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For a successful pregnancy to occur, a predecidualized receptive endometrium must be invaded by placental differentiated cells
(extravillous trophoblast cells (EVTs)) and, at the same time, continue decidualization. EVT invasion is aimed at anchoring the
placenta to the maternal uterus and ensuring local blood supply increase necessary to provide normal placental and foetal
development. The first is achieved by migrating through the maternal endometrium and deeper into the myometrium, while the
second by transforming uterine spiral arteries into large vessels. This process is a tightly regulated battle comprising interests of
both the mother and the foetus. Invading EVTs are required to perform a scope of functions: move, adhere, proliferate,
differentiate, interact, and digest the extracellular matrix (ECM); tolerate hypoxia; transform the maternal spiral arteries; and die
by apoptosis. All these functions are modulated by their surrounding microenvironment: oxygen, soluble factors (e.g., cytokines,
growth factors, and hormones), ECM proteins, and reactive oxygen species. A deeper comprehension of oxidative uterine
microenvironment contribution to trophoblast function will be addressed in this review.

1. Introduction

Successful pregnancy depends on sequential and discrete
events that include fertilization, implantation, decidualiza-
tion, placentation, and birth. Placentation is the process of
formation and development of the placenta and the associ-
ated modifications in maternal tissue. Its continued interac-
tion character, involving two distinct genomes, suggests the
presence of a fine-tuned regulation. In human placenta
development, three structural regions are considered: the foe-
tal placenta, with separated foetal and maternal blood, where
physiological exchange of nutrients and waste products
occurs; the basal plate, which borders the maternal surface
and is crossed by maternal vessels; and the placental bed
formed by maternal uterine tissue, comprising the modified
endometrium (decidua) and is traversed by 100-150 mater-

nal spiral arteries that supply nutrients and oxygen (O2) to
the placenta and the foetus [1].

For a healthy pregnancy to proceed, a good anchoring of
placental features and the transformation of maternal spiral
arteries (SA) into flaccid capacitation vessels, that will ensure
adequate blood supply to the foetus, are necessary. In normal
pregnancy, such changes require important extravillous tro-
phoblast cell (EVT) movement from the placental villi across
the decidua and deep into the adjacent myometrium. In addi-
tion, appropriate invasion of maternal SA and their resulting
remodelling underlies functional circulatory change estab-
lishment [2]. In contrast, deficient EVT invasion has been
associated with insufficient SA remodelling, altered uteropla-
cental hemodynamics, overall placenta bed dysfunction, and
the establishment of serious pregnancy complications [3]. In
fact, an early defective development of the placental bed, and
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consequent altered placentation, appears to contribute to late
pregnancy complications such as preeclampsia, placental
abruption, and intrauterine growth restriction (IUGR) [1, 2].

EVT invasion regulation and the molecular mechanisms
underlying SA remodelling are the result of a complex net-
work involving soluble factors and different cell types resid-
ing in the maternal placental bed. Emerging work indicates
that an abnormal placentation is consequent to aberrant
uterine microenvironment, already present before or at the
time of blastocyst implantation [4–7]. This review will
address uterine regulators of EVT dynamics with a special
focus on reactive oxygen species (ROS) physiological and
pathophysiological roles.

2. Pre(decidualization)

In many species, uterine changes aiming to create a suitable
microenvironment for embryo implantation and develop-
ment occur only after implantation. In humans, early changes
may be recognized after ovulation and are designated prede-
cidualization [8]. In the uterine stroma adjacent to SA, and in
response to rising progesterone levels, fibroblast-like mesen-
chymal cells differentiate into an epithelioid structure. In
addition, they accumulate cytoplasmic glycogen and lipids
and secrete new products as components of extracellular
matrix (ECM), protease inhibitors, cytokines, hormones,
and other peptides. If implantation takes place, they will pro-
vide nutrition to the developing conceptus [9].

Progesterone-dependent differentiation of stroma cells
is crucial for epithelium receptiveness and trophoblast-
endometrium interactions. In fact, trophoblast spheroid
attachment and growth in a coculture of endometrial epi-
thelial cells and primary stromal cells were increased when
stromal cells had been collected during the window of
implantation time, not before [10].

Predecidualization also plays an important role in uterine
natural killer (uNK) cell influx. In humans, they are recruited
during predecidualization, and their increase peaks during
the first trimester and diminishes thereafter, due to apopto-
sis. When compared with circulating NK cells, uNK cells
have distinct features and functions. They are less cytotoxic
and produce signalling molecules such as cytokines (e.g.,
tumour necrosis factor alpha (TNF-α) and interleukin- (IL-
) 10 and 1β), growth factors (e.g., tissue growth factor beta
(TGF-β) and placental growth factor (PlGF)), angiogenic
factors (e.g., vascular endothelial growth factor (VEGF)),
and matrix metalloproteinases (MMPs) [11]. Moreover, they
contribute to decidual angiogenesis regulation and SA
remodelling and control EVT invasion [12].

