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Abstract: B-cell development is a very orchestrated pathway that involves several molecules, such as
transcription factors, cytokines, microRNAs, and also different cells. All these components maintain
the ideal microenvironment and control B-cell differentiation. MicroRNAs are small non-coding
RNAs that bind to target mRNA to control gene expression. These molecules could circulate in the
body in a free form, protein-bounded, or encapsulated into extracellular vesicles, such as exosomes.
The comprehension of the role of microRNAs in the B-cell development was possible based on
microRNA profile of each B-cell stage and functional studies. Herein, we report the knowledge about
microRNAs in the B-cell the differentiation, proliferation, and also in hematological malignancies.
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1. Introduction

Several molecules take part in regulating cell development, differentiation, metabolism,
proliferation, and survival. Beyond that, microRNAs (miRNA or miRs) are highly con-
served molecules across species [1,2] that play a central role by targeting messenger ri-
bonucleic acid (mRNA) related to these processes. More than 30% of all human genes
(protein-coding genome) are targets of miRNAs, and one miRNA molecule could have
multiple mRNA targets [3,4]. Similarly, every mRNA can be regulated by more than
one microRNA [5]. Biogenesis of these non-coding RNAs happens in the nucleus and
cytoplasm, with the participation of different enzymes. Mouse model experiments with
Dicer modification, a central molecule in this pathway, show an impaired synthesis of
microRNAs and consequently disrupt the B-cell development (arrest at the pro-B to pre-B
transition). Furthermore, these mice also showed other effects on cell survival and antibody
diversification, showing its relevance in homeostasis maintenance of hematopoiesis and
cell function [6].

Monticelli et al. [7] performed a detailed miRNA expression profile study in murine
immune cell subsets. These authors reveal that the expression of miRNAs in the hematopoi-
etic system changes depending on the differentiation status, which indicates that microRNA
regulates lineage commitment in immune cells. This subject was confirmed by microarray
analysis [8,9] and also reviewed by Metha et al., 2016 [10].

Based on that, any alterations in the miRNA regulation system could lead to defects in
cell number and activity, as well as promote the appearance of diseases. In this review, we
focus on the role of microRNAs in controlling B-1 and B-2 development and in the hemato-
logical B-cell malignancies that could appear due to disbalance in miRNAs expression.

2. microRNAs: Biogenesis, Activity and Function

MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules, single-stranded
with 19–23 nucleotides in length. They have origin in intergenic miRNA genes (canoni-
cal pathway) or encoded in introns with hairpin-forming potential (non-canonical path-
way) [11]. RNA polymerase II or RNA polymerase III transcripts the miRNA genes in the
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canonical pathway, leading to molecules called primary miRNAs (or pri-miRNAs), that
could have the 5′-cap and 3′-polyadenylated tails [12]. Pri-miRNAs are then processed
and cleaved into precursor-miRNAs (pre-miRNAs) by a protein complex formed with
Drosha, DGCR8 (DiGeorge syndrome critical region gene 8) and RNase III enzymes. In
this process, intermediary molecules with approximately 70 nucleotides were found [13],
which are transported to the cytoplasm by Exportin 5 [14]. RNase enzyme Dicer and TAR
RNA-binding protein (TRBP) act on this complex and generate a miRNA-duplex with
~22 bp length [15]. Mature miRNAs can emerge from both strands: miRNA guide can be
either 3′ or 5′ of the precursor stem-loop structure [16] and, usually, the passenger strand
is degraded. RNA-induced silencing complex (RISC) is a complex formed by the mature
microRNAs and Argonaute proteins (Ago). RISC represents a form of microRNAs’ action,
since it is important to regulate gene expression by targeting specific mRNAs through par-
tially or fully complementary base pairing in the 3′ untranslated region (UTR). This could
result in mRNA degradation and/or translational repression [1,17]. In this gene silencing
system, GW182 proteins also interact with Ago proteins [18–20]. Otherwise, miRNAs arise
from splicing and formation of mirtrons in the non-canonical pathway [21,22] but generate
the same miRISC complex at the end.

Since microRNAs regulate different genes involved in cell proliferation survival and
differentiation, studies about these molecules could contribute to understanding the origin
and prognosis of deregulations that lead to malignancies, such as solid or hematological
cancers. Several studies have emerged on this area, and it is established that miRNAs
in cancer are specifically called as oncomiRs, which are upregulated and contribute to
tumor-promoting function, or they are named as tumor suppressor miRs, the other ones
that are downregulated, interfering in the tumor suppressive function [23].

3. B-Cells: Populations, Location and Functions

B lymphocytes can be divided into two subtypes named as B-1 and B-2 cells. This
nomenclature is defined by the time of appearance during ontogeny.

