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Direct Learning Hidden Excited 
State Interaction Patterns from ab 
initio Dynamics and Its Implication 
as Alternative Molecular 
Mechanism Models
Fang Liu   1, Likai Du   1, Dongju Zhang2 & Jun Gao   1

The excited states of polyatomic systems are rather complex, and often exhibit meta-stable dynamical 
behaviors. Static analysis of reaction pathway often fails to sufficiently characterize excited state 
motions due to their highly non-equilibrium nature. Here, we proposed a time series guided clustering 
algorithm to generate most relevant meta-stable patterns directly from ab initio dynamic trajectories. 
Based on the knowledge of these meta-stable patterns, we suggested an interpolation scheme with 
only a concrete and finite set of known patterns to accurately predict the ground and excited state 
properties of the entire dynamics trajectories, namely, the prediction with ensemble models (PEM). 
As illustrated with the example of sinapic acids, The PEM method does not require any training data 
beyond the clustering algorithm, and the estimation error for both ground and excited state is very 
close, which indicates one could predict the ground and excited state molecular properties with similar 
accuracy. These results may provide us some insights to construct molecular mechanism models with 
compatible energy terms as traditional force fields.

The photophysical or photochemical processes are extremely important for the evolution of life and environ-
ments. After the molecule is excited onto higher electronic states, the molecule would undergo a rather complex 
sequence of dynamics, such as radiative electronic transitions (fluorescence, phosphoresences), nonradiative 
electronic transitions (internal conversions, intersystem crossings), energy transfers and chemical reactions, etc. 
Many efforts have been devoted to understand the molecular basis of the possible photophysical or photochemi-
cal mechanism in the last decades1–10. The reliable theoretical simulation of excited state processes of polyatomic 
molecules is not so straightforward in most cases, which requires the accurate calculation of electronic excited 
states for highly non-equilibrium molecular geometries and the nonadiabatic transitions between the electronic 
and nuclear degrees of freedom11–15. The non-equilibrium nature of excited state processes presents some diffi-
culty in establishing a realistic description of these ultrafast processes which are completed in picoseconds or even 
femtoseconds. Similar problem is also mentioned in the thermally activated ground state reactions, especially, 
for the transition state structures, the dynamical correlations are known to disrupt the minimal energy path pic-
ture16–18. Therefore, a dynamic description is much preferred.

Ab initio molecular dynamics (AIMD) methods have been extended for the excited states problems19–24, such 
as the on-the-fly surface hopping method21, 22, 25–27, for which, the dynamics and electronic structure problems are 
solved simultaneously. This involves nuclear dynamics to determine the time evolution of the molecular geometry 
in concert with electronic structure methods capable of computing electronic excited state potential energy sur-
faces (PES). A large number of trajectories are usually produced from the excited state AIMD simulations. Such 
simulations directly include all nuclear degrees of freedom, which provide a rather rich picture of the microscopic 
processes. However, for medium to large size molecules, the trajectories are generally chaotic and becoming 
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inscrutable for human to extract the physical insights of interesting. Therefore, it is very necessary to design more 
intelligent algorithms to depict not only the available reaction channels, but also further dynamics details, such as 
the hidden meta-stable states and their interaction networks.

To meet the challenge of tackling with the PES complexity over AIMD trajectories, much recent efforts have 
been devoted to machine learning (ML) algorithms28–35. Generally, the number of local minima, and hence, the 
number of meta-stable states, grows exponentially along with system size. An important method for shrinking the 
data set is to apply a clustering algorithm to obtain a family of clusters (microstates) of much smaller size than the 
original data set. In this aspect, the nonlinear dimensionality reduction algorithms have been used to investigate 
the conical intersection topology of the excited state dynamics28. And the Markov state models (MSMs) have been 
proposed to automatically construct coarse grained representations for biological macromolecular conformation 
dynamics36, 37, that are readily humanly understandable. As a practical issue, the prospect of using ML algorithms 
to tackle the flood of dynamics data to yield statistical significance is indeed very promising.