3. Implantation and Early Placentation

Upon fertilization, the ovum travels in the fallopian tube
where following several mitotic divisions, it reaches the mor-
ula stage (a compact mass of 12-16 cells). Continuing to
divide, while receiving nutrients from the uterine environ-
ment, it attains approximately 100 cells that surround a
fluid-filled cavity, where conceptus-derived secretions con-
centrate, characterizing the blastocyst stage [13]. During this

stage, asymmetric cell divisions give rise to two distinct pop-
ulations: the outer blastocyst encircling trophoblast cells,
which will originate both the placenta and the extraembry-
onic membranes, and the totipotent inner cell mass, which
will develop into the embryo [14]. Between the 5th and the
6th day post fertilization, the blastocyst contacts with the
uterine wall (apposition), attaches to the epithelium, and
invades the receptive decidua to implant [15, 16] (Figure 1).

After implantation, trophoblasts that face directly the
maternal tissue differentiate and fuse to form the syncytiotro-
phoblast, whereas those remaining behind, untouched by
maternal tissue, do not fuse and are denominated cytotro-
phoblasts [17, 18] (Figure 1). They act as a rapidly dividing
stem cell pool that feeds and fuses with the multinucleated
syncytiotrophoblast and promotes its continuous growth.
Soon, it will surround most of the blastocyst and, with an
invasive phenotype, will penetrate deep into the uterine cav-
ity lining. Within the syncytium, fluid-filled spaces coalesce
and rearrange into lacunae, which are the primitive intervil-
lous spaces in the placenta, where the maternal blood will cir-
culate [19, 20].

While invasion evolves, columns of the syncytiotropho-
blast masses establish a network around the lacunae to form
trabeculae, very important for the remaining development of
the villous tree. Subsequently, cytotrophoblast cells prolifer-
ate and invade through the trabeculae, until they reach their
tips and contact with the decidua. Following their lateral
spreading from the tips, they form a coating between the syn-
cytiotrophoblast mantle and the maternal endometrium [21].
Therefore, at this stage, the blastocyst exhibits three different
layers of trophoblastic covering: (1) the primary/early chori-
onic plate, which faces the embryo; (2) the lacunar system
and trabeculae, which develops into the intervillous space
and villous tree, respectively; and (3) the cytotrophoblastic
shell or primitive basal plate, which contacts directly with
the endometrium [21].

The cells from the cytotrophoblastic shell possess a dis-
tinct phenotype, as they exhibit a round outline structure
and large amounts of glycogen. Those localized at the tips
of villi differentiate into EVTs, leave the shell, and migrate
across the endometrium, initiating the process of EVT inva-
sion [22]. A batch of EVTs is responsible for SA remodelling:
they disrupt the vascular smooth cell layer and replace the
endothelium, converting muscular wall arteries into wide
bore low-resistance vessels ensuring a local increase in blood
supply, necessary to fulfil placenta requirements [23]. At the
same time, these cells accumulate and plug the lumen of the
transformed SA, obstructing blood cell circulation. Neverthe-
less, there is a plasma leak which results in a physiological
gradient of O2 between the mother and the foetus, with
extreme importance for organogenesis [2]. In a phenomenon
named deep placentation, EVTs further invade the decidua
and reach as far as the inner third of the myometrium.

4. Modulators of EVT Function and Associated
Signalling Pathways

Extravillous trophoblasts are not isolated elements as they
are surrounded by decidual cells, vascular features, ECM
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proteins, uNK cells, and soluble factors, which together con-
stitute the uterine microenvironment (Figure 2). This micro-
environment must be suitable for an effective implantation
that is the pillar for a successful pregnancy.

4.1. Oxygen. Low O2 levels are essential for correct placental
development. In fact, during the first trimester of pregnancy,
when SA are plugged by EVTs, there is an abrupt decrease in
O2 concentration from the decidua to the developing pla-
centa [24, 25]. This gradient is essential for cell column
basement-residing cytotrophoblast cells to proliferate, reach
the tips of the columns, and differentiate into invading extra-
villous trophoblasts. It thus appears that dividing cytotro-
phoblasts are pushed forward, towards maternal tissue and
higher O2 levels, where they lose proliferative capacity,
acquire an invasive phenotype, and start invading the mater-
nal tissue [26]. Low O2 levels also induce the expression and
stability of transcription factors, such as hypoxia-inducible
factor-1 (HIF-1), which promotes expression of genes that
encode proteins involved in cell metabolism, essential for tro-
phoblast proliferation and differentiation [27].

4.2. Adhesion Molecules and Receptors. The transition from
proliferating cytotrophoblast cells to invasive EVTs is also

dependent on specific cell receptors and cell adhesion mole-
cule (CAM) alterations. It starts with trophoblast cell detach-
ment from the basal membrane and culminates with de novo
adhesion to uterine ECM, enabling EVTs to further migrate
and invade the myometrium and SA. A variety of molecules
with a role in adhesion, motility, and migratory capacity are
present in the EVTs and include integrins, selectins, cadher-
ins, kisspeptins, and ephrins [28, 29]. Integrins are the major
family of CAM with a key importance in the above-
mentioned processes. Their expression differs among tro-
phoblast populations and modulates the binding to the
ECM. In addition, locally produced cytokines can influence
CAM expression, particularly TGF-β [30]. EVT integrins
bind to ECM proteins and other decidual molecules and acti-
vate cellular pathways controlling trophoblast functions [31].