B-2 cells are known as the conventional B lymphocytes, which participate in adaptive
immune response, are antigen-presenting cells and mediate humoral immunity by secreting
high-affinity antibodies. These cells can generate immunological memory. B-2 cells are
defined with CD5-CD19+CD23+B220+IgMlowIgDhighCD43- phenotype [24]. These cells
differ from B-1 cells that mediate innate immune response, secreting natural antibodies
and participating in the first line of defense against a variety of pathogens, as reviewed by
Baumgarth, 2019 [25].

The discovery of B-1 cells is more recent, and these cells were early identified as
“Ly-1 B-cells” based on the expression of surface antigen Ly-1 in mice or Leu-1 in humans,
nowadays called CD5 [26]. The knowledge about this subtype is increasing with time, but
a lot remains to be elucidated, principally the differences in B-1 cell characteristics between
mice and humans. In mice, B-1 cells have CD19highCD23-B220lowIgMhighIgDlowCD43+

phenotype [24,27,28] and in humans, CD20+CD27+CD43+CD70+ [29]. Despite this, these
cells have similar features, such as CD5 expression, natural antibody secretion, allogenic T
cells proliferation induction, and presence of tonic signaling in the absence of direct B-cell
receptor engagement [28]. The discovery of B-1 cells was related to the expression of CD5
in B-cells from chronic lymphocytic leukemia (CLL) [30] and other tumors [31], revealing
the relation between these cells and hyperproliferative diseases. These cells are also related
to autoimmune diseases [32], since these cells secrete immunoglobulin spontaneously
without antigen interaction [33]. It is relevant to mention that CD5+ B-cells were originally
described in an autoimmune mouse strain, the New Zealand Black (NZB) [34].

4. B-2 Cell Development

B-cell potential is present in embryonic life, but the major contributor to B-2 develop-
ment is the adult bone marrow, an organ that has the ideal niche that provides support
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for self-renewal and differentiation of HSCs into mature blood cells [35]. All processes
described below occur in mammals.

The pathway initiates with the asymmetric division of hematopoietic stem cells
(HSCs) in multipotent progenitors (MPP). These cells can differentiate in granulocyte
multipotent progenitors (GMP)—these give origin to macrophages and neutrophils—, in
megakaryocyte–erythroid progenitors (MEP)—where megakaryocytes and erythrocytes
originate—or in lymphoid-primed multipotent progenitors, with expression of E2A, Ikaros
and PU.1 transcription factors. Diminution in PU.1 expression but maintenance of Ikaros
and E2A leads to differentiation in a common lymphoid progenitor (CLP). This cell has
two distinct pathways: generating T cells from early T-cell progenitors (ETP) together with
the expression of E2A and HEB or B-cells from B-cell-biased lymphoid progenitors (BLP).
The differentiation in BLP happens with the expression of E2A and HEB, which activates
the expression of Foxo-1, and to generate pro-B-cells, Foxo-1 acts together with E2A to
activate EBF1. In this stage, EBF1, along with E2A, binds to the Igh locus to start DHJH
recombination in the immunoglobulin rearrangement process. By a positive intergenic
feedback circuitry, EBF-1 and FOXO1 activate the B-lineage specific program, which in-
volves PAX5 expression, contributing to the commitment to the B-cell fate and generation of
pro-B-cells [36–41]. PAX-5 is also important to promote VH to DH recombination, indicating
that the cells are in the late-pro-B stage. In the early pre-B-cell stage, cells had completed
VH to DHJH rearrangement. After the successful recombination, B-cells express a pre-BCR,
and only cells with a productively rearranged heavy chain are selected, indicating the
first checkpoint of the B-cell development, or positive selection. The next stage is the
late pre-B-cell, in which light chain rearrangement mediated by Rag1/2 gene expression
occurs, which culminates in IgM receptor integration to generate BCR on the cell surface.
B-cells can undergo negative selection or receptor editing if self-reactivity is detected. After
this, immature B-cells exit bone marrow to complete maturation [42,43], and the principal
location of B-2 cells is the secondary lymphoid organs, such as the spleen and lymph nodes.
In the periphery, the B-cell development is antigen-dependent, and cells differentiate into
T1 and T2 transitional cells until they become mature B-cells following BCR-mediated
signals and germinal-center reactions (GC reactions). Importantly, B-cells undergo Ig
affinity maturation by somatic hypermutation and in germinal center reactions, Ig genes
undergo class switch recombination, both steps dependent on AID (activation-induced
cytidine deaminase) activity. Mature cells in the periphery are follicular B-cells (FOB) or
marginal zone B-cells (MZB), depending on different signals: BCR signaling pathways
integrated with BAFFR and Notch2 or migration/retention signals [44,45]. After leaving
germinal centers, B-cells are memory B-cells or plasmablasts, and this process is regulated
by activation of BLIMP-1 and XBP1 [46].

