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Abstract

The onset of cancer metastasis is the defining event in cancer progression when the disease is considered lethal.
The ability of metastatic cancer cells to stay dormant for extended time periods and reawaken at later stages
leading to disease recurrence makes treatment of metastatic disease extremely challenging. The tumor
microenvironment plays a critical role in deciding the ultimate fate of tumor cells, yet the mechanisms by which
this occurs, including dormancy, is not well understood. This mini-review discusses bioengineered models inspired
from tissue engineering strategies that mimic key aspects of the tumor microenvironment to study tumor
dormancy. These models include biomaterial based three dimensional models, microfluidic based models, as well
as bioreactor based models that incorporate relevant microenvironmental components such as extracellular matrix
molecules, niche cells, or their combination to study microenvironmental regulation of tumor dormancy. Such
biomimetic models provide suitable platforms to investigate the dormant niche, including cues that drive the
dormant to proliferative transition in cancer cells. In addition, the potential of such model systems to advance
research in the field of tumor dormancy is discussed.
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Introduction
The progression of cancer from the primary to the
metastatic setting usually marks the transition to an in-
curable diagnosis [1]. Accumulating evidence suggests
that disseminated tumor cells can stay in a dormant
state for extended periods of time and could reawaken
at a later stage resulting in disease relapse and often
mortality [2]. For instance, greater than 67% of deaths
from breast cancer occur beyond the 5-year survival
window and disease recurrence is noted after almost a
decade of being “cancer-free” in many patients [3, 4]. In
addition, dormant tumor cells can also persist at the
primary tumor site, following surgical resection of the
primary tumor [5]. Tumor cells can also metastasize
and stay dormant even prior to the evolution of the
primary tumor [6]. While drug treatments exist, resistance
to treatment is noted in many patients and the dormant/
resistant tumor cells surviving treatment reactivate and
contribute to disease progression at the primary and/or
metastatic site [7] (i.e., in organs such as bone, liver, lung,

and the brain). These observations highlight the need to
understand the cellular and molecular mechanisms associ-
ated with tumor cell dormancy.
It is now well appreciated that the tumor microenviron-

ment plays a significant role in controlling the dormant
phenotype in tumor cells in addition to genetic alterations
[2, 8–10]. In the context of metastatic disease, this is con-
sistent with Paget’s “seed and soil” hypothesis proposed
over a century ago, which states that metastasis occurs
only when the organ environment (soil) is conducive to
metastatic tumor cell (seed) growth [11–14]. Thus, experi-
mental models to study and understand the mechanisms
associated with dormancy must capture the bidirectional
tumor cell-microenvironment interactions. In early work
elucidating the role of microenvironment on tumor dor-
mancy, Aguirre-Ghiso and colleagues showed that growth
signals from fibronectin (an extracellular matrix (ECM)
protein) via the urokinase plasminogen activator receptor
(uPAR)-α5β1-integrin complex was critical, and thus re-
duction in the level of uPAR in human epidermoid cancer
cells induced tumor dormancy when tested using standard
tissue culture polystyrene (TCPS) substrates (routinely
employed two dimensional (2D) culture models) in vitro
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as well as using mouse models in vivo [15]. Studies utiliz-
ing these models have also defined several key molecular
features of tumor cell dormancy, including a high signal-
ing ratio of p38/ERK [16–19].
A variety of in vivo mouse models, including genetic-

ally engineered mouse models, orthotropic /subcutane-
ous tumor models, tumor resection models, as well as
experimental metastasis mouse models have been used
to gain insight into tumor dormancy [20–23]. For in-
stance, experimental metastasis mouse models have re-
vealed the existence of a dormant state in cancer cells
delivered to a metastatic organ site in vivo [24, 25].
However, mouse models provide limited control of the
organ environment for controlled investigations. In
addition, animal-animal variations, difficulties associ-
ated with imaging dormant cells in internal tissues, as
well as high costs, can make the use of such models a
challenging undertaking. In recent years, there has been
a growing interest in utilizing components typically
employed in tissue engineering (e.g., biomaterial scaf-
folds, tissue specific cells, and bioreactors) to study the
tumor microenvironment and its role in governing
tumor dormancy. These systems not only enable better
recapitulation of the tumor microenvironment by cap-
turing the relevant microenvironmental cues such as
biophysical cues compared to the traditionally studied
2D culture models but also the study of tumor cell
phenotype in a physiological relevant and controlled
setting.
This review focuses on various tissue engineering in-