In recent years, ML algorithms also become a popular and effective tool to improve computational chemistry 
methods38–43. Using ML algorithms to reproduce ab initio calculation results would greatly reduce the computa-
tional cost without loss of the accuracy30. And the ML algorithms have been successfully used to predict various 
molecular properties on their electronic ground or excited states30, 44, 45. For example, the ML algorithms have been 
implemented to predict (PES) at QM and QM/MM level successfully using neural networks (NN) model39, 46, 47.  
The ML algorithms are also reported to accelerate the AIMD simulation of material systems48, 49. In this regard, 
it is very interesting to construct new efficient computational methods based on the knowledge of the statistical 
significance from ML studies.

So for, excited state molecular dynamics (MD) are often restricted within direct ab initio methods for small 
to medium size molecules, and the use of parameter-based empirical force field is generally avoided. In contrast, 
the classical MD with empirical force field has been successfully applied to very large molecule systems in the 
ground state, such as protein conformational dynamics or protein-ligand interactions50–57. A few attempts have 
been devoted to develop excited state force field for efficiently describing electronic excited states motions. The 
force fields parameter sets has been developed for a few typical molecules in low-lying electronic excited states 
based on quantum chemical calculations58, 59. A few novel model for excited state empirical force field have also 
been proposed, such as the interpolated mechanics-molecular mechanics (IM/MM)60, and electron force field 
(eFF)61. And these progresses may provide more insights for much longer time scale (i.e. nanoseconds) excited 
state simulation of large molecules in condense phases. The main difficulty in developing excited state empiri-
cal force fields is the relative scarcity of the universal mathematical function forms (PESs and their couplings) 
and the failure to sufficiently characterize excited state motions due to their highly non-equilibrium nature. The 
excited state AIMD trajectories contain large amount of information about their traveling PES, which can be used 
intrinsically as data sets to design the new models. We suspect the ML algorithm may provide an idea tool for 
revealing the coarse-grained representations of the excited state processes, as well as the main transitions between 
the hidden meta-stable states. And the data mining of the AIMD trajectories may promote the future excited state 
force field development.

In this work, we present a time series guided clustering algorithm to extract the main features of meta-stable 
states and their correlations from an ensemble of excited state AIMD trajectories. On the basis of these finite 
meta-stable patterns, the conformation similarity was explored to build an interpolation scheme, namely, the pre-
diction with ensemble models (PEM), to estimate the ground and excited state properties of the entire dynamics 
trajectories. The PEM method does not require any training data beyond the clustering algorithm, and we could 
correctly predict the charge population and excitation energy, in comparable with the DFT/TDDFT calculations. 
As a test case, the excited states S1 of sinapic acid (SA) was used as a benchmark system, which is an essential 
UV-B screening ingredient in natural plants62. This work highlights the potential power of ML algorithm in com-
putational chemistry to extract chemical insights or develop the state-of-art theoretical models.

Results
Characters of Possible Excited State Meta-stable Patterns.  Here, we focus our attentions on directly 
extracting the physical insights from excited state dynamics trajectories. To build such kinetic models, it is neces-
sary to map out the dominant long lived, kinetically meta-stable states visited by the molecular system. Thus, we 
use a conformation clustering algorithm (K-means) to automatically split the time series of dynamics trajectories 
into geometrically distinct clusters. This also allows us to characterize possible rare events not easily observable 
in simulations. The detail distribution of molecule structures for each meta-stable pattern is given in Table S1.

Figure 1 shows the overlapped molecular geometries for each pattern. The geometric features of meta-stable 
patterns were sampled on the basis of K-means clustering algorithm. Some attempts have been performed to 
vary the number (k) of distinct clusters, and finally, the number of k = 12 are adopted. We also provide the 
meta-stable patterns with the cluster number k = 20 in Figure S1. It is interesting that the conformation space 
from dynamics trajectories could be split into a limited number of concrete clusters. The clusters i mainly refers 
to the anti-clockwise rotation of the collective dihedral angles, meanwhile, the cluster i′ describes the clockwise 
rotation. The standard deviations of heavy atom coordinates for each pattern after alignments are usually less 
than 0.5 Å (Table S2). Because the nearly symmetric character of the dihedral angle motions, the clustering results 
show very similar symmetric features (Fig. 1). Two meta-stable patterns (1/1′) are close in the same plane of the 
aromatic ring (anti-clockwise and clockwise), while some meta-stable patterns (6/6′) are perpendicular to the 
plane of the aromatic ring. Most other patterns show transition characters between these two kind of meta-stable 
patterns. Since only a few dihedral angles were selected as molecule descriptors, the geometric deviation from the 
methoxy group is observed. This shows neglectable effects for our qualitative analysis of the excited state cis-SA 
molecule, and thus the clustering results are still very reasonable.
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Next, the transition probabilities between these meta-stable patterns are determined, in order to create a 
kinetic model of the system’s conformational dynamics. This can be easily achieved by counting the number of 
transition times along the time series of the dynamics trajectories. After the transition probabilities between clus-
ters are resolved, one can have a kinetic network, which retains a coarse version of the dynamics. This conforma-
tion space network can be drawn as a graph, which can be described by graph theory. Each pattern is represented 
by a vertex as a colored circle in the graph. And the edge represents the connection among patterns, which could 
undergo direct transformation between each other.

