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Feature selection in cancer classification is a central area of research in the field of bioinformatics and used to select the informative
genes from thousands of genes of themicroarray.The genes are ranked based on T-statistics, signal-to-noise ratio (SNR), and F-test
values. The swarm intelligence (SI) technique finds the informative genes from the top-m ranked genes. These selected genes are
used for classification. In this paper the shuffled frog leaping with Lévy flight (SFLLF) is proposed for feature selection. In SFLLF,
the Lévy flight is included to avoid premature convergence of shuffled frog leaping (SFL) algorithm. The SI techniques such as
particle swarm optimization (PSO), cuckoo search (CS), SFL, and SFLLF are used for feature selection which identifies informative
genes for classification. The k-nearest neighbour (k-NN) technique is used to classify the samples. The proposed work is applied
on 10 different benchmark datasets and examined with SI techniques.The experimental results show that the results obtained from
k-NN classifier through SFLLF feature selection method outperform PSO, CS, and SFL.

1. Introduction

Abundant methods and techniques have been proposed for
cancer classification using microarray gene expression data.
Rapid and recent advances in microarray gene expression
technology have facilitated the simultaneousmeasurement of
the expression levels of tens of thousands of genes in a single
experiment at a reasonable cost. Gene expression profiling by
microarray method has appeared as a capable technique for
classification and diagnostic prediction of cancer.

The raw microarray data are images that are transformed
into gene expression matrices. The rows in the matrix
correspond to genes, and the columns represent samples
or trial conditions. The number in each cell signifies the
expression level of a particular gene in a particular sample
or condition. Expression levels can be absolute or relative. If
two rows are similar, it implies that the respective genes are
coregulated and perhaps functionally related. By comparing
samples, differentially expressed genes can be identified. The
major limitation of the gene expression data is its high
dimension which contains more numbers of genes and very

few samples. A number of gene selection methods have been
introduced to select the informative genes for cancer predic-
tion and diagnosis. Feature or gene selectionmethods remove
irrelevant and redundant features to improve classification
accuracy. From themicroarray data, the informative genes are
identified based on their 𝑇-statistics, SNR, and 𝐹-test values.

PSO is one of the SI techniques proposed by Kennedy
and Eberhart [1] that simulate the behaviour of bird flocking.
Yang and Deb [2] proposed the CS inspired by the breeding
behaviour of cuckoo. SFL is a memetic metaheuristic that is
the combination of two search techniques: the local search of
PSO and the competitiveness mixing of the shuffled complex
evolution [3]. The randomness in SFL sometimes will not
cover an effective area of the search space or it will reflect
the same worst solution. To avoid this, the proposed work
adopts Lévy flight for position change.The SI techniques such
as PSO, CS, SFL, and SFLLF are used for feature selection.

1.1. Related Work. In this section the works related to gene
selection and cancer classification using microarray gene
expression data are discussed. An evolutionary algorithm
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is used by Jirapech-Umpai and Stuart [4] to identify the
near-optimal set of predictive genes that classify the data.
Vanichayobon et al. [5] used self-organizing map for cluster-
ing cancer data composed of important gene selection step.
Rough set concept with dependent degrees was proposed by
Wang and Gotoh [6]. In this method they screened a small
number of informative single gene and gene pairs on the basis
of their dependent degrees.

A swarm intelligence feature selection algorithm was
proposed based on the initialization and update of only
a subset of particles in the swarm by Martinez et al. [7].
Gene doublets concept was introduced by Chopra et al. [8]
based on the gene pair combinations. A new ensemble gene
selection method was applied by Liu et al. [9] to choose
multiple gene subsets for classification purpose, where the
significant degree of gene was measured by conditional
mutual information or its normalized form.

A hybrid method was proposed by Chuang et al. [10],
which consists of correlation-based feature selection and the
Taguchi chaotic binary PSO. Dagliyan et al. [11] proposed a
hyperbox enclosure (HBE) method based on mixed integer
programming for the classification of some cancer types with
a minimal set of predictor genes. The use of single gene
was explored to construct classification model by Wang and
Simon [12]. This method first identified the genes with the
most powerful univariate class discrimination ability and
constructed simple classification rules for class prediction
using the single gene.