spired strategies that have been employed to elucidate
microenvironmental regulation of tumor cell dormancy.
In particular, we discuss biomaterial based models,
microfluidic based models, as well as bioreactor based
models and how these bioengineered models have been
utilized to study the dormant phenotype as well as the
transition from a dormant to proliferative phenotype in
cancer cells. Collectively, such microenvironment mim-
icking model systems provide useful tools to probe the
dormant niche as well as elucidate the molecular mecha-
nisms regulating tumor dormancy.

Bioengineered models mimicking the tumor
microenvironment to study tumor cell dormancy
Biomaterial based models
Biomaterial scaffolds commonly employed in tissue engin-
eering such as hydrogels, porous scaffolds, and electro-
spun fibrous scaffolds have been used as models to study
tumor cell dormancy. Such three dimensional (3D) culture
systems could be engineered to mimic specific features of
the tumor microenvironment (e.g., stiffness, topography)
as well as incorporate other relevant noncancerous cells.
In this section, we discuss the various types of biomaterial

based models that have been employed to study microen-
vironmental regulation of tumor dormancy.

Natural biomaterial based models
A variety of natural biomaterials have been used to study
tumor cell dormancy and maintenance of this state via
targeting the cytoskeletal organization [26], incorporat-
ing relevant niche cells [27, 28], modulation of stiffness
[29], or via modulation of signaling pathways (e.g., Src
family kinase (SFK) inhibition [30]). Specifically, hydro-
gels composed of Collagen-I [31], hyaluronic acid [32],
fibrin [29], and Matrigel [26, 30, 31, 33] have been
employed (studies summarized in Table 1). Barkan et al.,
utilized Basement Membrane Matrix (BME) (or Matri-
gel) and found that this matrix maintained the dormant
state of D2.0R cancer cells that were observed to be dor-
mant in vivo as opposed to traditionally studied 2D
models (e.g., TCPS) and that the transition to the prolif-
erative state was mediated via β-1 integrin signaling [26].
Further, myosin light chain kinase (MLCK) activation
was also necessary for this transition as inhibition of
MLCK or β-1 integrin impeded the dormant to prolifer-
ative state transition. Similarly, A549 lung cancer cells
cultured in Matrigel underwent dormancy and exhibited
drug resistance compared to standard 2D culture
(TCPS) [34].
In contrast to BME inducing a dormant state, incorpor-

ating Collagen-I within BME lead to a proliferative pheno-
type in dormant mouse breast cancer D2.0R cells in vitro
[35]. Activation of β-1 integrin was responsible for the
emergence of this phenotype and thus inhibiting β-1 in-
tegrin and the associated downstream signaling pathway
components (Src, extracellular-signal regulated kinase
(ERK), or MLCK) significantly inhibited proliferation.
Modulation of signaling pathways to control the dormant
vs. proliferative phenotype has also been investigated
using natural biomaterial based models. Specifically, SFK
inhibition caused localization of p27 (cyclin dependent
kinase inhibitor) to the nucleus and inhibited proliferation
that was induced by incorporating Collagen-I into BME
[30]. Further, combined targeting of SFK and mitogen
activated protein kinase (MEK) was shown to induce
apoptosis in dormant cancer cells, thereby demonstrating
the efficacy and potential of this combinatorial treatment
for treating recurrent disease.
Niche cells present in the tumor microenvironment