5. B-1 Cell Development

B-1 cells are the other subtype of B-cells and two distinct subpopulations are known
and characterized by the CD5 expression: B-1a cells express this marker, whereas B-1b cells
do not [47]. The discovery of CD5+ cells in health and disease lead to the investigation of B-1
cell origin and development in mice. The difference in B-1 and B-2 progenitors was revealed
in studies with various donor tissues: neonatal liver efficiently reconstituted B-1 cells while
adult bone marrow majorly reconstituted B-2 cells counterpart, after transfer into irradiated
mice [48,49]. This also confirmed the hypothesis of Herzenbergs that “conventional B
and B-1 cells belong to separated lineages deriving from distinct progenitors emerging at
different times during development” [50], as early B-1 progenitors were found in multiple
fetal tissues, such as embryonic yolk sac and para-aortic splanchnopleura around day
9–9.5 of gestation [51]. This suggested the B-1 cells’ emergence in waves, starting in the
yolk sac from nonhematopoietic precursors [52–54], then in the aorta-gonad-mesonephric
region [55], fetal liver, and only starts on day 15 of gestation in bone marrow [56]. This also
revealed the B-1 cells’ origin from precursors independent or dependent on hematopoietic
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stem cells (HSCs), since HSCs only appear after day 10 [35,57], bringing the idea that at least
two distinct progenitors contribute to B-1 cell appearance, as shown by Beaudin et al. [58].

Using Hardy scheme [59], B-1 cell specific progenitors were identified with Lin−CD93
(AA4.1)+CD45R−/lowCD19+ phenotype, in higher frequency in fetal liver on day 17 of
gestation [60]. Early B-2 progenitors expressed CD45R but lacked CD19 in this study,
confirming the lineage model that proposed distinct progenitors for B-cells.

These B-1 cell progenitors represent pro-B stage and the development pathway follows
up the same steps of B-2 cell differentiation and maturation (from pro-B-cells to mature
cells), although Ikaros and PAX-5 do not constrain the expression of PU.1 in B-1 cell
development [61]. Additionally, B-1 cells’ repertoire reflects the development; these cells
are positively selected based on self-antigens binding [62], and differences between B-1
and B-2 were observed in relation to pre-BCR signaling in pro or pre-B-cells [63]. Other
observed differences rely on antigen influence for B-1 cell development and expansion;
these cells do not need antigen participation to be activated and secrete IgM, whereas
B-2 cells are selected, activated and enter in clonal expansion after antigen binding in the
immunoglobulin named BCR, receptor already mentioned above.

6. microRNAs in the Early B-Cell Development

Different microRNAs were described as positive or negative regulators of early B-cell
development. Beyond them, there is miR-17-92 cluster, miR-34a, miR125b, miR-150, miR-
23a cluster, miR-181a and miR-212/132 cluster. All contributions are detailed as described
below. In this section, we also cite microRNA regulation impact on processes such as cell
differentiation, migration, invasion and cell cycle that could culminate in a hematological
disease. Cancers affecting B lymphocytes can arise from progenitors or mature B-cells and
in the next sections, we define the most common B-lymphomas and discuss the proliferation
of mature B-cells and microRNAs contribution to that.

As mentioned before, one decisive step in B-cell development is the Ig rearrangement,
which indicates the cell stage. In this process, several microRNAs regulate pro-B to pre-
B-cell transition. Mice deficient in miR-17-92 cluster (e.g., Mb1tKO) [64,65] presented
B-cell development inhibited at the pro-B stage, but when these cells were transfected
with lentiviral vector expressing miR-17, the transition to pre-B was rescued [65]. Based
on that, it is conclusive that this cluster, composed by six mature miRNAs (miR-17, -18a,
-19a, -20a, -19b-1 and -92a-1) and two paralogs (miR-160a~363 and miR-106b~25) [66], is
important to generate B-cells, highlighting miR-17 participation. More studies are needed
to understand the relation of other miRNAs in the cluster and the stage development. Some
studies tried to indicate by which target miR-17 regulates the development and identified
the pro-apoptotic BIM (Bcl-2-like protein 11), indicating that the Bim targeting leads to
survival of B-cell progenitors [64]. In silico analysis also revealed that Bim 3′-UTR has
several sites that closely match the seed sequence of 17~92. However, expression of BIM in
pro-B-cells from study with Mb1tKO contradicted this [65], suggesting other targets to this
miRNA cluster. Another validated target is the transcription factor E2 family [67].