An efficient feature selection approach based on statisti-
cally defined effective range of features for every class termed
as effective range based gene selection (ERGS) was proposed
by Chandra and Gupta [13]. Biomarker identifier (BMI),
which identified features with the ability to distinguish
between two data groups of interest, was suggested by Lee
et al. [14]. Margin influence analysis (MIA) was an approach
designed to work with SVM for selecting informative genes
by Li et al. [15]. A model for feature selection using signal-to-
noise ratio (SNR) ranking was proposed by Mishra and Sahu
[16].

Huang et al. [17] presented an improved semisupervised
local Fisher discriminant (iSELF) analysis for gene expression
data classification. Alonso-González et al. [18] proposed a
method that relaxed the maximum accuracy criterion to
select the combination of attribute selection and classification
algorithm. A quantitative measure based onmutual informa-
tion that incorporates the information of sample categories
to measure the similarity between attributes was proposed
by Maji [19]. A feature selection algorithm which divides the
genes into subsets to find the informative genes was proposed
by Sharma et al. [20].

2. Materials and Methods

2.1. Gene Selection Methods

2.1.1. 𝑇-Statistics. Genes, which have considerably different
expressions involving normal and tumor tissues, are entrants
for selection. A simple 𝑇-statistic measure given in (1) is used

by Yendrapalli et al. [21] to find the degree of gene expression
difference between normal and tumor tissues. The top-m
genes with the largest 𝑇-statistic are selected for inclusion in
the discriminant analysis. Consider
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2.1.2. Signal-to-Noise Ratio. An important measure used to
find the significance of genes is the Pearson correlation
coefficient. According to Golub et al. [22] it is changed to
emphasize the “signal-to-noise ratio” in using a gene as a
predictor.This predictor is shapedwith the purpose of finding
the prediction strength of a particular gene by Xiong et al.
[23]. The signal-to-noise ratio PS of a gene “𝑔” is calculated
by
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2
: standard

deviation of tumor samples.
This value is used to reveal the difference between the

classes relative to the standard deviation within the classes.
Large values of PS(𝑔) indicate a strong correlation between
the gene expression and the class distinction, while the sign
of PS(𝑔) being positive or negative corresponds to 𝑔 being
more highly expressed in class 1 or class 2. Genes with
large SNR value are informative and are selected for cancer
classification.

2.1.3. 𝐹-Test. 𝐹-test is the ratio of the variances of the given
two sets of values which is used to test if the standard
deviations of two populations are equal or if the standard
deviation from one population is less than that of another
population. In this work two-tailed 𝐹-test value is used to
check the variances of normal samples and tumor samples.
Formula to calculate the 𝐹-test value of a gene is given in (3).
Top-m genes with the smallest 𝐹-test value are selected for
inclusion in the further analysis. Consider

𝐹 =
V
1

V
2

. (3)

Here V
1
: variance of normal samples and V

2
: variance of tumor

samples.

2.2. Swarm Intelligence Techniques

2.2.1. Particle Swarm Optimization. PSO is one of the SI
techniques that simulate the behavior of bird flocking. It
is a population-based optimization tool, which could be
implemented and applied easily to solve various function
optimization problems.
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In PSO, each single solution is like a “bird” in the search
space, which is called a “particle.” All particles have fitness
values which are evaluated by the fitness function to be
optimized and have velocities which direct the flying of the
particles. The particles fly through the problem space by
following the particles with the best solutions so far.

The original PSO formulae define each particle as
potential solution to a problem in 𝑁-dimensional space.
The position of particle 𝑖 is represented as 𝑋

𝑖
= (𝑥

𝑖1
,

𝑥
𝑖2
, . . . , 𝑥

𝑖𝑁
). Each particle also maintains a memory of its

previous best position, represented as 𝑃
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).

A particle in a swarm ismoving; hence, it has a velocity, which
can be represented as 𝑉

𝑖
= (V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝑁
).

