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The circadian rhythm, observed as a periodic 24-h 
behavioral and physiological cycle at the organismal 
level, is governed by an evolutionarily conserved set 
of core clock genes operating at the transcriptional 
and protein level. Consisting of only a few genes, the 

circadian clock coordinates a vast array of cellular 
processes, including the cyclic expression of nearly 
half the genes across all tissues (Zhang et al., 2014). 
This rhythm can be entrained to environmental cues 
(zeitgebers) such as light, temperature, and food, 
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Abstract The circadian rhythm drives the oscillatory expression of thousands 
of genes across all tissues, coordinating physiological processes. The effect of 
this rhythm on health has generated increasing interest in discovering genes 
under circadian control by searching for periodic patterns in transcriptomic 
time-series experiments. While algorithms for detecting cycling transcripts 
have advanced, there remains little guidance quantifying the effect of experi-
mental design and analysis choices on cycling detection accuracy. We present 
TimeTrial, a user-friendly benchmarking framework using both real and syn-
thetic data to investigate cycle detection algorithms’ performance and improve 
circadian experimental design. Results show that the optimal choice of analysis 
method depends on the sampling scheme, noise level, and shape of the wave-
form of interest and provides guidance on the impact of sampling frequency 
and duration on cycling detection accuracy. The TimeTrial software is freely 
available for download and may also be accessed through a web interface. By 
supplying a tool to vary and optimize experimental design considerations, 
TimeTrial will enhance circadian transcriptomics studies.
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allowing external stimuli to modulate time-of-day–
specific functions. While numerous epidemiological 
studies have demonstrated significant links between 
circadian rhythms and human health (Levi and 
Schibler, 2007; Roenneberg et al., 2007; Chang et al., 
2009; Puttonen et al., 2010; Kathale and Liu, 2014; 
Videnovic et al., 2014; Zhang et al., 2014; Patke et al., 
2017; Braun et al., 2018), the underlying mechanisms 
linking the circadian clock to health outcomes remain 
largely unknown.

The advent of high-throughput omic technology 
now enables researchers to investigate these mecha-
nisms in molecular detail by tracking the expression 
of thousands of transcripts over the course of the day, 
with the goal of identifying specific genes under cir-
cadian control. However, there are a number of ana-
lytical challenges in extracting rhythmic signals from 
noisy transcriptomic data. First, experimental limita-
tions constrain the frequency and length of sampling, 
requiring inferences to be made from sparse or short 
time-series measurements. Second, cycling genes’ 
expression profiles often do not exhibit sinusoidal 
trajectories; sharp peaks, damped oscillations, and 
additive linear trends have all been observed.

To address the complexities of circadian rhythm 
detection, a range of nonparametric methods have 
been developed (Hughes et al., 2010; Yang and Su, 
2010; Thaben and Westermark, 2014; Perea et al., 
2015; Wu et al., 2016; Hutchison et al., 2018). These 
methods search for evidence of periodicity (e.g., by 
testing for correlations with template waveforms; 
Hughes et al., 2010; Hutchison et al., 2018). However, 
subsequent benchmarking studies demonstrate that 
different methods can yield conflicting results when 
run on the same data set (Serpedin et al., 2008; 
Deckard et al., 2013; Wu et al., 2014). Moreover, per-
formance depends on the shape of the signal being 
detected, noise levels, and sampling schemes (Hughes 
et al., 2009; Deckard et al., 2013).

In addition to performance differences, there are 
also considerations of various methods’ abilities to 
handle replicates, uneven sampling, missing data, 
and computational efficiency. In practice, the ability 
for methods to adequately handle these features 
directly affects a researcher’s flexibility in experimen-
tal design. For instance, a method that can accommo-
date uneven sampling can allow for dense sampling 
at times of interest, with sparser sampling at other 
times. Because missing data often occur as a result of 
sequencing errors with greater likelihood as sample 
size increases (Gierliński et al., 2015), researchers ben-
efit from algorithms that can handle missingness 
without the need to impute data. Finally, computa-
tional efficiency allows for data set sizes to grow 
while still processing the data in a reasonable amount 
of time. Taken together, methodological constraints 

imply that the choice of cycling detection method will 
necessarily affect the optimal experimental design 
and vice versa.