At first glance, the network is not fully connected (Fig. 2a), which indicates there exists explicit reaction 
pathway among these meta-stable patterns. The near symmetric rotation character of cis-SA molecule is also 
reflected in the network. The network seems to be divided into three sub-graphs; one is correlated to near in-plane 
patterns, while the other two are correlated to out of plane patterns (i.e. inward and outward of the aromatic ring 
plane). The patterns 3/3′ and 4/4′ are vertex separators, the removal of which would disconnect the remaining 
network. Therefore, this graph provides a suitable view to directly interpret the excited state trajectories, and 
an acceptable way to recognize the non-negligible intermediate states. We also try to provide a time dependent 
description of this kinetic model. Figure 2b shows the population of each meta-stable pattern as a function of 
time. Note that the pattern i and i′ (1~6) are combined to provide a simplified representation. Generally, the 
features of in-plane patterns (1/1′ or 2/2′) are often found at the beginning of the trajectories, and features of out 
of plane patterns (i.e. 4/4′, 5/5′, 6/6′) are mainly observed during the evolution of the dynamic trajectories. The 
initial quick drop of the population of the patterns 1/1′ is observed within the first 300 fs. And then, the continu-
ous decay from 20% to 5% takes place along with fast oscillations. The total population of the out of plane patterns 
(i.e. 4/4′, 5/5′, 6/6′) increases to nearly 80% beyond 600 fs. In this way, the dynamics process could be described 
using merely a few meta-stable patterns.

Note that this kinetic network is built from short timescale (~1 ps) dynamics trajectories and an ensemble of 
uncoupled trajectories were used to extract long timescale dynamics features. This ensemble dynamics approach 
has been commonly used in the classical MD simulations63–66. We have also performed five longer timescale 
(~6 ps) excited state AIMD simulations and these meta-stable patterns are indeed observed in longer excited state 
AIMD trajectories. Therefore, our algorithm can successfully tackle the issue of capturing proper meta-stable 
patterns that faithfully represent excited state dynamics at the timescale of interest.

The Statistical Analysis of the Meta-stable Patterns.  The clustering algorithm creates a group of net-
works, which gives us a unique perspective for understanding excited states processes. Generally, each cluster 
shows low structural bias, while different clusters show high structural variance. This means that each meta-stable 
pattern holds very similar molecular structures. Frequently, the molecular properties of similar structure are very 
close. Here, we focus our attention on the distribution of molecular properties for each meta-stable pattern, such 
as excitation energy and charge population, which is also distinguishable among meta-stable patterns.

The excitation energies are very important to understand the molecular excited states. Figure 3a shows distri-
bution of excitation energies (S1) for all 13226 sampled structures. Significant variation of the excitation energies 

Figure 1.  Possible meta-stable patterns derived from K-means clustering results. The oxygen and carbon atoms 
are shown in red and gray, and the position of the hydrogen atom is not shown for clarity.
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is observed. The distribution curve is fitted using Gaussian function with the mean value (μ) of 2.34 eV, and 
standard derivation (σ) of 0.52 eV. Furthermore, the distribution of the excitation energies is also analyzed for 
each meta-stable pattern (Fig. 3b). The mean value and standard derivation of the Gaussian distribution were 
fitted as indicators. The excitation energies of the patterns 1/1′ show the highest mean value of excitation energy 
(μ = 2.8 eV). As the carboxyl moiety rotates out of the aromatic ring plane, the value of excitation energy obvi-
ously reduces. The patterns 4/4′, 5/5′, 6/6′ show lower excitation energy (μ = 1.9~2.1 eV). The transition patterns 
(3/3′, 4/4′) show boarder excitation energy distribution (σ = 0.30~0.50 eV), which may cover the characters of 
the in-plane and out-of-plane geometries. In summary, each pattern has its distinct characters and property. 
The standard derivation (σ) for each pattern is much smaller (lower bias) than the whole meta-stable patterns 
network.