Each particle knows its best value so far (𝑝best) and
the best value so far in the group (𝑔best) among 𝑝bests.
This information is useful to know how the other particles
around them have performed. Each particle tries to modify
its position using the following information:

(i) the distance between the current position and 𝑝best,
(ii) the distance between the current position and 𝑔best.

This modification can be represented by the concept of
velocity. Velocity of each agent can be modified by (4). The
inclusion of an inertia weight in the PSO algorithm was first
reported by Eberhart and Shi in the literature [24]. Consider
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where 𝑖: index of the particle, 𝑖 ∈ {1, . . . , 𝑛}, 𝑁: population
size, 𝑑: dimension, 𝑑 ∈ {1, . . . , 𝑁}, rand( ): uniformly
distributed random variable between 0 and 1, 𝑉

𝑖𝑑
: velocity of

particle 𝑖 ondimension𝑑,𝑋
𝑖𝑑
: current position of particle 𝑖 on

dimension 𝑑, 𝑐
1
determines the relative influence of the cog-

nitive component, self-confidence factor, 𝑐
2
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relative influence of the social component, swarm confidence
factor, 𝑃

𝑖𝑑
: personal best or 𝑝best of particle 𝑖, 𝑃

𝑔𝑑
: global best

or 𝑔best of the group, and 𝑤: inertia weight.
The current position that is the searching point in the

solution space can be modified by the following equation:

𝑋
𝑖𝑑
= 𝑋
𝑖𝑑
+ 𝑉
𝑖𝑑
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All swarm particles tend to move towards better posi-
tions; hence, the best position (i.e., optimum solution) can
eventually be obtained through the combined effort of the
whole population. The PSO algorithm is simple, easy to
implement, and computationally efficient.

2.2.2. Cuckoo Search. Cuckoo search is an optimization
technique developed by Yang and Deb in 2009 based on the
brood parasitism of cuckoo species by laying their eggs in
the nests of other host birds. If a host bird discovers the eggs
which are not their own, it will either throw these foreign
eggs away or simply abandon its nest and build a new nest
elsewhere. Each egg in a nest represents a solution, and a
cuckoo egg represents a new solution.Thebetter new solution
(cuckoo) is replaced with a solution which is not so good in

the nest. In the simplest form, each nest has one egg. A new
solution is generated by Lévy flight. The rules for CS are as
follows:

(i) each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest;

(ii) the best nests with high quality of eggs will carry over
to the next generations;

(iii) the number of available host nests is fixed, and a host
can discover a foreign egg with a probability 𝑝

𝑎
∈

[0, 1]. In this case, the host bird can either throw
the egg away or abandon the nest so as to build a
completely new nest in a new location.

When generating new solutions 𝑥(𝑡 + 1) for a cuckoo 𝑖, a
Lévy flight is performed using the following equation:

𝑥
𝑖
(𝑡 + 1) = 𝑥

𝑖
(𝑡) + 𝛼 ⊕ Lévy (𝜆) . (6)

The symbol ⊕ is an entrywise multiplication. Basically
Lévy flights provide a random walk while their random steps
are drawn from a Lévy distribution for large steps given in

Lévy ∼ 𝑢 = 𝑡
−𝜆
. (7)

This has an infinite variance with an infinite mean. Here the
consecutive jumps of a cuckoo essentially form a random
walk process which obeys a power-law step-length distribu-
tion with a heavy tail.

2.2.3. Shuffled Frog Leaping. SFL is swarm intelligence based
subheuristic computation optimization algorithm proposed
by Eusuff and Lansey [25] to solve discrete combinatorial
optimization problem. A group of frogs leaping in a swamp
is considered and the swamp has a number of stones at
distinct locations on to which the frogs can leap to find the
stone that has the maximum amount of available food. The
frogs are allowed to communicate with each other so that
they can improve their memes using other’s information. An
individual frog’s position is altered by changing the leaping
steps of each frog which improves a meme results.