These considerations, coupled with the need to 
limit costs, imply that designing an optimal circadian 
time-series experiment is a nontrivial task. While rec-
ommendations for experimental designs have been 
made (Hughes et al., 2007; Wu et al., 2014; Hughes 
et al., 2017), quantitative tools to flexibly and compre-
hensively weigh these considerations in the context 
of real data remain lacking. Moreover, while research-
ers have attempted to define criteria for method 
usage (Deckard et al., 2013; Wu et al., 2014; Hutchison 
et al., 2018), no guidance exists for custom sampling 
schemes, as previous studies used fixed sampling 
schemes and a limited number of waveform shapes.

To address these challenges, this article focuses on 
optimizing circadian rhythm detection by introduc-
ing a framework to evaluate the reliability of cycling 
detection as sampling schemes, waveform shapes, 
and cycling detection algorithms are varied. The 
results provide valuable evidence-based guidance for 
experimental design and analysis choices. As part of 
this work, we developed TimeTrial: an interactive, 
user-friendly, open-source software suite that enables 
circadian researchers to perform head-to-head com-
parisons of four leading cycle detection methods 
(JTK_CYCLE [Hughes et al., 2010], ARSER [Yang and 
Su, 2010], RAIN [Thaben and Westermark, 2014], and 
BooteJTK [Hutchison et al., 2018]; Suppl. Table S1) 
using both synthetic and real data. With TimeTrial, 
researchers can further explore these methods’ per-
formance under different noise levels, number of rep-
licates, length of sampling, sampling resolution, and 
waveform shapes. An innovative feature of TimeTrial 
is the ability for the researcher to specify an arbitrary 
custom sampling scheme and obtain comparison of 
the cycling detection results, allowing them to gauge 
how their design choices may affect the experimental 
findings. Together, these results will enhance rigor 
and reproducibility in future circadian time-series 
experiments and improve tools to analyze cycling 
genes in increasingly large and complex datasets.

RESuLTS

TimeTrial was developed as a tool for the design 
and optimization of omic time-series experiments in 
circadian biology research. Consisting of two interac-
tive applications using both synthetic and real data, 
TimeTrial allows researchers to explore the effects of 
experimental design on cycling detection, examine 
the reproducibility of cycling detection methods 
across biological data sets, and optimize experimen-
tal design for cycle detection. Applied to four cycle 
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detection methods (JTK_CYCLE [Hughes et al., 2010], 
ARSER [Yang and Su, 2010], RAIN [Thaben and 
Westermark, 2014], and BooteJTK [Hutchison et al., 
2018]; Suppl. Table S1), our results reveal that no 
method consistently outperforms all others in all cir-
cumstances but rather that the performance depends 
on the sampling schemes and waveforms of interest. 
An interactive interface allows researchers to explore 
performance under different sampling schemes 
(including varying lengths, resolutions, and irregular 
sampling), providing valuable guidance for the opti-
mization of circadian transcriptomic experiments 
given practical constraints (e.g., number of samples) 
and the signals of interest.

TimeTrial provides insights into cycling detection 
performance using both synthetic data and real data. 
The synthetic data provide precise control over the 
input data dynamics and noise, allowing the accu-
racy of cycling detection to be directly assessed when 
the ground truth (cycling/non-cycling) is known. 
The real data, which come from multiple studies, 
allow cycling detection methods to be assessed in 
terms of the reproducibility of the findings in biologi-
cally representative datasets.

Synthetic Data: Simulating Gene Expression 
Dynamics

To comprehensively evaluate the performance of 
cycling detection methods for different patterns of 
temporal gene expression, we systematically created 
synthetic data sets consisting of varying number of 
replicates, sampling intervals, sampling lengths, and 
noise levels for a variety of waveform shapes; in total, 
these represent 240 combinations of conditions (Fig. 
1A). One thousand “genes” were simulated with 
varying amplitudes, phases, and shape parameters 
(e.g., the envelope for damped/amplified waves) for 
each of the 11 base waveforms (Fig. 1B), yielding in 
total 11,000 simulated genes for each of the 240 condi-
tions. The choice of waveform shapes was inspired 
by patterns observed in experimental circadian data 
sets (Suppl. Fig. 1) and is designed to give the user an 
avenue to explore the types of patterns that would be 
classified as cycling or noncycling for various sam-
pling and analysis choices. Further details of the syn-
thetic data sets can be found in the Methods section 
and the supplement.