have been incorporated into natural biomaterial scaf-
folds to create a model of dormancy for bone meta-
static breast cancer cells. For example, Marlow et al.,
employed a 3D collagen biomatrix that were seeded
with either primary bone marrow stromal cells (BMSC)
or a mix of osteoblasts, mesenchymal, and endothelial
cell lines (BMCL-Bone marrow cell lines) [27]. In this
system, breast cancer cells co-cultured with BMSCs
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proliferated whereas those cultured with BMCL remained
in a dormant state and this phenomenon was observed
both in vitro and in vivo. Moreover, breast cancer cells re-
trieved from BMCL co-cultures began proliferating when
co-cultured with BMSCs. The dormant state observed in
this model was also reversible when p38, and receptor
tyrosine kinase (RTK) (pathways involved in dormancy
[36–38]) was inhibited. These observations were also
validated in vivo by subcutaneously implanting cell-laden
biomaterial constructs in murine models. Such “hybrid in
vivo models” wherein biomaterial scaffolds are integrated
with murine models have been recently utilized in
several investigations to study the metastatic niche
[39–45]. Similarly, Ghajar et al., demonstrated that
endothelial cells influenced the dormant phenotype in
breast cancer cells in a laminin-rich ECM [28]. Specific-
ally, established or stable endothelium induced a dormant
state via endothelial-derived thrombospondin-1 (TSP-1).
In contrast, the authors showed that cancer cell growth
was accelerated at sprouting neovascular tips (i.e., sprout-
ing endothelium), which was associated with enhanced
expression of Transforming growth factor beta 1 (TGF-β1)
and periostin, and with the loss of TSP-1. In a hyaluronic
acid hydrogel model, when breast cancer cells were
co-cultured with a human microvascular endothelial cell
line (HMEC-1), expression of ERK/p38 was reduced in
co-culture compared to breast cancer cell monocul-
ture indicating the emergence of a dormant state in
breast cancer cells [32].
Similar to the utilization of Matrigel, Hurst et al., [46]

utilized SIS gel (derived from small intestine sub-
mucosa (SIS) representative of a normal basement
membrane matrix) to study phenotype regulation in
bladder cancer cells and compared it with Matrigel
(representative of a remodeled tumor matrix). In these
studies, Matrigel promoted a more invasive phenotype

as opposed to a non-aggressive phenotype that was ob-
served in the SIS gel. Further, cells isolated from Matrigel
when grown on SIS gel demonstrated growth characteris-
tics similar to cells grown on SIS gel and vice versa
demonstrating that this phenotype regulation was
dependent on the gel composition. These results were fur-
ther supported via comparative gene expression studies
[47]. In a follow up study, these observations were further
validated using hybrid in vivo models [48]. In particular,
when J82 or JB-V bladder cancer cells were subcutane-
ously injected with SIS gel in nude mice, cancer cells were
observed to be in a dormant state with no sign of tumor
formation. However, in some cases, cells transitioned from
a dormant to a proliferative state. Tumor growth was
noted in 40% of SIS gel xenografts following a 4–18 week
dormancy period. Specifically, the transition from a
dormant to a proliferative phenotype was dependent on
the number of implanted tumor cells, with tumors more
likely to form when more than 3 million tumor cells were
implanted [48]. These models have also been utilized to
identify therapeutics that target dormant cells [49] .
Hypoxia, a characteristic feature of the tumor micro-

environment [50], has also been incorporated with natural
biomaterials such as Collagen to develop dormancy
models. For example, Lee et al., utilized cobalt chloride
(CoCl2) (a hypoxia mimicking agent) with Collagen gels to
induce dormancy in breast cancer cells [51]. They found
that MCF-7 breast cancer cells exhibited a dormant
phenotype in this model system and this phenotype was
reversible when the cells were grown in CoCl2 free media.
These results were also observed when the cells were
grown on non-adhesive poly(2-hydroxyethyl methacrylate)
(pHEMA) coated tissue culture plates (Fig. 1).
More recently, fibrin gels were employed to elucidate

the impact of matrix stiffness on tumor cell dormancy.
Specifically, Liu et al., employed [29] fibrin gels of 90,

Fig. 1 In a Collagen hydrogel incorporating hypoxia mimicking agent CoCl2 (300 μM) or pHEMA coated culture plates, MCF7 breast cancer cells
exhibited a dormant phenotype, which was reversible after treatment with CoCl2 free growth media. Fluorescence images of MCF7 cells stained
for Ki67 (red) and nuclei (blue) for untreated control, 3 day treatment with CoCl2, 6 day treatment with CoCl2 and 3 day treatment with CoCl2
followed by 3 day recovery period in (a) Collagen hydrogels and (b) pHEMA coated culture plates and (c) quantification of Ki-67 status in these
conditions. Scale bar = 200 μm. Figure taken from [51] and reprinted with permission of BioMed Central (Springer Nature)
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450 and 1050 Pa bracketing the range of stiffness noted
for many tissues (100–3000 Pa [52]). In this system,
murine B16 & human melanoma A375 cells embedded
within 1050 Pa fibrin gels remained dormant as opposed
to those in 90 Pa gels. This induced dormancy was revers-
ible, as cells isolated from 1050 Pa fibrin gel proliferated
when cultured in 90 Pa gels. Maintenance of the dormant
state with increasing stiffness in this system was mediated
via translocation of cell division control protein 42
(Cdc42) from the cytosol to the nucleus, in turn, promot-
ing tet methylcytosine dioxygenase 2 (Tet-2) expression,
and subsequently activating cell-cycle inhibiting p21 and
p27 genes.