4.3. Extracellular Matrix. The decidual ECM is a 3-
dimensional tissue structure where trophoblast lineages are
embedded. This matrix is composed of a variety of proteins
including collagen, fibronectin, laminin, vitronectin, trophin,
and tastin [32]. ECM modulate EVT functions and, at the
same time, EVTs degrade and induce ECM remodelling to
enable migration [33–35].
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Figure 1: Human placenta development. Blastocyst implantation is mediated by the crosstalk between the blastocyst and the receiving
endometrium. Early differentiated syncytiotrophoblast, displaying an invasive phenotype, allows the blastocyst to implant inside the
endometrial stroma. Cytokines, growth factors, hormones, oxygen, extracellular matrix, and ROS all modulate trophoblast cell invasion
of maternal decidua and myometrium and their capacity to transform spiral arteries. Many growth factors and cytokines, such as EGF,
TGF-β, and TNF-α, secreted by the decidua and uNK cells act in a paracrine manner to regulate trophoblast function. These factors
may also be secreted by the trophoblast cells and act in an autocrine manner to promote invasion.
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Figure 2: Extravillous trophoblast invasion and spiral artery remodelling.Within the syncytium, lacunae (the primitive intervillous space) are
formed and proliferative cytotrophoblast cells emanate until they contact the endometrium (anchoring villi). At the tips of the villi,
cytotrophoblasts differentiate into invasive trophoblast cells that will leave the villi and migrate through the stroma until they reach
maternal spiral arteries or the deep myometrium. Interstitial extravillous trophoblasts that reach spiral arteries disrupt the vascular
smooth muscle cell layer and replace it by fibrinoid material, while endovascular trophoblasts destroy their lumen and occupy their
endometrium, converting them into low-resistance vessels.

Table 1: Classification of matrix metalloproteinases.

MMP classification Enzyme substrates Cell type/tissue secretion References

Collagenases

Collagenase-1 MMP-1 Collagen types I, II, III, VII, and X EVTs, decidua, and uNK [39–42]

Collagenase-2 MMP-8 Collagen types I and III EVTs, decidua [39, 43, 44]

Collagenase-3 MMP-13 Collagen type I EVTs, decidua [39, 44–46]

Gelatinases
Gelatinase A MMP-2

Collagen types I, III, IV, V, VII, and X;
gelatin; fibronectin; and elastin

EVTs, decidua, and uNK [39, 42, 44, 47–52]

Gelatinase B MMP-9 Collagen types I, III, IV, and V and gelatin EVTs, decidua, and uNK [39, 42, 44, 47–50, 52]

Stromelysins

Stromelysin-1 MMP-3
Collagen types III, IV, IX, and X; gelatin;

laminin; fibronectin; and elastin
EVTs, decidua [39, 44, 50, 53]

Stromelysin-2 MMP-10
Collagen types II, IV, and V;

fibronectin; and gelatin
EVTs, decidua, and uNK [39, 44, 50, 54]

Stromelysin-3 MMP-11 Collagen type IV EVTs, decidua, and uNK [39, 44]

Matrilysin MMP-7 Fibronectin and gelatin EVTs, decidua, and uNK [39, 41, 42, 44, 45]

Matrilysin-2 MMP-26 Fibronectin and gelatin EVTs, decidua [39, 55, 56]

Metalloelastase MMP-12 Elastin and fibronectin EVTs, decidua, and uNK [39, 44, 57, 58]
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ECM proteins are degraded by proteases, cathepsins, and
MMPs [36]. MMPs belong to the family of zinc-dependent
endopeptidases, with diverse members that degrade distinct
units of the ECM (Table 1) [37, 38].

Regulation of MMP expression can be done at different
levels: transcriptional (e.g., cytokines and growth factors),
during secretion, by extracellular activation (e.g., plasmin-
activated MMP-3), by inhibition (e.g., tissue inhibitors of
metalloproteinases (TIMPs)), or by degradation [59, 60].
TIMPs are a family of extracellular proteins (TIMP-1,
TIMP-2, TIMP-3, andTIMP-4), which act as specific protease
inhibitors, binding to the catalytic MMP domain and coun-
teracting MMP activity [61].

Cell-matrix or cell-cell contact mediates both MMPs and
TIMPs production [62]. To invade, EVTs must bind to ECM
components, degrade them, and subsequently move through
the tissue matrix. Cell surface adhesion molecules are essen-
tial for cell adhesion and constitutively express proteinases
for ECM degradation [63]. Both EVT adhesion molecules
and MMP secretion are dependent on ECM composition
[36] and their phenotypic features. EVTs show an early pre-
dominant expression of MMP-2 that changes to MMP-9
later on during trophoblast invasion, to cope with decidual
ECM alterations [64–67]. Overall, decidual cells, when in
contact with EVTs, also express MMPs assisting in ECM deg-
radation and further enhancing trophoblast invasion [67],
but they also antagonize MMP activity by producing TIMPs
and consequently blocking trophoblast invasion [68].