Biological Data: Reproducibility Analysis

While synthetic data have the advantage of a 
known ground truth, they have the drawback of not 
necessarily being representative of real biological 
data sets. On the other hand, measuring a method’s 

accuracy using real data is limited, as the ground 
truth is not generally known. Instead, one may test 
the reproducibility of the results, under the assump-
tion that a true biological signal should be consis-
tently detected across multiple studies of the same 
condition.

To this end, we took a “cross-study concordance” 
approach in which we tested methods’ ability to con-
sistently characterize a set of 12,868 genes measured 
in three independent studies as cycling or noncycling. 
By evaluating the rank correlation ρ of the cycling 
detection p-values obtained from the various studies, 
our analysis directly quantifies reproducibility. We 
analyzed three distinct mouse liver time-series 
expression sets (Hughes et al., 2009, 2012; Zhang 
et al., 2014) to evaluate the concordance. In addition, 
we down-sampled each data set to mimic the effect of 
sparser sampling. Additional details can be found in 
the Methods section.

Experimental Design Recommendations

Using TimeTrial to analyze common sampling 
schemes in both synthetic and biological data sets, 
the following sections present recommendations for 
the experimental design framework with regard to 
selection of sampling scheme and concatenation. For 
the development of customized sampling schemes 
that may better fit the individual researcher’s needs, 
users are encouraged to explore TimeTrial’s custom 
sampling feature as described in the TimeTrial 
Capabilities and Usage section.

Sampling resolution. While long, frequently sampled 
time series provide the clearest picture of circadian 
dynamics, this must be balanced with practical con-
siderations such as experimental cost. It is thus of 
interest to identify an optimal sampling scheme by 
varying sampling length, resolution, and replicates. 
To determine the limits of cycling detection as the fre-
quency and length of sampling is reduced, we down-
sampled three data sets and compared the results 
across all genes (Fig. 1C).

To determine whether a method provides consis-
tent results at lower sampling, we compute the rank 
correlation ρ of the cycling detection p-values across 
all genes for different data sets and sampling schemes 
to quantitatively determine whether two methods 
yield the same ranking of cycling genes, without set-
ting arbitrary p-value thresholds. Results revealed 
that 1-h and 2-h sampling resolutions show high cor-
relation across all data sets and methods, with ρ val-
ues between 0.79 and 0.94 (Suppl. Fig. S2). This 
implies that at 1- and 2-h sampling, all methods 
reproducibly rank the same genes (from most to least 
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Figure 1. Experimental design, synthetic and biological data. (A) A total of 240 unique synthetic time-course data sets were generated 
in R with known ground truth. Each data set consisted of a different number of replicates, sampling intervals, sampling lengths, and 
noise levels as a percentage of the wave form amplitude. Each lowest-level rectangle represents an independent experiment. (B) Each 
data set consisted of 11 different classes of waveforms commonly seen in real biological data. Seven were classified as cycling and 
four as noncycling. Signals are shown with additive Gaussian noise as a percentage of the wave form amplitude (i.e., 10%, 20%, 30%, 
and 40%). All cycling waveforms had a set period of 24-h, except contractile, which varied over time. (C) Three mouse liver time-series 
expression sets were analyzed from the Gene Expression Omnibus database: Hogenesch 2009 (GSE11923), Hughes 2012 (GSE30411), and 
Zhang 2014 (GSE54650). The Hughes and Zhang studies, sampled every 2-h for 48-h, were down-sampled to two data sets sampled every 
4-h (Hughes_4A and Hughes_4B; Zhang_4A and Zhang_4B). The Hogenesch study, sampled every 1-h for 48-h, was down-sampled to 
two data sets sampled every 2-h (Hogenesch_2A and Hogenesch_2B) and also into four data sets sampled every 4-h (Hogenesch_4A, 
Hogenesch_4B, Hogenesch_4C, and Hogenesch_4D).
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cycling) in the three independent data sets. It also sug-
gests that different methods identify the same genes at 
the top of their respective lists, implying that the choice 
of methods does not significantly affect the results at 
these resolutions. In contrast, the results from 4-h sam-
pling resolutions show poorer correlations across data 
sets and methods, with ρ values between 0.67 and 0.89 
(Suppl. Fig. S2), implying that results become less reli-
ably reproducible with 4-h sampling. Moreover, when 
working in the low-density regimes, there is less con-
cordance between methods, suggesting that the choice 
of method has a large impact on the cycle detection 
results (Suppl. Fig. S3). Taken together, these results 
suggest that cycle detection is robust at 1- and 2-h sam-
pling intervals but becomes significantly less reliable 
at 4-h sampling intervals.