Synthetic biomaterial based models
In addition to natural biomaterial-based models, synthetic
biomaterial systems such as polyacrylamide (PA), silica-
polyethylene glycol (silica-PEG), polycaprolactone (PCL),
and pHEMA have been utilized to study the impact of
tumor microenvironment on the dormant phenotype.
Synthetic biomaterials provide a highly tunable plat-
form and are more reproducible compared to natural
biomaterial-based models. Schrader and colleagues uti-
lized PA hydrogels to study the influence of matrix stiff-
ness on the behavior of hepatocellular carcinoma cells
[53]. They found these cancer cells cultured on stiff
hydrogels (12 kPa) rapidly proliferated compared to soft
hydrogels (1 kPa) as indicated via increased Ki67 (a pro-
liferation marker) positivity, with the soft hydrogels
promoting a more dormant-like phenotype. Inhibition
of β1-integrin or Focal adhesion kinase (FAK) signifi-
cantly reduced Ki-67 status on stiff hydrogels (12 kPa),
thereby implicating these pathways in the observed cel-
lular response.
Physical immobilization of cancer cells in synthetic

biomaterials has also been shown to induce a dormant
phenotype in cancer cells. For instance, MCF-7 breast
cancer cells encapsulated in a porous silica-PEG hydro-
gel system underwent cell-cycle arrest, but resumed
proliferation when they were retrieved from the hydro-
gel and cultured on TCPS [54]. Similarly, Long et al.,
employed sphere-templated porous pHEMA hydrogels
to develop prostate cancer xenografts [55]. Using this
system, they demonstrated that M12mac25 prostate
cancer cells subcutaneously inoculated into athymic
nude mice using Matrigel stayed largely dormant. How-
ever, with pHEMA scaffolds (with or without Matrigel)
tumor formation was noted providing a model of dor-
mancy escape in prostate cancer cells.
In addition to hydrogels, synthetic electrospun fiber-

based biomaterials have been used to study tumor dor-
mancy. To this end, random or aligned electrospun
PCL fibrous scaffolds were used to examine the behav-
ior of Carboplatin (a chemotherapy) treated vs. non

treated breast cancer cells [56]. Non treated breast
cancer cells exhibited a more dormant phenotype on fi-
brous scaffolds as evidenced using cell cycle analysis
whereas the treated breast cancer cells exhibited this
phenotype when cultured on fibrous scaffolds as well as
TCPS.

Semi-synthetic biomaterial based models
Semi-synthetic scaffolds fabricated using a combination
of natural and synthetic materials have also been investi-
gated to develop models of tumor dormancy. For
example, Pavan Grandhi et al., utilized amikacin hydrate
and poly (ethylene glycol) diglycidyl ether (PEGDE) to
develop a new hydrogel termed as “Amikagel” that was
used to study dormancy in bladder cancer [57]. They
found that 90% of T24 bladder cancer cells cultured on
~ 215 kPa Amikagels were cell cycle arrested in G0/G1
phase and were resistant to chemotherapeutic drugs
such as docetaxel. However, when cells from the ~ 215
kPa Amikagels were transferred to ~ 36 kPa Amikagels,
a sub-population of cells escaped dormancy and began
proliferating. Overall, such biomimetic biomaterial based
models provide useful tools to better understand the
dormant niche. For instance, biomaterial based models
are well suited to probe the impact of biophysical cues
(such as matrix stiffness) on tumor dormancy versus
traditional 2D culture models. These tools would also
subsequently allow the study of molecular mechanisms
governing the dormant phenotype as well as the
dormant-to-proliferative switch.