Similar conclusion is also available for the ESP partial charge population on the excited state. The partial 
charge distribution for each atom of SA molecule in 13226 structures has been fitted with Gaussian function. 
Figure 4 shows the distribution features of the partial charge population for each atom of SA molecule. The 
median of the error bar refers to the mean value of the Gaussian distribution, meanwhile, the maximum and 
minimum of the error bar refers to μ ± 2.58σ, which covers 99% of the distribution probability. The partial charge 
fluctuation for the hydrogen atom is usually neglectable; however, the partial charge for the aromatic ring or the 

Figure 2.  (a) The network formed by connecting the meat-stable patterns. The size of the circles reflects the 
relative number of snapshots in each pattern. (b) The time dependent population of each meta-stable pattern. 
And the meta-stable patterns could be corresponding to the possible free energy basins.

Figure 3.  (a) The distribution of excited energies for all meta-stable patterns. The fitted Gaussian distribution 
curve is shown (μ = 2.34, σ = 0.52). (b) The Gaussian distribution of excited energies for each meta-stable 
pattern.
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carboxyl motif varies much large. For instance, the partial charge fluctuation is indeed very large, nearly ~1.0 e, 
for a few atoms. Therefore, it is very necessary to consider the geometric dependence of the partial charge popu-
lation on the excited state.

Then, we also summarized the partial charge population for each meta-stable pattern. For simplify, Fig. 5 
shows the mean value of partial charges of a few specific atoms with larger variations for each meta-stable pattern. 
It is obvious that each meta-stable pattern shows distinct partial charge population. The distribution features of 
the partial charges for each pattern, i.e. mean value (μ) and standard derivation (σ) are much smaller than that 
of the entire meta-stable patterns. And each meta-stable pattern shows very different partial charge distribution. 
In general, the clustering algorithm indeed creates a group of networks, each with low bias and high variance.

Prediction with Ensemble Models.  In the language of machine learning, the clustering algorithm serves 
as a classifier to partition the molecular conformations into a few distinct meta-stable patterns. The PEM algo-
rithm requires the number (M) of meta-stable patterns for prediction (see Eq. 1). The value of M used for pre-
diction could be equal to the total number of meta-stable patterns, since there is only a finite set of distinct 
patterns (i.e. M = 12) for SA molecule. If the number of distinct patterns is very large (i.e. a few thousands), we 
can optionally reduce this number by screening the value of the general distance, which is inversely proportional 
to the contribution of each pattern to the molecular properties.

The number (n) of possible samples in each meta-stable pattern is another critical parameter to be determined 
in the PEM algorithm. Two possible solutions can be considered.

	 1)	 All elements in each pattern are used, namely, “batch” option, for which all samples are used for predicting 
molecular properties. In this case, the number n may be very large, i.e. a few thousands for SA molecule 
(Table S1). This would strongly lower the efficiency of the PEM algorithm.

	 2)	 Only one element in each meta-stable pattern is used, namely, “stochastic” option, for which randomly 
select only one sample from each pattern, or use the average structure of each pattern. In this case, the 

Figure 4.  The distribution of partial charge for each atom of SA molecule in the meta-stable patterns network. 
The maximum and minimum of the error bars are related to the value of μ ± 2.58σ in Gaussian distribution.

Figure 5.  The average partial charges of each meta-stable pattern for a few selected atoms of SA molecule. The 
value of the meta-stable patterns 1/1′ are shown in the middle of the X axis.

http://S1
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number n should be equal to 1. This option is much faster, however, the convergence to the optimal value is 
too oscillation and stochastic.