Importantly, we find that 4-h sampling not only 
misses cycling genes that are detected at 1- and 2-h 
sampling (false-negatives) but can also lead to erro-
neously calling noncycling genes as cycling (false-
positives). Figure 2A illustrates a gene that is not 
rhythmic in the 2-h sampling but appears periodic 
when down-sampled to 4-h. A cluster of such genes 
can be seen in the lower right of the scatter plots in 
(Fig. 2B), where genes have a nonsignificant –log(p) 
in the 2-h sampling scheme but a significant –log(p) 
the 4-h sampling scheme. Figure 2C shows the over-
lap of genes detected as cycling at FDR <0.05 under 
2- and 4-h sampling. In addition, we investigated 
whether known core clock genes were consistently 
detected as cycling; although they are robustly 
detected in the 1-h and all 2-h data sets, they are less 

reliably detected in the 4-h data, further corroborat-
ing the findings above.

One may then ask whether it is better to devote 
resources to more frequent sampling or to a greater 
number of replicates at lower sampling rates. From 
the standpoint of sequencing cost, sampling every 
4-h for 48-h with 2 replicates is the same as sampling 
every 2-h for 48-h with 1 replicate. Tests with syn-
thetic data show these 2 schemes are similarly pow-
ered in their ability to detect true cycling genes; 
however, the 2-h single-replicate scheme has the ben-
efit of fewer false-positives compared with 4-h dupli-
cate sampling (Fig. 2A). These findings suggest that 
sampling every 2-h for 48-h with a single replicate is 
advantageous over sampling every 4-h in duplicate.

Concatenation bias. Concatenation of replicate time 
series is common practice in the field of circadian 
biology (Duong et al., 2011), wherein researchers will 
concatenate two replicate 24-h series into a single 
48-h series. This is done under the assumption that if 
a signal has a true 24-h period, concatenation of the 
signal will maintain its cyclic nature. However, con-
catenation of replicates can induce apparent 24-h 
periodicity for nonperiodic signals (Fig. 3A).

As we increase the sampling resolution in the low-
noise regime, accuracy of the concatenated data 
decreases, as seen by the negative slope in Figure 3B 
(solid gray line). Paradoxically, this means our ability 
to correctly classify genes becomes worse with more 
samples with less noise. A closer look at the samples 
highlighted by the orange line in Figure 3B illustrates 

Figure 2. Effect of experimental resolution. (A) Expression time courses of the P2ry10b gene at 2-h and the two down-sampled 4-h (4A 
and 4B) resolution from the Zhang data set. (B) Scatterplots of –log(pVals) of 2-h sampling versus 4-h sampling across all methods. p-val-
ues are not corrected for false-discovery rate (FDR) for comparison purposes. The orange point denotes the P2ry10b gene highlighted in 
the right panel. (C) Venn diagram of genes detected as cycling (FDR-adjusted p-value <0.05) in the 2-h versus 4-h down-sampled Zhang 
data set across all methods. Genes detected as cycling in the 4A and 4B conditions were grouped together.
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Figure 3. Concatenation bias. (A) Cartoon representation of concatenated versus averaged replicates of sigmoidal waveform. Top: Nonoscil-
latory when sampled for 48-h with averaged replicates. Bottom: Artificially oscillatory when sampled for 24-h with concatenated replicates. 
(B) Area under the curve (AuC) scores of the 24-h and 48-h time courses from the synthetic data sets were plotted as a function of the num-
ber of samples using BooteJTK. Time courses varied in sampling interval and number of replicates. Twenty-four-hour time courses were 
concatenated, whereas the 48-h time courses were averaged across replicates. Solid lines represent AuC scores in the low-noise regimes (0% 
and 10%), and dashed lines represent AuC scores in the high-noise regimes (30% and 40%). The vertical line represents the samples high-
lighted in panel B of the figure. (C) Top: ROC curves for all noise levels at 48-h every 2-h with 1 replicate and 24-h every 2-h with 2 replicates 
sampling scheme. Both schemes have the same number of time points. Bottom: Histograms of –log(p) values of cycling (light gray) and non-
cycling (orange) waveforms in each condition. Larger –log(p) values denote waveforms detected as more significantly cycling by BooteJTK.
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the reason for this effect (24-h at 2-h with 2 replicates 
vs. 48-h at 2-h with 1 replicate; Fig. 3C). The receiver-
operating characteristic (ROC) curves show that con-
catentation of two 24-h replicates increases the 
false-positive rate over the 48-h case due to periodic 
replication of any transient dynamics in the first 24-h 
period (Fig. 3C). As we increase our sampling resolu-
tion, we can better discern signal shape; coupled with 
concatenating expression patterns at the 24-h mark, 
this increased clarity causes methods searching for 
periodicity with a period of 24-h to erroneously clas-
sify sigmoidal, linear, and exponential signals as 
rhythmic. This finding corroborates other published 
studies (Hughes et al., 2009, 2017) that have likewise 
strongly recommended against concatenation. Taken 
together, these results imply time-series data should 
not be concatenated prior to statistical testing.