The search begins with a randomly selected popula-
tion of frogs covering the entire swamp. The population is
partitioned into several parallel groups (memeplexes) that
are permitted to evolve independently, to search the space
in different directions. Within each memeplex, the frogs
are infected by other frog’s ideas; hence they experience a
memetic evolution.

Memetic evolution progresses the quality of the meme of
an individual and enhances the individual frog’s performance
towards a goal. To ensure that the infection process is
competitive, it is required that frogs with better memes
(ideas) contribute more to the development of new ideas
than frogs with poor ideas. Selecting frogs using a triangular
probability distribution provides a competitive advantage to
better ideas. During the evolution, the frogs may change
their memes using the information from the memeplex best
or the best of the entire population. Incremental changes
in memotype(s) correspond to a leaping step size and the
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Figure 1: Schematic representation of the proposed method.

new meme corresponds to the frog’s new position. After
an individual frog has improved its position, it is returned
to the community. The information gained from a change
in position is immediately available to be further improved
upon.

After a certain number of memetic evolution time loops,
the memeplexes are forced to mix and new memeplexes are
formed through a shuffling process. This shuffling enhances
the quality of the memes after being infected by frogs from
different regions of the swamp. Migration of frogs accelerates
the searching procedure sharing their experience in the form
of infection and it ensures that the cultural evolution towards
any particular interest is free from regional bias.

Here, the population consists of a set of frogs (solutions)
that is partitioned into subsets referred to asmemeplexes.The
different memeplexes are considered to be different cultures
of frogs, each performing a local search. Within each meme-
plex, the individual frogs hold ideas that can be influenced
by the ideas of other frogs and evolve through a process
of memetic evolution. After a defined number of memetic
evolution steps, ideas are passed among memeplexes in a
shuffling process.The local search and the shuffling processes
continue until defined convergence criteria are satisfied. An
initial population of 𝑃 frogs is created randomly. For 𝑆-
dimensional problems (𝑆 variables), a frog 𝑖 is represented as
𝑋
𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑆
). Afterwards, the frogs are sorted in a

descending order according to their fitness. Then, the entire
population is divided into 𝑚memeplexes, each containing 𝑛
frogs (𝑃

𝑚×𝑛
). In this process, the first frog goes to the first

memeplex, the second frog goes to the second memeplex,
frog 𝑚 goes to the 𝑚th memeplex, frog 𝑚 + 1 goes back to
the first memeplex, and so forth. Within each memeplex, the
frogs with the best and the worst fitnesses are identified as𝑋

𝑏

and𝑋
𝑤
, respectively. Also, the frogwith the global best fitness

is identified as 𝑋
𝑔
. Then, a process similar to PSO is applied

to improve only the frog with the worst fitness (not all frogs)
in each cycle.

2.2.4. Shuffled Frog Leaping with Lévy Flight. A Lévy flight
is a random walk in which the steps are defined in terms of
the step lengths, which have a certain probability distribution,
with the directions of the steps being isotropic and random.
Lévy flights model activities that involve a lot of small
steps scattered with occasional very large trips. Foraging
paths of some deer and albatross are examples for Lévy
flights. In the case of foraging paths, this result is sensible
because the stopping points of a Lévy flight are fractal and
in complex ecosystems the distribution of food is fractal. To

avoid spending too much time in such unproductive areas,
animals need to develop search strategies that generate a
fractal distribution of stopping points. Lévy flights have this
property. To improve the searching strategy of frogs and
performance of classification in SFL, an additional parameter
LF is added. The Pseudocodes 1, 2, 3, and 4 represent the
pseudocodes of PSO, CS, SFL and SFLLF.

3. Feature Selection Based on Swarm
Intelligence Techniques

The statistical measures are used to identify top-m genes and
these genes are further used for feature selection in PSO, CS,
SFL, and SFLLF. Figure 1 gives the schematic representation
of the proposed method.

3.1. Candidate Solution Representation. Figure 2 shows the
candidate solution representation of particle position for
PSO, egg for CS, and frog for SFL and SFLLF using top-
m informative genes which are obtained from statistical
techniques. The most used way of encoding the feature
selection is a binary string, but the above optimization
techniques work well for continuous optimization problem.
The random values are generated for gene position.The genes
are considered when the value in its position is greater than
0.5; otherwise it is ignored.