In order to overcome the defects of both options, we find a trade-off between the efficiency and reliable, for 
which a small set of the samples (i.e. n = 10) in each pattern is used for PEM algorithm, namely “mini-batch” 
option. This option could reduce the total number of numerical calculations, and also reduce the stochastic 
behavior. Similar ideas have been commonly used in the realm of machine learning43, 67. The PEM algorithm 
typically scales as O (M٠n), whereas M and n are very small constant value in the “mini-batch” option. Thus, this 
algorithm should be significantly faster than electronic structure approaches, such as TDDFT.

It is also very important to determine the uncertainty in the prediction, so one can evaluate the confidence of 
the results. In the following calculations, the conformations of validation sets (1000 geometries) were randomly 
sampled from dynamics trajectories. The “mini-batch” option is used with M = 12 and n = 10. This means that 
all of meta-stable patterns (12 clusters) were used to estimate the molecule properties of any unknown geometry, 
meanwhile, we randomly select ten geometries (n = 10) from each pattern to build parameter sets. Note that no 
training sets were required for the PEM algorithm beyond the clustering algorithm.

Figure 6a shows the performance of excitation energy prediction for S1 state. The distribution of the ratio 
between the PEM and TDDFT excitation energies is given. The distribution curve is fitted to a Gaussian distri-
bution (μ = 0.99, σ = 0.08), although the distribution is even more sharp than a Gaussian distribution. The deri-
vation of PEM excitation energy from the TDDFT is within 0.1~0.2 eV (99% cases), which is acceptable even for 
electronic structure calculations. More sophisticated designing of molecular descriptors or clustering algorithm 
may improve the prediction. Then, the PEM algorithm is used to estimate the fluorescence emission spectroscopy. 
In order to take into account of dynamical effects (vibronic), the emission spectroscopy is calculated with 100 
snapshots sampled from the last 5 ps of five excited state AIMD trajectories. Note also that in all the cases fluo-
rescence was considered to happen only from the first excited singlet state following the so called Kasha’s rule68. 
Figure 6b shows the emission spectroscopy obtained from the PEM and TDDFT. The band shape of the emission 
spectroscopy at PEM and TDDFT level is very close.

Then, the PEM algorithm is used to predict the excitation energies along with a specific excited state AIMD 
trajectory, which are not used to construct the meta-stable patterns. Figure 6c shows the time evolution for S1 
excitation energy from the PEM and TDDFT results for a ~5 ps dynamics trajectory. It seems that the rough 
trends of time dependent excited energy can be reasonably predicted by the PEM method, however, the details 
of the excitation energy fails to be predicted. This is reasonable, because our PEM algorithm only includes a few 
dihedral angles as molecule descriptors. So, the contribution from the fast degree of freedoms is averaged out in 
this model. More consistent results can be anticipated if more sophisticated molecular descriptors are adopted. 
In general, excitation energy could be properly described by an ensemble model with a finite set of molecular 
conformations.

Figure 6.  (a) The ratio distribution of the excited energy (ratio = PEM v.s. TDDFT). The blue curve is fitted 
with Gaussian function (μ = 0.99, σ = 0.08). (b) The fluorescence emission spectra roughly estimated from PEM 
and TDDFT. (c) The time evolution of the excitation energy calculated at PEM and TDDFT level. The red line is 
the TDDFT result smoothed with Bézier curve, in order to remove the fast oscillations.
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Figure 7 shows the distribution of the partial charge deviation between the PEM and DFT/TDDFT calcu-
lations for the ground state and the excited state (S1). At first glance, the PEM partial charges are improved 
significantly, and the deviation from the DFT/TDDFT is often less than 0.05 e, in contrast to ~0.50 e in Fig. 4. 
The symmetric fluctuation of the charge deviation around the zero value also suggests that the error cancellation 
effects may enhance the robust of the PEM partial charges at long timescale dynamics simulation. Another inter-
esting result of the PEM algorithm is that the excited state partial charge is predicted with similar accuracy as the 
ground state partial charge, considering the very similar distribution of the partial charge deviation in Fig. 7. This 
superiority allow us to update the ground and excited state partial charge at the same foot, although the electronic 
partial charge of excited state is more complex in comparison with ground state.