TimeTrial Capabilities and usage

The optimal choice of cycling detection method 
depends on sampling scheme, noise level, number of 
missing data points, number of replicates, and shape 
of the waveform of interest. Thus, in addition to the 
above recommendations, we provide TimeTrial as a 
freely available tool for users to explore cycling detec-
tion performance and to optimize their sampling 
schemes.

As described above, TimeTrial consists of 2 compo-
nents: one that analyzes cycling detection accuracy 
using synthetic data and another that analyzes cycling 
detection reproducibility using real data. In the first 
TimeTrial component, using synthetic data, users can 
experiment with different number of replicates, sam-
pling lengths, sampling resolutions, and noise levels 
to assess their effects on the detection of specific signal 
shapes (Fig. 4). By comparing the reported ROC 
curves, area under the curve (AUC) scores, and 
p-value distributions for each different sampling 
scheme and method, users can determine the optimal 
sampling scheme and method for cycle detection of 
various waveforms (i.e., cosine, peak, saw-tooth, etc.). 
Furthermore, users can assess the robustness of each 
method when noise is introduced by comparing the 
standard deviation AUC scores. Given a specified 
sampling scheme, methods with lower standard devi-
ations in AUCs imply the cycling detection results are 
stable across increasing noise values, whereas larger 
standard deviations indicate results are more strongly 
influenced by the noise level.

In addition, users can determine how their choices 
affect the p-value distribution of signal shapes to 
determine how robust a sampling scheme and 
method are at separating specific types of cycling sig-
nals from noncyclers. Finally, users can adjust p-value 
thresholds and inspect output on a per-signal basis to 

help determine appropriate threshold cutoffs for 
defining separation between signal shapes for down-
stream analysis.

In the second TimeTrial component, using real 
data, users can compare sets of genes detected as 
cycling by different methods and under different 
sampling schemes (Fig. 5). By comparing results 
across each data set and down sampling, users can 
perform a concordance analysis to determine which 
genes are picked up by each method and each sam-
pling scheme. The TimeTrial interface allows the user 
to explore cycling detection results at various levels 
of significance and minimal fold-change (a criterion 
commonly used to reduce false-positives). Given the 
knowledge of how sampling scheme effects the detec-
tion of waveform shape from use of the synthetic 
data sets, users can test the ability to pick up these 
shapes in the biological data set and judge whether 
the waveform shapes being detected as cycling are 
representative of the patterns they wish to detect.

Designing Circadian Experiments with TimeTrial

Most importantly, TimeTrial enables users to 
develop their own custom sampling scheme for cycle 
detection (Fig. 6). While sampling every hour for 
48-h would be ideal for cycling detection, it is also 
expensive. TimeTrial allows the user to explore how 
scheduling fewer samples will affect the results and 
explore whether enhanced sampling at specific times 
of day can improve detection. Irregular sampling 
schemes may be beneficial for scientific or practical 
considerations. For instance, one may be interested 
in monitoring not only cycling genes but how their 
dynamics change immediately following an expo-
sure; in this case, one might wish to bias samples 
toward the time immediately following the stimulus, 
at the expense of fewer samples later in the time 
course. The impact of these choices can be explored 
using TimeTrial’s down-sampling tool to test how 
this alternative sampling scheme compares to the 
ideal sampling scheme. (Note that the custom analy-
sis is performed using only JTK_CYCLE and RAIN, 
since ARSER and BooteJTK require regularly spaced 
samples; see Suppl. Table S1.) Finally, users can fur-
ther explore how adjusting the times and spacing of 
sampling might improve detection and query genes 
of interest to determine if a specific gene and/or core 
clock genes are detected.