3.2. Fitness Function. The accuracy of 𝑘-NN classifier is used
as the fitness function [26, 27] for SI techniques. The fitness
function fitness(𝑥) is defined as

fitness (𝑥) = Accuracy (𝑥) . (8)

Accuracy(𝑥) is the test accuracy of testing data 𝑥 in the 𝑘-
NN classifier which is built with the feature subset selection
of training data.The classification accuracy of 𝑘-NN is given
by

Accuracy (𝑥) = (
𝑐

𝑡
) × 100, (9)

where 𝑐: samples that are classified correctly in test data by
𝑘-NN technique and 𝑡: total number of samples in test data.

4. Experimental Setup

In order to assess the performance of the proposed work,
ten benchmark datasets are used. Table 1 shows the datasets
collected from Kent Ridge Biomedical Data Repository. The
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For each particle
Initialize particle

END

Do
For each particle

Calculate fitness value
If the fitness value is better than its personal best

Set current value as the new 𝑝𝑏𝑒𝑠𝑡

End
Choose the particle with the best fitness value of all as 𝑔𝑏𝑒𝑠𝑡

For each particle
Calculate particle velocity according (4)
Update particle position according (5)

End
While maximum iterations or minimum error criteria is not attained

Pseudocode 1: Pseudocode for PSO.

Generate an initial population of 𝑛 host nests;
while (𝑡 <MaxGeneration) or (stop criterion)
Get a cuckoo randomly (say, 𝑖) and replace its solution by performing Levy flights;
Evaluate its fitness 𝐹

𝑖

Choose a nest among 𝑛 (say, 𝑗) randomly;
if (𝐹
𝑖
< 𝐹
𝑗
)

Replace 𝑗 by the new solution;
end if
A fraction (𝑝

𝑎
) of the worse nests is abandoned and new ones are built;

Keep the best solutions/nests;
Rank the solutions/nests and find the current best;
Pass the current best to the next generation;

end while

Pseudocode 2: Pseudocode for CS.

Generate random population of 𝑃 solutions (frogs);
Calculate fitness function 𝑓 value of each frog;

Repeat for specific number of times
Sort the population 𝑃 in descending order of their fitness;
Divide 𝑃 into𝑚memeplexes;
Repeat for specific number of iterations
For each memeplex determine the best and worst frogs 𝑋

𝑏
and𝑋

𝑤
;

Identify the best frog for the entire population𝑋
𝑔
;

Improve the worst frog position using𝑋
𝑤
(𝑡 + 1) = rand() × (𝑋

𝑏
(𝑡) − 𝑋

𝑤
(𝑡))

If 𝑓(𝑋
𝑤
(𝑡 + 1)) < 𝑓(𝑋

𝑤
(𝑡))

𝑋
𝑤
(𝑡 + 1) = rand() × (𝑋

𝑔
(𝑡) − 𝑋

𝑤
(𝑡))

if 𝑓(𝑋
𝑤
(𝑡 + 1) < 𝑓(𝑋

𝑤
(𝑡))

generate the random solution for𝑋
𝑤
(𝑡 + 1)

end;
Combine the evolved memeplexes;

end;
Present the best frog𝑋

𝑔

end;

Pseudocode 3: Pseudocode for SFL.
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Generate random population of 𝑃 solutions (frogs);
Calculate fitness function 𝑓 value of each frog;

Repeat for specific number of times
Sort the population 𝑃 in descending order of their fitness;
Divide 𝑃 into𝑚memeplexes;
Repeat for specific number of iterations
For each memeplex determine the best and worst frogs𝑋

𝑏
and𝑋

𝑤
;

Identify the best frog for the entire population𝑋
𝑔
;

Improve the worst frog position using𝑋
𝑤
(𝑡 + 1) = rand() × (𝑋

𝑏
(𝑡) − 𝑋

𝑤
(𝑡))

