the range ω(1) ∩ O(n) and the
last one is to put the Θ(1) in.

Lemma 2. Lρ ∈ L{rt − φ(n)}.
Since given the input length n and the function ρ we can deduct the period
of input, we can check a position of the repeating substring w for each pass.
Therefore our machine will need |w| = φ(n) many passes.

The advice strings are of the form (parentheses are meta-characters),

h(n) = (10|w|−1)ρ(|w|)#(010|w|−2)ρ(|w|) . . . #(0|w|−11)ρ(|w|)

Our machine will first search for the first 1 on advice tape and when it has
been found, the machine saves the corresponding input character in its states
and continue searching for the next 1. When it sees the next 1 it checks the
corresponding input character with the one it saved before. If they mismatch
input is rejected. The machine then continue searching for 1s and do the same
checking till the end of the first pass. It then start with the second pass and do
the same procedure again, checking the equality of next character position in
substring w. If the endmarker of advice is reached, input is accepted.
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Lemma 3. Lρ /∈ L{rt − o(φ(n))}.
Observe that any Lρ is prefix-sensitive. Thinking each word as concatenation of
first period w and the rest, in other words selecting k to be φ(n) for all n, ≡Lρ,n,k

has |Σ|φ(n) equivalence classes. According to the Lemma 1, Lρ /∈ L{rt−o(φ(n))}.

Lemma 4. No prefix-sensitive language is in L{rt − O(1)}.
According to the Lemma 1, for any language L ∈ L{rt − O(1)}, ≡L,n,k has
2O(1) = O(1) equivalence classes. Therefore according to Theorem 1, L is not
prefix sensitive. �
Theorem 6. Let L1 ∈ L{1 − [f(n)]/1 − [g(n)]} and L2 ∈ L{1 − [f ′(n)]/1 −
[g′(n)]}. Then L1 ∪ L2 ∈ L{1 − [f(n) + f ′(n)]/1 − [g(n) + g′(n)]}.
Proof. Let M1, M2 be machines recognizing languages L1, L2 with the help of
advice functions h1 and h2 respectively. Devise a new advice function,

h3(n) = h1(n)#h2(n)

for all n where # is a brand new advice character that occurs nowhere else.
Let M3 be the machine recognizing the union language with the help of h3.
Machine M3 first simulates the M1 and during this simulation it treats the #
character in advice as an endmarker. When this simulation ends, which may take
at most f(n) passes over the input, M3 stores the result in its states and start
simulating M2 after adjusting its heads to proper positions, that is input head
to the beginning and advice head to the next character after #. After at most
f ′(n) passes over the input, it completes the execution and store the result in its
states. In this way it may end up in 4 different states for 4 possible acceptance
status of M1 and M2. Via combining some of those states into the accept state
and the rest into the reject state; union, intersection or difference of L1 and L2

are all recognizable. �
Corollary 2. L{1 − [O(f(n))]/1 − [O(g(n))]} is closed under union and
intersection.

Theorem 7. For any function f : N → N, L{1 − [f(n)]/1 − [�]} = L{1 −
[f(n)]/1 − [2O(n)]}.
Proof. The proof is an easy modification of the proof given by Ďurǐs et al. for
[2, Theorem 3]. �
Theorem 8. For any function g : N → N, L{1 − [�]/1 − [g(n)]} = L{1 −
[O(g(n))]/1 − [g(n)]}.
Proof. Consider the execution of an s-state cdfat with one-way heads. Pausing
the advice head, passing on the input more than s times forces the machine to
enter an infinite loop. Thus, a machine must advance its advice head before that
threshold. Therefore at most sg(n) passes are possible for an execution which
eventually halts. �
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Theorem 9. For any functions f, g : N → N, L{1 − [f(n)]/1 − [g(n)]} ⊆ L{1 −
[f(n)]/O(nf(n)g(n))}.
Proof. It is possible to simulate the one-way advice head with real-time advice
head using additional advice. The idea is to replicate each advice character
(n+1)f(n) times and use separator characters # to mark the transition locations.
That is, for all n,

h(n) = c1c2 . . . ck =⇒ h′(n) = c
(n+1)f(n)
1 #c

(n+1)f(n)
2 # . . . c

(n+1)f(n)
k #c

(n+1)f(n)
$

where ci ∈ Γ for all i ∈ {1, 2 . . . k} and the c$ is a new advice character
which is for repeating the endmarker (it is not allowed to have more than one
real endmarker character). When the new machine reads c$ on h′, it behaves
exactly like the old machine seeing endmarker on h.