Decidual cells balance MMPs and TIMP secretion, con-
trol EVT migration, and prevent an exacerbate invasion
[69] in a tight regulation and following a strict balance [70].
Thus, in order to achieve a correct placentation, uterine
microarchitecture remodelling is necessary and requires a
fine-tuned regulatory process operated by multiple players,
of which only a limited number is currently known.

4.4. Soluble Factors—Cytokines and Growth Factors. Both
timing and extension of EVT invasion are partly regulated
by a plethora of paracrine and autocrine factors expressed
by different cells comprising the decidua and EVTs them-
selves. Moreover, expression of these factors shows a consid-
erable structural overlap, with several mediators being
expressed by the decidua, uNK, and trophoblast cells [71].
In a decidualized endometrium, the cytokine/chemokine
secretion is unique and, with the exception of leukaemia
inhibitory factor (LIF), the expression of these soluble factors
is increased when compared with nondecidualized stromal
cells (Table 2).

Due to such alteration, it is conceivable that the decidual
secretome has a role in controlling trophoblast invasion
[73]. In a simplified way, soluble mediators can be divided
in two groups: pro- and anti-invasive. Proinvasive paracrine
factors, which have been shown to increase in vitro cell
migration, invasion, and adhesion, comprise IL-1, IL-6, IL-
8, IL-15, LIF, insulin-like growth factor-binding protein 1
(IGFBP-1), epidermal growth factor (EGF), interferon
gamma-induced protein 10 (IP-10), RANTES (regulated
on activation, normal T cell expressed and secreted), and
chemokines CX3CL1 and CCL14. Anti-invasive factors

include IL-10, IL-12, TNF-α, TGF-β, interferon gamma
(IFN-γ), chemokine CXCL12, VEGF, and endocrine gland-
derived VEGF (EG-VEGF) (Table 3).

Apart from the decidua, other tissues are producers of
trophoblast regulators. Leptin, produced in the adipose tissue
and in trophoblasts, can enhance EVT invasion capacity by
an effective increase in MMP-14 expression [134–136]. In a
placental bed, paracrine factors bind to the EVT cognate
receptors and trigger signalling cascades that regulate gene
expression and enzymatic activity, which induce a shift in
MMPs, ILs, and growth factor secretion. This variation fur-
ther regulates, in a feedforward fashion, a plethora of soluble
factors that also control invasion.

4.5. Signalling Pathways. Several signalling pathways are
responsible for controlling migration and invasion of EVTs
including mitogen-activated protein kinase (MAPK), phos-
phoinositide 3-kinase (PI3K)/protein kinase B (Akt), Janus
kinase (JAK)/signal transducer and activator of transcription
proteins (STATs), wingless (Wnt), and focal adhesion kinase
(FAK) pathways. However, endometrium-derived soluble
factors predominantly activate MAPK, JAK/STAT, and
TGF-β-mediated signalling pathways.

One of the most important pathways of MAPK signalling
is extracellular signal-regulated kinase (ERK) 1/2. It partici-
pates in essential functions as cell proliferation, differentia-
tion, and survival [137]. This pathway can be activated by
mitogens, phorbol esters, growth factors, and ROS [137,
138]. In pregnancy, ERK1/2 is important for placental devel-
opment [139], trophoblast differentiation, and decidual inva-
sion [138, 140]. Endothelin and prostaglandins activate
ERK1/2 and promote EVT migration, while inhibition of this
pathway reduces it [140]. The p38 MAPK pathway is also an
important MAPK signalling pathway; it is activated by
cytokines [141], among other agents, and is necessary in
the control of apoptosis, inflammation, cell cycle regulation,
senescence, and oncogenesis [141, 142]. In particular, the
p38α isoform plays a vital role in placental embryonic

Table 2: Molecules secreted in response to decidualization.

Soluble factors Reference

EGF ↑ [72]

IL-1β ↑ [73]

IL-6 ↑ [73]

IL-8 ↑ [73]

IL-10 ↑ [74]

IL-11 ↑ [75, 76]

IL-15 ↑ [76]

IGFBP-1 ↑ [75, 76]

IP-10 ↑ [73]

LIF ↓ [77]

RANTES ↑ [73]

TGF-β ↑ [72]

TNF-α ↑ [72]

VEGF ↑ [72]
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development and placental angiogenesis [143]. ERK1/2 inhi-
bition in parallel with p38 MAPK decreases trophoblast dif-
ferentiation [138]. Activation of the MAPK pathway in
combination with the PI3K/Akt pathway promotes EVT
(HTR-8/SVneo immortalized cell line) invasion and migra-
tion via MMP enhancement [144].

JAK/STAT3 signalling is indispensable for regulation of
EVT proliferation and invasion capacity in response to cyto-
kines and growth factors [145, 146]. Again, an interdepen-
dence between MAPK and JAK-STAT signalling pathways

was found to be involved in EGF-mediated HTR-8/SVneo
cell invasion [146].