If 𝑓(𝑋
𝑤
(𝑡 + 1)) < 𝑓(𝑋

𝑤
(𝑡))

𝑋
𝑤
(𝑡 + 1) = rand() × (𝑋

𝑔
(𝑡) − 𝑋

𝑤
(𝑡))

if 𝑓(𝑋
𝑤
(𝑡 + 1) < 𝑓(𝑋

𝑤
(𝑡))

Levy ∼ 𝑢 = 𝑡
−𝜆 and 𝑥

𝑤
(𝑡 + 1) = 𝑥

𝑤
(𝑡) + 𝛼 ⊕ Levy(𝜆)

end;
Combine the evolved memeplexes;

end;
Present the best frog𝑋

𝑔

end;

The symbol ⊕ is an entrywise multiplication. Basically Lévy flights provide a random walk while their random steps are drawn
from a Lévy distribution for large steps.

Pseudocode 4: Pseudocode for SFLLF.

Table 1: Microarray gene expression datasets.

Dataset name Number of genes Class 1 Class 2 Total samples
CNS 7129 Survivors (21) Failures (39) 60
DLBCL Harvard 7129 DLBCL (58) FL (19) 77
DLBCL Outcome 7129 Cured (32) Fatal (26) 58
Lung Cancer Michigan 7129 Tumor (86) Normal (10) 96
Ovarian Cancer 15154 Normal (91) Cancer (162) 253
Prostate Outcome 12600 Nonrelapse (13) Relapse (8) 21
AML-ALL 7129 ALL (47) AML (25) 72
Colon Tumor 2000 Tumor (40) Healthy (22) 62
Lung Harvard2 12533 ADCA (150) Mesothelioma (31) 181
Prostate 12600 Normal (59) Tumor (77) 136

g1 g2 g3 g4 g5 gm· · ·

· · ·0.25 0.56 0.12 0.001 0.98 0.434 0.112

gn−1

Figure 2: Candidate solution representation.

number of samples present in each class is given within
parenthesis.The parameters and their values of PSO, CS, SFL,
and SFLLF are shown in Table 2.

From the microarray data the discriminative genes are
identified and ranked based on 𝑇-statistics, signal-to-noise
ratio, and𝐹-test values.The top-m genes are used to represent
the candidate solutions of the SI techniques. The values 10,
50, and 100 are assigned to m for testing purpose. The SI
technique identifies the features (genes) for classification.The
𝑘-NNmethod is used for classification. By empirical analysis
the value of 𝑘 is assigned to be 5. The classification accuracy
is obtained from 5-fold cross-validation.

Table 2: Parameters and their values.

Parameter Value
Particle/egg/frog size 10, 50, 100
Number of memeplexes (𝑚) 10
Number of frogs in each memeplex (𝑛) 5
Population size 50
Maximum number of generations 200
Shuffling iteration 20
𝑤 0.9
𝑐
1

2.1
𝑐
2

2.1
𝛼 1
𝜆 1.5
Distance measure in k-NN Euclidean
𝑘-value in k-NN 5
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Table 3: Comparison of classification accuracies obtained from different SI techniques.

Dataset name SI techniques
PSO CS SFL SFLLF

CNS 100
∼#

87.5
∼#

93.75
∼#

100
∼#

DLBCL Harvard 100
∼#

100
∼

96
∼#

100
∼#

DLBCL Outcome 95.45
#

77.27
+∼#

81.81
+∼#

95.45
#

Lung Cancer Michigan 100
+∼#

100
∼#

100
+#

100
+∼#

Ovarian Cancer 100
∼#

100
#

100
#

100
∼#

Prostate Outcome 100
#

85.71
+∼

85.71
∼#

100
#

AML-ALL 100
∼#

100
#

100
#

100
∼#

Colon Tumor 95
∼

95
∼

95
∼

100
∼

Lung Harvard2 100
∼#

100
∼#

100
∼#

100
∼#

Prostate 97.56
#

92.68
#

92.68
#

97.56
#

+
𝑇-statistics.
∼SNR.
#
𝐹-test.