Microfluidic based models
Microfluidic based models have also been used to study
tumor dormancy. Such models allow for incorporation of
nutrient/growth factor gradients. In addition, niche cells
present in the tumor microenvironment are also typically
incorporated in these models. One of the microfluidic
based models is the commercially available LiverChip®
wherein hepatocytes and non-parenchymal cells (NPCs)
can be co-cultured to form an ex vivo microphysiologic
model of the liver that could be used to study dormancy
in cancer cells, including those that metastasize to the
liver [58]. In this system, hepatocytes can be cultured
for ~ 15 days without losing their functionality. This
setup also contains an oxygen sensor and micro-reactor
pumps to control the flow of nutrients and growth fac-
tors. In this system, a sub population of MDA-MB-231
and MCF7 breast cancer cells underwent dormancy
(Fig. 2) that was associated with an increase in cancer
attenuation signals (i.e., follistatin) and decrease in the
pro-inflammatory signals (Insulin like growth factor
binding protein 1 (IGFBP-1), Macrophage inflammatory
protein 1 alpha (MIP-1α), Monocyte chemoattractant pro-
tein (MCP-1) & Interleukin-6 (IL-6)) for MDA-MB-231
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Fig. 2 In a liver chip model, a subpopulation of MCF7 and MDA-MB-231 breast cancer cells underwent growth arrest. a Fluorescence image of MCF7
and MDA-MB-231 cells seeded with hepatocytes and non-parenchymal cells (F-Actin = green; Hoechst = blue, tumor cells = red (RFP) (b) Ki67 staining
(green) and (c) EdU staining (green) of tumor cells and (d) Quantification of Ki67 and EdU status for both cell lines. Solid arrows indicate dormant cells
and dashed white arrows indicate proliferating cells. Figure taken from [58] and reprinted with permission of Springer Nature
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cells, whereas in the case of MCF-7 cells, increase in
cancer associated (e.g., Vascular endothelial growth fac-
tor A (VEGF-A), Epidermal growth factor (EGF)) and
pro-inflammatory signals (IL-6, MCP-1) was noted.
More recently, Khazali et al., tested if inflammatory sig-
nals present in the hepatic niche (from hepatic stellate
cells) stimulated escape from the dormancy phenotype
using the LiverChip® [59]. Indeed, introduction of IL-8
promoted proliferation of otherwise dormant MDA-MB-
231 breast cancer cells as tested using EdU incorporation
assay. This was also associated with an increase in
phosphorylated ERK levels. Similarly, Clark et al.,
demonstrated that introduction of an inflammatory
stimuli such as EGF or lipopolysaccharide (LPS) pro-
moted proliferation of dormant MDA-MB-231 breast
cancer cells [60].
Biomaterial scaffolds have also been incorporated into

microfluidic based models for studies of tumor dormancy.
For example, a PEG based hydrogel was incorporated into
the liver microphysiological system by Clark et al., in a fol-
low up study [61]. In this model, MDA-MB-231 breast
cancer cells exhibited a dormant phenotype on the PEG
based hydrogel as compared to the polystyrene. Further,
these cells were also found to be resistant to high doses of
chemotherapy drugs such as Cisplatin and Doxorubicin
on the hydrogel as opposed to polystyrene supported
cultures.
In addition to breast cancer, microfluidics based models

have been employed to study dormancy versus growth in
lung cancer. A lung cancer-on-a-chip, specifically, lung
airway chip and lung alveolus chip, was developed by
Hassell and colleagues utilizing microfluidics [62]. Both
chips utilize a two channel microfluidic set-up separated
via a porous membrane coated with ECM proteins and in-
corporate airway or lung alveolar epithelial cells interfaced
with endothelial cells. In this model, they found that
non-small-cell lung cancer cells stayed relatively dormant
in the lung airway chip as opposed to the lung alveolus
chip wherein significant growth was observed.