The TimeTrial application is freely available for 
download at https://github.com/nesscoder/Time 
Trial and may also be accessed through a web inter-
face hosted on shinyapps.io: https://nesscoder 
.shinyapps.io/TimeTrial_Synthetic/, https://nesscoder 
.shinyapps.io/TimeTrial_Real/. (Note that we 

https://github.com/nesscoder/TimeTrial
https://github.com/nesscoder/TimeTrial
https://nesscoder.shinyapps.io/TimeTrial_Synthetic/
https://nesscoder.shinyapps.io/TimeTrial_Synthetic/
https://nesscoder.shinyapps.io/TimeTrial_Real/
https://nesscoder.shinyapps.io/TimeTrial_Real/
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recommend local installation from GitHub for 
greater speed and reliability, as it does not depend 
on the user’s internet connection.) Full documenta-
tion and walk-through tutorials are provided to 
guide users in the optimal use of these tools.

DISCuSSION

We developed TimeTrial, a tool that uses synthetic 
and real data to assist researchers in the design and 
analysis of circadian time-series experiments that 

optimize cycling detection. We applied TimeTrial to 
explore the effects of experimental design on signal 
shape, examine cycling detection reproducibility 
across biological data sets, and optimize experimen-
tal design for cycle detection. By comparing the per-
formance of different cycling detection algorithms 
under different sampling schemes, TimeTrial pro-
vides valuable guidance for the design of rigorous, 
reproducible cricadian transcriptomics studies. We 
expect that these results will be of interest to experi-
mentalists and computational researchers alike.

From an experimental perspective, our results sug-
gest several guidelines for designing circadian 

Figure 4. Synthetic sata. TimeTrial: interactive application for circadian rhythm study design. The synthetic data set version of Time-
Trial allows users to directly compare methods across different sampling lengths, sampling intervals, number of replicates, and noise 
levels. users can further set different significance thresholds and take closer looks into the ability of methods to detect different wave-
form patterns. See https://github.com/nesscoder/TimeTrial and/or https://nesscoder.shinyapps.io/TimeTrial_Synthetic/ for interactive 
plots and a complete tutorial.

https://github.com/nesscoder/TimeTrial
https://nesscoder.shinyapps.io/TimeTrial_Synthetic/
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time-series studies. First, we demonstrated that 24-h 
sampling with concatenation introduces biases that 
increase the number of false-positives, and therefore, 
this practice should be avoided (Hughes et al., 2017). 
Moreover, our findings suggest that 2-h resolution is 
required at a minimum to pick up the dynamical 
transcriptional changes that occur on the 24-h circa-
dian scale (corroborating earlier findings; Hughes 
et al., 2009, 2017) and that a 2-h resolution with a sin-
gle replicate is advantageous over a 4-h resolution in 
duplicate. We note that the errors produced with the 
4-h schemes include both false negatives (missed 
cyclers) and false positives (noncyclers erroneously 
classified as cycling), compromising the reliability of 
results obtained from 4-h sampling schemes. Finally, 
we observe that different detection methods exhibit 
different performance depending on the underlying 
waveform shape, suggesting that the researcher 

should consider the patterns of interest when select-
ing an analysis method. For instance, a researcher 
may decide that classifying a waveform with a strong 
linear drift as cyclic may be (un)desirable, in which 
case, a method that calls these patterns as (non)
cycling should be selected.

From a computational perspective, our results pro-
vide a means to benchmark new methods based on 
their accuracy in synthetic data and reproducibility in 
real data. They also indicate methodological gaps. 
Notably, our findings did not define a clear overall 
“winner” among the methods tested, suggesting that 
there is still a need for methods that perform consis-
tently well in multiple conditions for a variety of 
waveform shapes. Among these findings, we note 
that no method detects as cycling “contractile” wave-
forms in which the period changes (as might be the 
case when an environmental change is introduced), 

Figure 5. Real data. TimeTrial: exploring processed data. The real data set version of TimeTrial allows users to directly compare meth-
ods and sampling schemes. users can set different significance and log-fold change thresholds to explore the ability of different meth-
ods to pick up circadian clock genes (orange triangle) and genes of interests (green triangle) across data sets. See https://github.com/
nesscoder/TimeTrial and/or https://nesscoder.shinyapps.io/TimeTrial_Real/ for interactive plots and a complete tutorial.