Instead of stay-putting advice head in old machine, let it move right one step
in new machine. Instead of moving advice head one step in old machine, enter a
subprogram which takes advice head to the next # character in new machine.

This trick works because a cdfat with one-way heads must forward its advice
head within (n + 1)f(n) computational steps. This is because without loss of
generality we can assume at least one head is moving in each step and of course
input head can move at most (n + 1)f(n) times in an execution. �
Corollary 3. For any function f : N → N, L{1 − [f(n)]/1 − [poly]} = L{1 −
[f(n)]/poly}.

It is already known that dfat with 2-way input head is equal in power with
the prefix advice model when provided with constant advice [5, Theorem 3.8].
Since our model is sandwiched in between the 2-way input model and advice
prefix model when it comes to power, we deduce that L{1 − [i]/1 − [k]} =
L{1 − [i + 1]/1 − [k]} for all i ∈ N. Therefore an interesting question to ask
is what is the minimum advice for which more passes over input enlarges the
class of languages recognized. Küçük and others showed that when provided
with polynomial advice, 2-way input head is more powerful than 1-way head
[6, Theorem 14]. We proved a stronger result and gave an ultimate answer to
the aforementioned question. It turns out that even 2 passes over input is more
powerful than a single pass when the machine is provided with an increasing
advice.

Theorem 10. Let f : N → N be any function in ω(1). Then L{1 − [1]/1 −
[f(n)]} � L{1 − [2]/1 − [f(n)]}.
Proof. Consider the language family Lρ = {w|w ∈ {1, 2, 3}∗, |w|1 = |w|2 =
ρ(|w|)}. The following two lemmas establish the proof.

Lemma 5. Lρ /∈ L{1 − [1]/1 − [O(ρ(n))]}.
Proof. Küçük et al. proved that for any advice length function f , if L ∈ L{1 −
[1]/1 − [f(n)]}, then for all n and all k ≤ n, ≡L,n,k has O(f(n)) equivalence
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classes, [6, Lemma 6]. It can be shown that for all n, there exists k ≤ n such
that ≡Lρ,n,k has Θ(ρ2(n)) equivalence classes. Since ρ(n) ∈ ω(1) =⇒ ρ(n) ∈
o(ρ2(n)), we conclude that Lρ /∈ L{1 − [1]/1 − [O(ρ(n))]}.

Lemma 6. Lρ ∈ L{1 − [2]/1 − [O(ρ(n))]}.
Proof. The idea is to devise a machine which in first pass counts the character
1 and in second pass counts the character 2. Let L1 = {w|w ∈ {1, 2, 3}∗, |w|1 =
ρ(|w|)} and L2 = {w|w ∈ {1, 2, 3}∗, |w|2 = ρ(|w|)}. Observe that L1 or L2 can
easily be recognized by a cdfat with a single pass. In order to recognize L1 for
instance, let h(n) = 1ρ(n) be the advice function, then consider a machine which
stay-puts its advice head when it sees a character other than 1 on its input and
advances its advice head when it sees 1 on input. It will accept a string iff both
endmarkers are read at the same time. L2 can be recognized similarly. Since
L1, L2 ∈ L{1 − [1]/1 − [O(ρ(n))]}, according to Theorem6, L1 ∩ L2 = Lρ ∈
L{1 − [2]/1 − [O(ρ(n))]}. �
Lemma 7. Let L ∈ L{1−[f(n)]/1−[g(n)]}. Then for all n and for all k smaller
than n, ≡L,n,k has 2O(g(n) log g(n)) equivalence classes.