TGF-β signals through Smad-dependent (canonical) and
Smad-independent (ERK, JNK, p38, and Rho GTPases)
(noncanonical) pathways. Recent studies with JEG tropho-
blast cells demonstrate that activation of Smad3 promotes
cell invasion by upregulation of MMP2 and MMP9 [147].
These findings contrast with previous reports where TGF-β
decreased EVT invasion in HTR-8/SVneo cells, by inducing
Snail-mediated downregulation of vascular endothelial-

Table 3: Soluble factors secretion and its effect on invasion.

Soluble factor Secreted by Effects on trophoblast invasion References

Proinvasive

CCL14
Decidua

Increase migration by promoting CAM expression
alterations (α-catenin and integrin β5); increase invasion

by increasing MMP-12 expression

[64, 78]

CX3CL1 [78]

EGF
Decidua and

mesenchymal villi
Increase invasion by increasing MMP-9 and TIMP-1

expression
[65, 79–82]

HGF
Decidua, placental

stromal cells, and uNK
Increase invasion by upregulating of H2.0-like homeobox

gene
[83, 84]

IGFBP-1 Decidua Increase invasion by increasing gelatinolytic activity [31, 85–87]

IL-1β
Cytotrophoblasts,

decidua, macrophages,
and uNK

Increase invasion by increasing MMP-2, MMP-9, and
urokinase plasminogen activator expression

[78, 88–95]

IL-6
Cytotrophoblasts and

uNK
Increase invasion by increasing MMP-2 and MMP-9

expression
[91, 96–101]

IL-8
Cytotrophoblasts,

decidua, macrophages,
and uNK

Increase invasion by increasing MMP-2, MMP-9, uPA,
and plasminogen activator inhibitor (PAI) type 1 and 2

expression
[102, 103]

IL-15 Decidual cells Increase invasion by increasing MMP-1 expression [76, 104, 105]

IP-10
Endometrial stromal
cells, uterine glandular

cells, and uNK

Increase migration by increasing integrin expression
(α5 and β3)

[106–108]

LIF
Decidual stromal cells

and uNK
Increase adhesion through changes in integrin expression;

increase invasion by decreasing TIMP-1 expression
[109–115]

RANTES Uterine stromal cells
Increase adhesion and migration by increasing cytolytic

activity and integrin expression (β1)
[116–118]

IL-11
Cytotrophoblasts, uNK,

and decidua
Involvement in EVT function less understood; inhibiting

invasion in HTR-8/SVneo and increasing in JEG-3
[119–121]

Anti-invasive

CXCL14 Decidual stromal cells Decrease invasion by gelatinase activity suppression [64]

IL-10 Macrophages and uNK
Decrease invasion by downregulating MMP-2 andMMP-9

expression
[122]

INF-γ
Cytotrophoblasts,
decidua, and uNK

Decrease invasion by decreasing insulin-like growth factor
receptor-II

[123–127]

Kisspeptin-10
Cytotrophoblasts and

decidua

Decrease invasion by binding to g protein-coupled
receptor kisspeptin-1 receptor increasing Ca2+

intracellular levels
[123–127]

TGF-β
Cytotrophoblasts,
decidua, and uNK

Decrease invasion by increasing of TIMP-1 and TIMP-2
and plasminogen activator inhibitor type 1 and 2
expression; increases adhesion by upregulating the

expression of CAM (ezrin and e-cadherin)

[62, 79, 85, 123–125,
128–130]

TNF-α
Cytotrophoblasts,

decidua, macrophages,
and uNK

Decrease invasion by upregulation plasminogen activator
inhibitor type 1 expression

[123, 125, 130–132]

VEGF
Decidua, macrophages,

and uNK
Decrease invasion by inhibiting urokinase plasminogen

activator expression
[133]
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cadherin [147]. TGF-β plays a role in multiple signalling net-
works in the cell, and depending on the second messengers
involved, divergent responses can be attained.

ROS are important secondary messengers and play a role
in the modulation of protein kinase activity. When a redox
imbalance occurs, ROS can impair the EVT signalling net-
work. Modification of essential amino acid residues by ROS,
which consequently alter the protein structure and its func-
tion, is one of the plausible mechanisms of ROS actions [148].

5. Oxidative Stress and Placentation

5.1. Reactive Oxygen Species, Oxidative Stress, and
Placentation. The ROS family comprises free radicals (i.e.,
species with at least one unpaired electron) and nonradical
oxidants (i.e., oxidants with their electronic ground state
complete). These species reactivity, half-lives, and diffusion
capacities are variable. Hydroxyl radical (⋅OH) is the most
unstable and upon formation reacts rapidly with biomole-
cules in the vicinity [149]. In contrast, hydrogen peroxide
(H2O2) is capable of crossing cell membranes and exerts its
effects beyond the cell limits [150, 151].

Under physiological conditions, superoxide anion (O2
-⋅)

is the most frequently generated radical. Its main source is
the inner mitochondrial membrane during the respiratory
chain, particularly the complexes I and III, by inevitable leak-
age of electrons to O2 [152, 153]. O2

-⋅ can also be formed
following electron leakage in a shorter electron transport
chain at the endoplasmic reticulum (ER) and during the
membrane-bound nicotinamide adenine dinucleotide phos-
phate oxidase (NOX) activity, which transfers one electron
from NADPH to O2 [154].