https://github.com/nesscoder/TimeTrial
https://github.com/nesscoder/TimeTrial
https://nesscoder.shinyapps.io/TimeTrial_Real/
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indicating the need for new methods in which such 
patterns are of interest. Our results also highlight the 
need for methods that have more robust performance 
with 4-h sampling designs; the development of such 
a method would make future experiments more fea-
sible and enable reanalysis of existing data. Finally, 
we note that any new method should be designed to 
handle biological and technical replicates in a 

justifiable way (without requiring concatenation and 
ideally without averaging so that the full information 
about the variance in the data is retained), permit 
missing data and/or uneven sampling, and be com-
putationally efficient (Suppl. Table S1).

Researchers should also be aware of read-depth 
considerations when performing cycling detection 
using next-generation sequencing. Our analysis was 

Figure 6. Real data. TimeTrial: testing arbitrary sampling schemes. The real data set version of TimeTrial allows users to define their 
own custom down-sampled sampling scheme and compare the results to that of sampling every 1-h for 48-h. The custom sampling 
scheme analysis is performed using only JTK_CYCLE and RAIN, since ARSER and BooteJTK cannot handle uneven sampling (Suppl. 
Table S1). users can further set different significance and log-fold change thresholds and query for genes of interest. See https://github.
com/nesscoder/TimeTrial and/or https://nesscoder.shinyapps.io/TimeTrial_Real/ for interactive plots and a complete tutorial.

https://github.com/nesscoder/TimeTrial
https://github.com/nesscoder/TimeTrial
https://nesscoder.shinyapps.io/TimeTrial_Real/
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performed on publicly available microarray data, 
and thus read depth was not considered a factor in 
the present analysis. However, previous work has 
recommended optimal read depths for cycling detec-
tion: ~10 million reads per sample to detect >75% of 
cycling transcripts in fly RNA-seq studies and ~40 
million reads per sample for studying mammals (Li 
et al., 2015). In the context of TimeTrial, read depth 
will effect the cost of sampling and thus acts as a con-
straint on the number of samples a researcher has at 
his or her disposal. Once the sample number is deter-
mined, TimeTrial can be used to help determine the 
optimal sampling scheme given this constraint. As 
more next-generation circadian time-series sequenc-
ing data become publicly available, future versions of 
TimeTrial will include the effects of read depth by 
allowing users to vary this parameter.

Our benchmarking approach is unique in that it 
provides an assessment of cycling detection for arbi-
trary sampling schemes. Previous studies were done 
using fixed sampling frequencies, number of repli-
cates, and sampling lengths. Our analysis used a mix-
ture of different sampling resolutions, number of 
replicates, sampling lengths, and noise levels. 
Ultimately, we attempted to model biological experi-
mental practice, in which a fixed sampling scheme is 
not always possible as a result of monetary con-
straints. Our findings suggest that the sampling 
schemes and signal shape, rather than the cycling 
detection method, will have the largest impact on 
cycle detection. Thus, in designing a time-series 
experiment, researchers should contemplate the total 
number of samples at their disposal; how those sam-
ples should be used across replicates, length, and 
intervals; and how the chosen scheme allows cycling 
detection methods to pick up different signal shapes 
(i.e., symmetric, nonsymmetric, peak, trends, etc.).

In addition, our benchmarking approach is unique 
in that it explicitly considers the reproducibility of 
cycling detection results. By considering the concor-
dance of genes detected as cycling across multiple 
independent data sets, we directly assess whether 
genes detected in one study would be validated in 
another. We propose that this assessment of repro-
ducibility, rather than the number of cycling genes 
detected, should be the standard against which new 
methods are judged.

METHODS

Generating Synthetic Data Sets

A total of 240 unique synthetic time-course data 
sets, each comprising 11,000 expression profiles, were 
generated in R. Each data set consisted of a different 

number of replicates (1, 2, 3), sampling intervals (2-h, 
4-h, 6-h, 8-h), sampling lengths  (24-h, 48-h, 72-h, 96-h), 
and noise levels as a percentage of the wave form 
amplitude (0%, 10%, 20%, 30%, 40%; Fig. 1A).