Proof. Define a configuration ci of a machine to be the pair of internal state and
advice position. Define a non-stopping configuration c = (q,m) of a machine to
be any configuration where q is a state other than accept and reject states. Let
C = {c1, c2, . . . , c(s−2)(g(n)+1)} be the set of all non-stopping configurations for a
machine and for input length n (s = |Q|). Without loss of generality assume our
machines always end their execution when input head is on the endmarker. Let
w be a substring of input (not containing the endmarker) and let αw : C → C
be a mapping which maps the configuration of machine when the first character
of word w is read first time on input tape to the configuration of machine when
the character right after the word w is read first time on input tape. Function
α depends on transition function of the machine, the specific word w being
processed and the advice content. We focus on a single machine and inputs of
the same length n, therefore in our case α depends only on w.

Consider execution of a circular machine on two different inputs of length
n, namely w1z and w2z. Both inputs start execution at the initial configuration
and after each pass they start with a new configuration. If we can find two words
w1 and w2 such that αw1 = αw2 then the two inputs w1z and w2z must have
the same fate for all z.

There are less than 2sg(n)2sg(n) distinct functions α. Assuming that the
number of equivalence classes of ≡L,n,k is greater than 2sg(n)2sg(n) for some k
and n, there would be two words w1, w2 in two different equivalence classes such
that they have the same mapping. This is a contradiction. �
Theorem 11. Let f(n) ∈ ω(1) ∩ o(log n). Then the classes L{rt − f(n)} and
L{1 − [1]/1 − [�]} are incomparable.

Proof. Recall that L{1− [1]/1− [�]} is nothing but our way of notating the class
of languages recognized by the model introduced by Küçük et al. in [6] given
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access to unlimited advice. According to Theorem 5, a prefix-sensitive language
is in L{rt−f(n)} no matter how slow f(n) grows. However we know from Ďurǐs
et al. [2, Theorem 2] that no prefix-sensitive language is in L{1 − [1]/1 − [�]}.
Therefore L{rt − f(n)} � L{1 − [1]/1 − [�]}.

On the other hand, as stated in proof of Lemma6, the language L = {w|w ∈
{1, 2, 3}∗, |w|1 = ρ(|w|)} can be easily recognized by a machine with one-way
heads, given access to Θ(ρ(n)) length advice. It is easy to see that for all n,
there exists k such that ≡Lρ,n,k has Θ(ρ(n)) equivalence classes. When the ρ(n)
is selected to be linear in n, according to Lemma 1, L /∈ L{rt− f(n)}. Therefore
L{1 − [1]/1 − [�]} � L{rt − f(n)}. �

An interesting question to ask is what is the minimum advice or pass needed
in order for a model to recognize any language. We can show some lower bounds
using Lemmas 1 and 7. PAL is the language of even palindromes.

Corollary 4. g(n) log g(n) ∈ o(n) =⇒ PAL /∈ L{1 − [f(n)]/1 − [g(n)]}.
Corollary 5. f(n) ∈ o(n) =⇒ PAL /∈ L{rt − f(n)}.

3 Conclusions and Open Questions

We showed that cdfat with real-time heads can utilize up to linearly many passes
over input. We showed that with exponential pass, the real-time machine can
recognize any language. However we do not know if the machine can utilize more
than linear passes. There may be a clever algorithm for recognizing any language
with linear passes.

We showed that even the most powerful version of the cdfat, that is the
one having one-way input and advice heads, cannot recognize some languages
when there is not enough advice (a nearly linear bound). However we are not
aware of an algorithm for this machine which uses less than exponential resources
to recognize any language. It would be nice to know the minimum amount of
resources needed to recognize any language.

We compared the class of languages recognized by single pass deterministic
finite automaton with one-way heads and unlimited advice with the growing
class of languages recognized by a real-time cdfat as we allow more passes over
input. Since we know that the former class is bigger than the latter when we
allow only constant amount of pass over input and the reverse is true when we
allow exponential passes over input, we wonder how that growing takes place
and is there any pass limit for which the two classes are equal. It turned out
that this is not the case. As long as the allowed pass limit is not constant and
sub-logarithmic, two classes are not subsets of each other. However we do not
know exactly when the latter class encompasses the former one.
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