Table 4: Comparison of classification accuracy with other methods for CNS.

Reference (year) Methodology Maximum classification
accuracy in percentage

Alonso-González et al. (2012) [18] Combination of attribute selection and classification algorithm 75.49
Liu et al. (2010) [9] EGS (ensemble gene selection) method 98.33
This work PSO 100
This work Cuckoo search 87.5
This work SFL 93.75
This work SFLLF 100

Table 5: Comparison of classification accuracy with other methods for DLBCL Harvard.

Reference (year) Methodology Maximum classification
accuracy in percentage

Huang et al. (2012) [17] iSELF (improved semisupervised local
Fisher) discriminant analysis 94.67

Alonso-González et al. (2012) [18] Combination of attribute selection and
classification algorithm 100

Dagliyan et al. (2011) [11] HBE (hyperbox enclosure) method 96.1

Chuang et al. (2011) [10] Correlation-based feature selection (CFS)
and Taguchi genetic algorithm (TGA) 100

Chopra et al. (2010) [8] Based on gene doublets 98.1

Martinez et al. (2010) [7] Swarm intelligence feature selection
algorithm 100

This work PSO 100
This work Cuckoo search 100
This work SFL 96
This work SFLLF 100

5. Experimental Results and Discussion

Figures 3, 4, 5, and 6 show the results obtained from 𝑘-NN
classifier through the feature selection methods PSO, CS,
SFL, and SFLLF, respectively, for top-10, top-50, and top-
100 genes obtained from 𝑇-statistics, SNR, and 𝐹-test. These
results show that for Colon Tumor and Prostate Cancer the
100% accuracy is not achieved by any method. The SFLLF

algorithm gives 100% accuracy for Lung CancerMichigan for
all different statistical tests and different numbers of top-m
genes. From the results it is inferred that the m value does
not influence the accuracy of the classifier. So the value of m
should be identified through empirical analysis.

Table 3 compares the maximum classification accuracies
obtained from the SI techniques with different statistical
measures.
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Table 6: Comparison of classification accuracy with other methods for DLBCL Outcome.

Reference (year) Methodology Maximum classification
accuracy in percentage

Alonso-González et al. (2012) [18] Combination of attribute selection and classification algorithm 67.84
Wang and Simon (2011) [12] Univariate class discrimination with single gene 74
This work PSO 95.45
This work Cuckoo search 77.27
This work SFL 81.81
This work SFLLF 95.45

Table 7: Comparison of classification accuracy with other methods for Lung Cancer Michigan.

Reference (year) Methodology Maximum classification
accuracy in percentage

Alonso-González et al. (2012) [18] Combination of attribute selection and classification algorithm 100
Liu et al. (2010) [9] EGS (ensemble gene selection) method 89.58
This work PSO 100
This work Cuckoo search 100
This work SFL 100
This work SFLLF 100

Table 8: Comparison of classification accuracy with other methods for Ovarian Cancer.

Reference (year) Methodology Maximum classification
accuracy in percentage

Alonso-González et al. (2012) [18] Combination of attribute selection and classification algorithm 100
This work PSO 100
This work Cuckoo search 100
This work SFL 100
This work SFLLF 100

Table 9: Comparison of classification accuracy with other methods for Prostate Outcome.

Reference (year) Methodology Maximum classification
accuracy in percentage

Dagliyan et al. (2011) [11] HBE (hyperbox enclosure) method 95.24
This work PSO 100
This work Cuckoo search 85.71
This work SFL 85.71
This work SFLLF 100

Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 give the comparison
of the proposed work with existing methods. Experimental
results show that SFLLF outperforms the existing methods.

6. Conclusions

Cancer classification using gene expression data is an impor-
tant task for addressing the problem of cancer prediction
and diagnosis. For an effective and precise classification,

investigations of feature selection methods are essential.
The swarm intelligence techniques based feature selection
methods are simple and can be easily combined with other
statistical feature selection methods. It is a simple model
based on statistical measures and swarm intelligence tech-
niques that perform two levels of feature selection to get
the most informative genes for classification process. 𝑇-
statistics, signal-to-noise ratio, and 𝐹-test are used to select
the important genes that are the reason for cancer. The SI
techniques such as PSO, CS, SFL, and SFLLF are applied on
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Table 10: Comparison of classification accuracy with other methods for AML-ALL.