To cope with the continued ROS production, cells have
developed antioxidant mechanisms that prevent their accu-
mulation and deleterious actions. Antioxidants, enzymatic
or nonenzymatic, can mitigate ROS effects by delaying oxida-
tion or preventing it from happening. In cells, key enzymatic
antioxidants are superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx) [155], whereas
important nonenzymatic antioxidants comprise vitamins C
(ascorbic acid) and E (tocopherol), zinc and selenium, gluta-
thione, plant polyphenols, and carotenoids (carotene and β-
carotene) [156]. Other molecules with moderate antioxidant
properties may also be relevant because of their abundance,
as is serum albumin [157].

ROS are normal products of cell metabolism with physi-
ological roles in the organisms. They regulate signalling path-
ways through changes in the activity of structural proteins,
transcription factors, membrane receptors, ion channels,
and protein kinases/phosphatases [158] However, when
ROS levels rise, and antioxidant defences cannot neutralize
them, the redox homeostasis is disrupted, and a new state
referred as oxidative stress (OS) arises. OS leads to an impair-
ment of redox signalling and causes molecular damage to
biomolecules [159, 160]. OS condition is graded; while minor
or moderated changes provoke an adaptive response and
homeostasis restauration, higher ones result in violent per-
turbations that lead to pathological insults, damage beyond
repair, and even cell death [159] (Figure 3).

5.1.1. ROS in the Endometrium Cycle. ROS are believed to be
implicated in the regulation of the endometrial cycle
(Figure 4) [161]. NOX-derived O2

-⋅ has been shown to acti-
vate the nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) and regulate angiogenesis [162, 163],
thus resulting in a determinant role in the endometrial cycle.
Variations in SOD, GPx, and lipid peroxides in response to
oestrogen and progesterone levels have also been reported
[164, 165]. In a late secretory phase, steroid hormone fall
reduces SOD activity and, consequently, increases ROS
effects [166, 167]. ROS-mediated activation of NF-κB signal-
ling cascade promotes prostaglandin secretion, vasoconstric-
tion, and, ultimately, the endometrial shedding [168–171], at
the end of the secretory phase. The exacerbated uterine ROS
level and NF-κB activation may result in signalling pathway
disruption and in a broad spectrum of uterine-related infer-
tility disorders, as endometriosis [172]. In recurrent preg-
nancy loss (RPL), increased activity of antioxidant enzymes
and decreased markers of OS in endometrial secretions
before implantation associated positively with a successful
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Figure 3: ROS sources and downstream cellular effects.
Endogenous sources of ROS include mitochondrial metabolic
reactions, NADPH oxidase activity, and microsomal cytochrome
P450 detoxification pathways; exogenous sources comprehend
ultraviolet radiation, X-rays and gamma-rays, ultrasounds,
pesticides, herbicides, and xenobiotics. ROS are normal products
of cell metabolism with physiological roles in the organisms. They
regulate signalling pathways through changes in the activity of
structural proteins, transcription factors, membrane receptors, ion
channels, and protein kinases/phosphatases. However, when ROS
levels rise, and antioxidant defence cannot neutralize them, the
redox homeostasis is disrupted, and a new state referred to as
oxidative stress (OS) arises. OS leads to impairment of redox
signalling and induces damage to biomolecules. OS has a graded
response with minor or moderated changes provoking an adaptive
response and homeostasis restauration and violent perturbations
leading to pathological insults, damage beyond repair, and even
cell death. MR: membrane receptor; NOS: nitric oxide synthase;
NOX: NADPH oxidase. Filled arrows indicate a direct action,
while dashed arrows indicate indirect or simplified mechanisms.
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IVF outcome [173]. Moreover, endometrial alterations in
progesterone-induced SGK1 (a serine-threonine protein
kinase homologous to AKT) were also related to RPL due
to impairment in OS defences [174].

5.1.2. ROS and Decidualization. Recent findings suggest that
decidual stromal cells evolved from ancestor stromal cell
fibroblasts, whose phenotype acquisition is modulated by
redox signalling, ER stress, and cellular senescence [175]. In
this context, resveratrol, a molecule with antioxidant and
anti-inflammatory properties, inhibits decidualization in
mice by repression of decidualization markers and abroga-
tion of cellular senescence [176], whereas decidual cell ER
sensitive to stressful conditions results in a decrement of
decidual functioning [177, 178] and viability [179]. In short,
during decidualization, redox-sensitive transcription factors
and kinases are activated, making plausible the intervention
of ROS and their regulators in this process [180–182] and
extending it into placentation. In pregnancy, progesterone
stimulates uterine stromal decidualization and decidual
SOD expression [183, 184]. In addition, GPx3 is highly
expressed in mice decidua, favouring its involvement in
uterine transformation and implantation, a point further
supported by the reduced pregnancy rates upon GPx3 inhibi-
tion [165].