Beyond the symmetric fluctuation of the partial charge deviation, the strength of the charge fluctuation for 
each atom is not the same, for example, the description of the aromatic ring is not very good. This is expected, 
since the molecular descriptors mainly focus on a few dihedral angles, which only provide a rough representation 
of the slow degree of freedoms. Therefore, more molecular descriptors may be required to take into account the 
fast degree of freedoms in the future clustering algorithm. In contrast to the fixed point charge model, the PEM 
point charge provide a much flexible description of the ground and excited state charge fluctuation (Figs 4 and 7). 
Although the electronic structure calculations is performed at DFT/TDDFT level in this work, the PEM method 
can be also applied to any level of electronic structure methods. The use of the PEM method offers a significant 
improvement in the quality and applicability of electrostatically determined partial charges. In summary, the 
PEM method provides an alternative choice to directly incorporate the polarization or charge transfer effects on 
predicting partial charge population.

Discussions
The PEM method includes a classifier to identify the possible meta-stable patterns as molecular features, and a 
predictor to construct the molecular properties for any unknown molecule structure. We have turned out that 
model ensembles are usually more accurate than any single model, and they are typically more fault tolerant than 
single models. Therefore, the performance of PEM can be steadily improved by taking into more reference data 
or optimizing the kernel function. And more sophisticated and intelligent algorithms should also be helpful, 
i.e. replace the K-means clustering classifier by an auto-encoder or even an artificial neutral network. However, 
such treatment would scarify the clear physical meaning of variables in this work, and thus the dedicated balance 
between the performance and human interpretability is of paramount interest43.

The simple analytical form of the PEM algorithm provides an alternative choice or procedure to take into 
account of the large variation of the excitation state molecular properties, i.e. charge population and excitation 
energy. The good performance of the PEM method may give us some inspiration on the empirical force field 
development. Theoretically, the description of both molecular ground and excited states should be possible with 
empirical force fields, especially, when the potential is intended for an application toward adiabatic dynamics on 
a single surface. However, the “parameters” in the empirical potentials can be vastly different along the molecular 
conformation for the excited state. And more sophisticated empirical force field model or complex analytic func-
tions may be required.

We suggest that the “parameters” in empirical force field can be constructed on top of the PEM algorithm. 
Practically, the force field parameters can be assigned for each kind of meta-stable patterns. For instance, the 
widely used point charge model could be applied for both ground state and excited state, and the real dependen-
cies of partial point charges on molecular conformation may be handled by combining several or even thousands 
of meta-stable patterns into a single, new point charge predicting model (Eq. 1). Therefore, the requirement to 
incorporate polarization or even charge transfer into the standard pair-wise potentials can be easily achieved in 
PEM algorithm, which is compatible with traditional force field. There are two practical advantages. 1) There is 
no need to construct a complex analytic model; this procedure is cumbersome and computational inefficiency 
for large molecules. 2) With use of the PEM algorithm, the computer program is very similar with the available 
empirical force field. This model is fast enough to allow millions of calculations along the dynamics propagation 
with adequate accuracy. The performance of this assumption would be reported in our continuing work.

Figure 7.  Partial charge deviation between PEM and DFT/TDDFT calculations for ground state (a) and excited 
state (b), respectively. X axis is the atom index for SA molecule.



www.nature.com/scientificreports/

8SCIentIfIC REPOrTS | 7: 8737  | DOI:10.1038/s41598-017-09347-2

The main disadvantage of this approach is the requirements of fully searching the most possible meta-stable 
patterns. The good news is that the PEM algorithm could easily incorporate more meta-stable patterns of some 
specific conformation space in a fast iterated procedure, meanwhile, the performance of another part of con-
formation space would not be affected if the kernel function is properly defined. So, it is highly extensible and 
flexible. Thanks to the increasing computing power, modern dynamics simulations can easily generate data sets 
with millions of configurations from an ensemble of uncoupled dynamics trajectories. We also note that similar 
machine learning based approaches have also been used to accelerate the AIMD simulation of material sys-
tems48, 49, because such approach avoids the repeated ab initio calculations for the same molecule with similar 
conformations.