Bioreactor based models
In addition to biomaterial and microfluidic based
models, bioreactor based models have been used to in-
vestigate dormancy. Niche cells are also incorporated
in such models as they allow long term culture. Such a
model was utilized by Sosnoski et al. [63], to study
breast cancer cell dormancy in a bone mimetic envir-
onment as breast cancer cells are known to metastasize
to the bone [64, 65]. In this model, a bioreactor was
employed to culture bone cells (murine MC3T3-E1 and
human osteoblast cells) for up to 120 days. During this
culture period, osteoblasts generated tissue that con-
tained 6 or more layers of cells mimicking the pericel-
lular environment [66]. Two month old bioreactor
cultures were employed to which cytokines involved in
bone remodeling were added, followed by addition of
breast cancer cells. Specifically, a metastasis-suppressed
MDA-MB-231BRMS1 human breast cancer cell line
was used. Addition of cytokines tumor necrosis factor
alpha (TNFα) and IL-1β to the bioreactor co-cultures
allowed these cells to grow, which otherwise were largely
growth arrested. This behavior was also seen when prosta-
glandin E2 (PGE2) was added to the cultures and addition
of PGE2 receptor inhibitor suppressed tumor cell prolifer-
ation as seen via Ki67 staining (Fig. 3). The authors also
observed a significant enhancement in focal adhesion kin-
ase plaque formation in cancer cells in TNFα and IL-1β
treated bioreactor co-cultures. While only few studies
have utilized bioreactor based platforms, such platforms
provide a better in vitro model system for co-culturing
cancer cells as well as niche cells (e.g., breast cancer cells
and osteoblasts) for longer time periods. This is advanta-
geous as cancer cells typically stay dormant for extended
periods of time in vivo and such models could be
employed to capture these characteristic features.

Conclusions and perspectives
To elucidate the mechanisms governing dormancy, bioen-
gineered models such as biomaterials, microfluidics, and

Fig. 3 In a bioreactor model, addition of TNFα and IL-β1 or PGE2 enabled proliferation of MDA-MB-231BRMS1 cells that were otherwise growth
arrested as indicated via Ki67 staining. Fluorescence images of cells stained for Ki67 in (a) untreated control, (b) TNFα and IL-β1 treatment, (c)
PGE2 treatment, and (d) TNFα, IL-1β and AH6809 (PGE2 receptor inhibitor) treatment conditions. White arrows indicate positive nuclear Ki67
staining. Scale bar = 20 μm. Figure taken from [63] and reprinted with permission of Springer Nature
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bioreactor- based models are being increasingly utilized
as biomimetic in vitro culture systems to model tumor
dormancy. Unlike in vivo models, bioengineered models
highlighted herein allow us to pursue a reductionist ap-
proach and thereby study how individual microenviron-
mental cues regulate dormancy in cancer cells owing to
their versatility and tunability. To this end, these models
have been largely utilized to investigate the impact of
mechanical cues, biochemical cues, as well as cellular cues
on tumor cell dormancy. Specifically, the cellular cues in-
corporated in current models largely consist of stromal
and vascular cells. However, in addition to stromal and
vascular cells, immune cells play a key role in cancer pro-
gression and metastasis [67–69]. Future studies should
aim at incorporating immune cells such as macrophages
in bioengineered models for studying immune-mediated
dormancy. Further, 3D in vitro models have recently been
utilized to study the microenvironmental regulation of
stem-like phenotype in cancer cells [70]. There are strik-
ing parallels between cancer stem-like cells (CSCs) and
dormant cancer cells. For instance, CSCs exhibit behaviors
similar to dormant cancer cells such as increased drug re-
sistance and the ability to repopulate the tumor mass in
response to certain microenvironmental cues [71]. How-
ever, it is not clear whether they belong to the same dor-
mant population or consist of a distinct population.
Bioengineered models could be employed to clarify the
extent of overlap between the cancer stem-like phenotype
and the dormant phenotype. In addition, these models
could be utilized to study the role of fundamental
biological processes such as epithelial-to-mesenchymal
transition and mesenchymal-to-epithelial transition in
regulating cancer cell dormancy as they are known to be
involved in cancer metastasis [72, 73]. Finally, current
bioengineered models largely focus on single cell (cellular)
dormancy, however, balance between proliferation and
apoptosis could also lead to tumor dormancy (also called
tumor mass dormancy) [2, 74]. It would be worthwhile to
model these mechanisms in vitro using biomimetic cul-
ture systems as it will further our understanding of tumor
mass dormancy. Overall, in the short term, bioengineered
models could provide key scientific insight into microenvi-
ronmental regulation of the dormant phenotype and, in
the long term, may enable the development of therapeutic
strategies targeting dormant or active metastatic disease.
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