Reference (year) Methodology Maximum classification
accuracy in percentage

Alonso-González et al. (2012) [18] Combination of attribute selection and classification
algorithm 100

Maji (2012) [19] Mutual Information 100
Chandra and Gupta (2011) [13] Effective range based gene selection 98.61

Chuang et al. (2011) [10] Correlation-based feature selection (CFS) and
Taguchi genetic algorithm (TGA) 100

Dagliyan et al. (2011) [11] HBE (hyperbox enclosure) method 100
Martinez et al. (2010) [7] Swarm intelligence feature selection algorithm 100
Liu et al. (2010) [9] EGS (ensemble gene selection) method 100
Chopra et al. (2010) [8] Based on gene doublets 100
Wang and Gotoh (2009) [6] Rough sets 100

Vanichayobon et al. (2007) [5] Gene selection step and clustering cancer data by
using self-organizing map 100

Jirapech-Umpai and Sturat (2005) [4] Evolutionary algorithm 98.24
This work PSO 100
This work Cuckoo search 100
This work SFL 100
This work SFLLF 100

Table 11: Comparison of classification accuracy with other methods for Colon Tumor.

Reference (year) Methodology Maximum classification
accuracy in percentage

Alonso-González et al. (2012) [18] Combination of attribute selection and classification algorithm 88.41
Maji (2012) [19] Mutual information 100
Chandra and Gupta (2011) [13] Effective range based gene selection 83.87
Li et al. (2011) [15] Margin influence analysis with SVM 100
Chopra et al. (2010) [8] Based on gene doublets 91.1
This work PSO 95
This work Cuckoo search 95
This work SFL 95
This work SFLLF 100

Table 12: Comparison of classification accuracy with other methods for Lung Harvard2.

Reference (year) Methodology Maximum classification
accuracy in percentage

Alonso-González et al. (2012) [18]Combination of attribute selection and classification algorithm 99.63
Chandra and Gupta (2011) [13] Effective range based gene selection 100
Wang and Simon (2011) [12] Univariate class discrimination with single gene 99
Chopra et al. (2010) [8] Based on gene doublets 100
Wang and Gotoh (2009) [6] Rough sets 97.32
Vanichayobon et al. (2007) [5] Gene selection step and clustering cancer data by using self-organizing map 100
This work PSO 100
This work Cuckoo search 100
This work SFL 100
This work SFLLF 100
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Particle swarm optimization
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Figure 3: Classification accuracy using particle swarm optimization.
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Figure 4: Classification accuracy using cuckoo search.

Table 13: Comparison of classification accuracy with othermethods
for Prostate.

Reference (year) Methodology Maximum classification
accuracy in percentage

Wang and Gotoh
(2009) [6] Rough sets 91.18
This work PSO 97.56
This work Cuckoo search 92.68
This work SFL 92.68
This work SFLLF 97.56

the selected top-m genes for feature selection. The 𝑘-NN is
used as a classifier. The experiment results are demonstrated

on well-known gene expression benchmark datasets and the
performance of SFLLF is compared with PSO, CS, SFL, and
the existing works in the literature. The experimental results
show that SFLLF outperforms PSO, CS, and SFL. SFLLF
feature selection method gives 100% accuracy for 8 datasets
out of 10 datasets with 𝑘-NN classifier.
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Figure 5: Classification accuracy using shuffled frog leaping.
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Figure 6: Classification accuracy using shuffled frog leaping with Lévy flight.

References

[1] J. Kennedy and R. C. Eberhart, “Discrete binary version of
the particle swarm algorithm,” in Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, pp.
4104–4141, IEEE Service Center, Piscataway, NJ, USA, October
1997.

[2] X. Yang and S. Deb, “Cuckoo search via Lévy flights,” in
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