5.1.3. ROS and Regulation of Trophoblast Function. EVTs are
also adversely regulated by OS because of their interference

with fundamental cellular pathways, reduction of MMP
expression, upregulation of proinflammatory cytokine secre-
tion, and induction of mitochondrial dysfunction [185–192].
These consequences disrupt EVT crosstalk within the uterine
microenvironment and impair fundamental biological pro-
cesses as differentiation, proliferation, migration, and vascu-
lar remodelling (Table 4). The use of specific antioxidant
molecules may have beneficial effects on EVT functions
[186, 188, 189].

5.1.4. The Ageing Uterus. In the aged uterus, indirect evidence
supports the occurrence of cellular senescence, which is
thought to affect decidual transformation [195] and promote
preterm births [196, 197]. In addition, reproductively aged
mice show age-related increase in uterine NOX and protein
carbonylation content, contributing to abnormal deciduali-
zation and reduced fertility. NOX inhibition, but not
enhanced H2O2 conversion using a SOD mimetic, restores
local redox balance, repairs maternal-foetal interactions,
and increases fertility [6]. In line with these results are the
recent findings of Banerjee and coworkers reporting that
low H2O2 levels increase EVT invasion, while high levels
induce apoptosis [191, 194]. Interestingly, an age-related
decrease in adrenal synthesis of dehydroepiandrosterone
(DHEA) is believed to grant increased antioxidant capacity
to decidualized cells and improve endometrial receptivity
[198–200].

On a wider view, either by disturbing uterine decidua or
embryo-derived cell functioning, important aspects of mod-
ern life style such as obesity, increased maternal age, alcohol
consumption, and exposure to substances may act as endo-
crine disruptors and affect implantation and placentation
through OS induction [6, 7, 185, 190, 193, 201].

Therefore, it is now recognized that, at the time of
implantation, OS-related alterations in uterine microenvi-
ronment lead to a relevant disturbance at the foetus/maternal
interface that impairs trophoblast invasion and spiral artery
remodelling and stand at the root of major pregnancy-
related complications of vascular origin, such as preeclamp-
sia and IUGR.

5.2. AGEs, RAGEs, ROS, and Placentation. Glycation is a
nonenzymatic reaction (not to be confused with the enzy-
matic reaction glycosylation), between reducing sugars (e.g.,
glucose, fructose, or galactose) and amino groups of proteins,
lipids, or nucleic acids. Advanced glycation end-products
(AGEs) are the result of a series of glycation reactions
[202]. The formation of AGEs was first described by Maillard
in the beginning of the 20th century; however, the chemical
reactions were only described later in the setting of food
research [202]. Briefly, in the classic Maillard reaction, elec-
trophilic carbonyl groups of reducing sugars interact with
free amino acid residues (especially arginine or lysine) and
form unstable Schiff bases that reverse when glucose levels
drop. Further rearrangements result in the formation of the
more stable, but still reversible, “Amadori products,” which
can react with peptides or protein amino acids, this time
irreversibly, leading to the formation of AGEs [203, 204].
The Maillard reaction is not the unique pathway for AGE
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Figure 4: Diagrammatic representation of the different phases
of the menstrual cycle, oxidative stress (OS) changes, and
fluctuations in ovarian and pituitary hormones. Plasmatic OS
marker (hydroperoxides) maximum levels are seen near ovarian
and pituitary hormone peaks [161].
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formation because other reactions involving the formation
of carbonyl-containing reactive compounds end up as
AGEs [205, 206]. As such, it is not surprising that AGEs

are a quite complex, heterogeneous group of compounds,
formed either exogenously (e.g., dietary AGEs) and endog-
enously, by different mechanisms and precursors. ROS, O2,
and transition metals are catalysers of AGE synthesis [207]
and AGE interactions with membrane receptors that trig-
ger various ROS-mediated signalling pathways, such as
ERK1/2-MAPK, PI3K-Akt, and p38-SAPK-JNK [208, 209]
(Figure 5).

Very little is known about AGE physiological role, and
few researches have addressed this issue. Cerami hypothe-
sized that AGEs were protein residues that acted as signals,
targeting them to degradation, and that age-related AGE
accumulation resulted from loss of efficiency of the removal
system [210]. Other authors have explored methylglyoxal,
an AGE precursor, as an antimicrobial and anticarcinogenic
agent [211].

A handful of papers have also explored AGEs as precondi-
tioners, preparing cells to exacerbatedOS, and thus contribut-
ing to a future improvement in antioxidant/inflammation
response [212–215]. Up to date, nothing is known about a
putative antioxidant or antifibrotic effect of dietary AGEs on
obstetric-related disorders, although there is a possibility that
is worth exploring.

An increase in AGE levels accompanies the ageing
process itself and is also a significant contributor and a
major risk factor to the development of several age-
associated disorders. Higher levels of circulating AGEs or
AGE receptor (RAGE) activation have been found in diabe-
tes, hypertension [216], systemic lupus erythematosus [217],
rheumatoid arthritis [218], Alzheimer disease [219], and
neoplasia [220, 221]. Interestingly, elevated circulation AGEs
have also been found in pregnancy-associated complications
such as severe preeclampsia [222] and gestational diabetes
mellitus (GDM) [223] where it has been positively correlated
with proinflammatory markers [224]. In animal models,

Table 4: ROS-mediated regulation of trophoblast function.