Within each condition, 11 base waveforms were 
simulated to mimic expression patterns observed in 
nature: periodic patterns, nonperiodic patterns, and 
dynamics that have a cyclic component but do not 
meet the strict definition of periodicity. Seven of these 
11 shapes were considered cyclic (sine, peak, saw-
tooth, linear trend, damped, amplified, contractile), 
and 4 were considered noncyclic (flat, linear, sigmoid, 
and exponential); examples are given in Figure 1B. 
For each waveform in each condition, 1000 “genes” 
were simulated with varying amplitudes, phases, 
and shape parameters (e.g., the envelope for damped/
amplified waves), yielding in total 11,000 simulated 
genes for each of the 240 conditions. Variation in 
amplitude of the underlying functions were drawn 
from a log-normal uniform distribution with a mean 
1.302 and standard deviation 0.30, as modeled from 
real data amplitude distributions to simulate differ-
ences in amplitude between genes. Additional varia-
tion in the phase of underlying functions were drawn 
from a uniform distribution between 0 and 2π, to 
simulate differences in phase between genes. The 
data were mean centered, as is common in prepro-
cessing for cycle detection. A complete list of the 
waveform function definitions and source code for 
generating the data can be found in the supplemen-
tary material.

Preprocessing Microarray Datasets

The CEL files from three mouse liver Affymetrix 
microarray time-series expression sets (Hogenesch 
2009 - GSE11923 [Hughes et al., 2009], Hughes 2012 - 
GSE30411 [Hughes et al., 2012], Zhang 2014 - 
GSE54650 [Zhang et al., 2014]) were downloaded 
from the Gene Expression Omnibus database (GEO). 
In each experiment, wild-type C57BL/6J mice were 
entrained to a 12-h light, 12-h dark environment 
before being released into constant darkness. Mouse 
age, length of entrainment, time of sampling, and 
sampling resolution vary by experiment. The data 
were subsequently normalized by robust multi-array 
average (rma) using the Affy R Package (Gautier 
et al., 2004) and checked for quality control using the 
Oligo R Package (Carvalho and Irizarry, 2010), fol-
lowing each package’s vignette, respectively. Since 
each GEO data set used a different microarray plat-
form (affy_mouse430_2, affy_moex_1_0_st_v1, affy_
mogene_1_0_st_v1), each had a different set of 
probes. A common set of features needed to be identi-
fied to compare across microarrays. Probes for each 
data set were mapped to genes based on prealigned 
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databases specific to each microarray (mouse4302.db, 
moex10sttranscriptcluster.db, mogene10sttranscript-
cluster.db). Multiple probes corresponding to a single 
gene were aggregated by taking the mean expression. 
A final 12,868 common set of genes across all three 
microarray platforms were used for subsequent anal-
ysis. See the supplement for code.

Processing Microarray Data Sets

To characterize the effects of sampling schemes 
using real data, the three data sets were down sam-
pled to simulate the effects of sampling at 2-h and 4-h 
intervals. The Hughes 2012 and Zhang 2014 data sets 
were sampled every  2-h for 48-h. Each of these exper-
imental time-series were down-sampled to every 4-h 
to generate four additional time-series data sets. The 
Hogenesch 2009 data set, sampled every hour for 
48-h, was down-sampled to 2 data sets every 2-h and 
4 data sets sampled every 4-h to generate six addi-
tional time-series data sets. Ultimately, 13 data sets (3 
original and 10 down-sampled) were processed by all 
4 cycling detection methods (ARSER, BooteJTK, JTK_
CYCLE, and RAIN), using each method’s recom-
mended parameter settings as defined by the 
sampling length and interval (Fig. 1C). We thus aimed 
to assess a method’s robustness by the ability to con-
sistently score genes as cycling versus noncycling 
across experimental data sets and down-samplings. 
A complete list of the experimental parameters and 
source code can be found in the supplement.

Application of Cycling Detection Algorithms

All data sets were processed by all four cycling detec-
tion methods (JTK_CYCLE [Hughes et al., 2010], 
ARSER [Yang and Su, 2010], RAIN [Thaben and 
Westermark, 2014], and BooteJTK [Hutchison et al., 
2018]; Suppl. Table S1), using each method’s recom-
mended parameter settings as defined by the sam-
pling length and interval. Since ARSER and BooteJTK 
do not have a built-in function for dealing with repli-
cates, replicates were either averaged together or con-
catenated, following the two common practices in the 
field. JTK_CYCLE and RAIN  used the replicate pro-
cedures recommended in their documentation. A 
complete list of the experimental parameters and 
source code can be found in the supplement.
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