Conclusions
Our results strongly suggest that ensemble models together with a proper classifier for model selection provides 
a useful research tool to gain insights from time series of ab initio dynamics, as demonstrated in the excited 
state studies of the SA molecule. Data mining of dynamics trajectories could gain a direct view of the possible 
meta-stable patterns and their relationship on the physical or biological processes of interest, with only a few 
commonsense rules. We further suggest that the “state-of-art” PEM method shows good performance in pre-
dicting ground and excited state molecular properties, in comparable to DFT/TDDFT calculations. The PEM 
could sufficiently characterize the feature of excited state motions, and naturally form knowledge based data sets. 
And the performance of PEM method could steadily be improved in a fast iterated procedure. The PEM method 
may provide us an alternative perspective to construct excited state force field with similar function form as the 
ground state one, without using much advance knowledge of the molecule details in the excited states. Its gen-
erality and ease of implementation should make it useful in various situations. Further work is going on to inves-
tigate the dynamic dependence of the inter-atomic potential itself and its realistic applications on the molecular 
dynamics simulation.

Models and Methods
Dynamics Simulation and Data Sets.  The molecular conformation data sets were mainly collected from 
our previous excited state AIMD simulations of sinapic acids (SA)62. The dynamics details can be found in the 
supporting information. Here, we only give a brief summary. The ultrafast excited-state dynamics was performed 
by on-the-fly surface hopping approach as implemented in JADE package69, 70. Non-adiabatic transitions between 
excited states were taken into account via Tully’s fewest switches approach26. The initial geometries and veloci-
ties of the excited state dynamics simulations were generated from the Wigner distribution function of the first 
vibrational level of the ground electronic state71. Starting from the initial sampling geometries, the molecule is 
electronically excited to the S1 state for 100 trajectories. Each trajectory was calculated for 1000 fs. The time step 
for integration of classical equations was 0.5 fs and of quantum equations, 0.005 fs. The decoherence correction 
proposed by Granucci et al. was taken and the parameter is set to α = 0.1 Hartree72. For simplicity, the cis-SA mol-
ecule in gas phase is used as a benchmark system (Fig. 8), and we only focus on a single potential surface (S1). This 
is reasonable since the nonadiabatic decay to the ground state is not observed within the simulation time scale, 
which is very different from the dynamic behavior of the solvented SA molecule62, 73–75. Thus, the excited state 
dynamics of SA molecule in gas phase would stay on a single excited state surface (S1) in the limited simulation 
time. However, it should be noted that our following protocols are mainly based on geometric metrics, which can 
be easily applied to two or more coupled PES conditions.

The molecule spends most of the trajectory time dwelling in a free energy minimum, “waiting” for thermal 
fluctuations to push the system over a free energy barrier. Thus, it is extremely difficult to adequately sample 
the conformation space for complex molecules due to the limited timescales accessible for excited state AIMD 
simulations. Thus, an ensemble of uncoupled AIMD trajectories was used for our subsequent analysis. Totally, 
200,000 snapshots from dynamics trajectories were obtained. To improve the sampling efficiency, we only sample 
the snapshots of local minima along the each trajectory (13226 structures).

The ground state calculations were performed at B3LYP/6–31 G(d,p) level, while, the excited state calculations 
were performed at TD-B3LYP/6–31 G(d,p) level. The ground and excited state molecular electrostatic potential 

Figure 8.  (a) The schematic structure of cis-SA molecule and the important dihedral angles are labeled with 
arrows. (b) Possible distribution of the conformational states along a simple potential energy curve. The points 
represent the accessible conformational states during dynamics.
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(ESP) is also calculated for subsequent analysis. The adopted DFT/TDDFT methods have been carefully cali-
brated with known experimental evidence in our previous work62, and can be used for thousands to millions 
energy and gradient calculations. Dynamics treatment with more accurate electronic-structure and advanced 
dynamical methods at all atoms level should represent the great challenge for future theoretical chemistry. All 
electronic structure calculations were performed with Gaussian 09 package76. The data sets and some scripts can 
be obtained upon request or downloaded from https://github.com/dulikai/bidiu.

The Clustering Algorithms.  The dynamics of complex systems typically involves various meta-stable inter-
mediates. It is necessary to decompose conformation space into a set of kinetically meta-stable states. Although 
the meta-stable state is not a static structure, which can be represented as an ensemble of structures with similar 
geometric features. This can be achieved by various clustering algorithms, such as K-means clustering, mean shift, 
hierarchical clustering, artificial neural network and etc. Here, the K-means, as a simple and robust algorithm, is 
used to classify the conformation space into a set of discrete states or clusters, which should be corresponding to 
basins of attraction of local minima on the PES.