Agent Molecular effects EVT functions Reference

Decanoic acid
Disrupts mitochondrial function

↑ ROS generation
↓ Akt and ERK1/2 pathways

↓ proliferation
↓ invasion

[185]

Trichloroethylene
Disrupts mitochondrial function

↑ ROS generation
↑ proinflammatory cytokine production

— [190]

Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide

Disrupts mitochondrial function
↑ ROS generation
↓ SOD activity

Induces apoptosis

↓ invasion [193]

Higher H2O2 concentrations Induces apoptosis ↓ invasion [194]

Lower H2O2 concentrations
↑ STAT 1 and 3 pathways
↑ MMP-9/TIMP-1 ratio

↑ invasion [191]

Selenium (under hypoxic conditions) ↓ mitochondrial stress
↑ proliferation
↑ migration

[186]

Edaravone (under hypoxic conditions) ↓ ROS production
↑ proliferation
↑ migration
↑ invasion

[187]

Flavonoids (under hypoxia/reoxygenation) ↓ ROS production — [189]

ROSSignal transduction

NF-�휅B activation

↑ inflammation
↑ fibrosis

Transcriptional
regulation

RAGENon-RAGE

s-RAGE

Impaired cell function

AGEs

AGEs

Figure 5: Advanced glycation end-product (AGE) pathological
effects. Most of AGE effects are dependent on the interaction
AGE/RAGE (receptor of AGE) and the activation of transduction
pathways. However, AGEs can bind non-RAGE proteins, and
interestingly, RAGE can be activated by other ligands. AGE
interactions with membrane receptors trigger various ROS-
mediated signalling pathways that converge on NF-κB activation
and transcriptional regulation of genes, which impairs cell
function. The proteolytic cleavage of extracellular RAGE originates
circulating peptides referred as soluble RAGE (sRAGE). It is
believed that sRAGEs act as decoy receptors, which scavenge
circulating AGEs, preventing them from binding functional
membrane RAGE and inducing cellular responses.
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treatment with soluble RAGE, RAGE inhibitors, and antiox-
idant molecules ameliorates placental complications [225].

5.2.1. AGEs, ROS, and Regulation of Trophoblast Function. In
vitro experiments with trophoblasts isolated from first tri-
mester chorionic villi showed that AGE administration
increased apoptosis, proinflammatory cytokine production,
and monocyte migration. Activation of the NF-κB pathway
was crucial to the observed AGE-mediated cell responses,
since an inhibitor of this pathway displayed beneficial effects
[226]. In accordance, AGEs were found to be upstream mol-
ecules that trigger ROS production, activate soluble fms-like
tyrosine kinase-1 (sFlt-1), VEGF, and PlGF [227], increase
cytokine production in immortalized trophoblast cell lines
isolated from first trimester villi (HTR-8/SVneo and Sw.71
cells), and enhance monocyte migration [228, 229]. This
inflammatory environment conditions placenta develop-
ment. Anti-RAGE immunoglobulin or antioxidant treatment
also proved effective in reverting AGE-mediated cell effects
[227]. Recently, work from Antoniotti et al. showed that uter-
ine AGE levels found in obese women impair uterine trans-
formation and trophoblast function [7].

Overall, data obtained from both in vivo and in vitro
experiments demonstrated that AGEs alter trophoblast func-
tion through ROS increase and activation of the NF-κB path-
way [227, 229–231], supporting the view that an age-related
imbalance in uterine oxidative microenvironment, present
even before pregnancy, conditions implantation.

6. Concluding Remarks and Future Perspectives

Placenta central function is to supply an adequate amount of
blood to properly nourish the foetus. To achieve this purpose,
a receptive endometrium is permeated by extravillous tro-
phoblast cells that invade it as deep as the muscular layer.
This invasion anchors the placenta to the maternal uterus
and guarantees local blood supply through a surprising struc-
tural and functional change in maternal spiral arteries: by
way of the replacement of their walls by embryo-derived
cells, their resistance properties are converted into capaci-
tance features. Such a process requires coordination and
cooperation between maternal and foetal tissues.

Similar to key roles played by ROS in processes as oocyte
maturation and fertilization, ROS involvement continues
in decidualization, implantation, modulation of trophoblast
proliferation and differentiation, and embryo development.

A balance between oxidant and antioxidant molecules is
vital for a successful ending. The placenta is a growing organ
that must evade the adverse effects of homeostasis loss and
adapt to reinstall homeostasis. However, when local redox
status is significantly disturbed, and severe OS is established,
molecular and cellular damage ensues. In the decidualized
uterus, those events alter protein function and structure
and signalling pathways, disrupt ECM and cytokine produc-
tion, and hamper the microenvironment at the maternal-
foetal interface.

More researchers are convinced that alterations in the
foetal-maternal microenvironment before pregnancy, whether
by ROS or AGEs, are the culprits and the etiopathogenic

roots of pregnancy-related complications of vascular origin.
Clearly, we have much to learn, by unravelling ROS-
mediated molecular mechanisms dysregulated at the uterus.
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