The K-means clustering algorithm aims to partition n observations into k clusters, in which each observation 
belongs to the cluster with the nearest mean, serving as a prototype of the cluster. The most critical parameter in 
the K-means clustering is the number (k) of the clusters or the centroids. Thus, we have tested many cluster num-
bers (i.e. k = 4~400). And the selection of cluster number should be an iterative procedure. The geometric RMSD 
value of each cluster is a very suitable criteria (Table S2). The subsequent analysis also verified that 12 clusters 
are sufficient and efficient. The molecular internal coordinates are used as molecular descriptors for clustering, 
especially, a few critical dihedral angles62, 77 are chosen to characterize the excited state motion of the SA molecule 
(Fig. 8). The protocol is implemented with scikit-learn module78 in Python.

The Prediction with Ensemble Models.  The clustering algorithm ensures that similar conformations are 
grouped into the same meta-stable states or clusters, in a methodical and unbiased fashion. Thus, the dynamics 
process could be represented by only a limited number of meta-stable patterns. The conformations in the same 
cluster should have much similar properties (low bias) than among different clusters (high variance). And we can 
estimated the transition probabilities between meta-stable states by counting the number of transitions along the 
time series of the trajectories, and thus form a kinetic meta-stable states network, namely time series fusion (TSF) 
network.

Based on the concept of ensemble averaging79–81, we suggest an interpolation scheme, namely Prediction with 
Ensemble Models (PEM) algorithm, to build a model and predict reliable molecular properties, such as charge 
population and excitation energy. In the machine learning realm, ensemble averaging is one of the simplest types 
of committee machines, which provides an ideal technique to combine multiple models or patterns to produce a 
desired output. Usually, an ensemble of models performs better than any individual model, because the various 
errors of the models can be averaged out79. In summary, ensemble averaging creates a group of networks, each 
with low bias and high variance, and combines them to a new network with low bias and low variance. It is thus a 
possible solution of the bias-variance dilemma79, 81.

The theory of ensemble averaging relies on two properties of artificial neural networks: 1) In any network, the 
bias can be reduced at the cost of increased variance. 2) In a group of networks, the variance can be reduced at no 
cost to bias. In this work, a general version of ensemble averaging is defined as a weighted sum of finite number 
of clusters, with low bias and high variance (Fig. 9). If the molecule descriptors (X) are specified, the estimated 
result V can be defined as

∑∑ω=
= =

V X X T X( ) ( ) ( )
(1)i

M

j

n

ij ij
1 1

In the above equation, Tij is the property of one element (j) in each cluster (i), and the distinct clusters are 
generated by the K-means algorithm from the time series of trajectories. And M is the number of clusters, n is the 
number of possible elements in each cluster, and ω is a set of weights. The same sets of geometric based molecular 

Figure 9.  The schematic representation of the ensemble averaging, which can be viewed as an interpolation 
algorithm.

https://github.com/dulikai/bidiu
http://S2
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descriptors in the clustering algorithm are adopted in the ensemble averaging model. The performance of the 
prediction model with such simple molecular descriptors seems to be sufficient in the scenario of “big data sets”.

Here, we use the kernel function in kernel-based ML methods29 to directly obtain the weights (ω), which tends 
to be somewhat easier to set up in practice than the artificial neural networks. The kernel function should have the 
following features: (1) The formula should be continuous in the input space of molecular descriptors, so any small 
perturbation of the system does not change the results too much. (2) The X far from a specific cluster should have 
less weight, because such cluster has little similarity on the conformation space.

Thus, the weight/kernel function is defined as a function of general distances between an arbitrary geometry 
and a set of known geometries.

ω =
∑ = ( )

u

u

1/

1/ (2)
ij

ij

i
N

ij1
4

The general distances is defined as

∑= − ′
=

u X X X( ) ( )
(3)

ij
k

p

k
1

2

In Eq. (3), p is the number of molecular descriptors (internal coordinates), and Xk′ is known values of molecu-
lar descriptors. The above equation is very similar with well-known PES interpolation algorithm, i.e. the Shepard 
interpolation82, 83. This is not surprising because much of ML algorithms are just the interpolation between data 
points, at its core. It should note that the optimization problem of finding the weight ω can also be solved through 
the training of neural networks, if one does not care about the drawback of their interpretability as a data explo-
ration tool84, 85.
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