Expression of miR-17~92 cluster has been related to microRNA control in the early
steps of lymphocytes development, since it is a major cluster with a role in B and T
differentiation and diseases [68,69]. It is known that miR-17-92 cluster is involved in
autoimmunity [65,70] because miR-19 inhibits phosphate and tensin homolog (PTEN)
expression, which negatively regulates PI3K-AKT pathway, leading to a hyperactivation of
self-reactive B-cells. Additionally, this cluster showed an oncogenic potential by regulation
of c-myc, specially seen in lymphomas [71]. Along with this, MIR17HG amplification is
present in patients with large B-cell lymphoma, and miR-18a expression is associated with
prognosis and patients’ survival [72]. Moreover, miR-17 and -19b-1 are overexpressed
in B-cell culture from CLL patients, and miR-20a is now studied as a biomarker of this
disease [73,74]. In multiple myeloma (MM), miR-17 is also oncogenic and affects iron
transport by regulating Ferroportin 1 (FPN1), in which decreased FPN1 levels leads to
MM cell growth and proliferation and also correlates with bad prognosis [75]. Finally,
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the paralogue miR-106b acts in loop with an important regulator in carcinogenesis, the
Kruppel-life factor 10 (KLF10) [76].

Other miRNA involved in the pro-B to pre-B-cell transition is miR-181, which is
naturally increased in tissues such as bone marrow, thymus and spleen. miR-181 overex-
pression studies revealed increased B-cell lineage in vitro and in vivo, in which lineage
negative bone marrow cells (Lin) differentiates to B-cell lineage [77]. However, the absence
of miR-181 leads to a modest impairment in B-cell development [78]. Differently from
miR-17-92, miR-181 acts as tumor suppressor and inhibits cell proliferation due to NF-kB
regulation, as seen in studies with DLBCL xenograft. Direct targets of miR-181 involved
in NF-kB repression are the transcription factor p65 (RELA), protooncogene c-Rel (CREL)
and p50 gene [79]. However, miR-181 could act as oncomiR by interfering in DLBCL
progression cells by repressing CARD11 [80]. In multiple myeloma, miR-181a is upreg-
ulated and has a target in CCND1, a cell cycle regulatory gene. The downregulation of
this miRNA inhibited expression of CCND1 and also caused cell cycle arrest [81]. A recent
meta-analysis showed that upregulated expression of miR-181 predicts favorable outcomes
of patients with cytogenetically normal acute myeloid leukemia and chronic lymphocytic
leukemia [82]. Interestingly, miR-181b is down-regulated in CLL patients, and this is related
to poor prognosis, but more studies are necessary to investigate these targets [83].

miR-34a is also related with pro-B to pre-B transition, since studies with transduction
of bone marrow cells with a retroviral expressing miR-34 revealed blockage at pro-B stage
and reduced mature B-cell numbers. The regulation happens due Foxp1 suppression, which
is important to this step [84]. In Acute Myeloid Leukemia (AML), miR-34 acts as a tumor
suppressor gene by targeting high motility group box 1 (HMGB1), a DNA-binding protein
that can repair DNA mismatch and regulate gene transcriptions [85]. In preclinical in vivo
models for MM several targets were identified to microRNA-34, such as BCL-2, CDK6,
Cyclin D, SIRT1 and VEGF [86] and RMRP [87].

miR-150 is increased in immature B-cells and is important to regulate Myb and Foxp1,
important molecules in pro-B-to-pre-B transition. Bone marrow transplantation with HSCs
overexpressing miR-150 revealed defects in mature B-cell numbers and blockage at pro-B
stage [88,89]. This miR is involved in lymphoma and melanoma. In follicular lymphoma, it
was seen that regulation by MYC and downregulation of miR-150 contribute to high-grade
transformation due to the upregulation of Foxp1, which is a positive regulator of cell
survival [90]. In melanoma, a study recently described cell proliferation, migration and
invasion suppression by targeting the 3′-UTR region of Sine oculis homeobox 1 (SIX1) [91],
gene known in the tumorigenesis process of several cancers and also by downregulation
of MYB [92]. Conversely, restoration of MYB in miR-150-overexpressed melanoma cells
rescued the proliferation, migration, and invasion [92].

miR-23a, miR-24-2, and miR-27a form the miR-23a cluster that is a downstream
target of PU.1 transcription factor. Expression of this cluster leads to differentiation in
myeloid progenitors, simulating PU.1 action. Additionally, deficient mice in all three
miRNAs showed increased numbers of B lymphocytes in bone marrow and spleen, in
comparison with myeloid cells [93,94]. Similarly, overexpression of the whole cluster in
hematopoietic stem progenitor cells (HSPCs) repressed CD19-positive B development [93].
Expression of this miRNA was correlated with diffuse large B-cell lymphoma, which
promotes proliferation, invasion and metastasis through the target inhibition of metastasis
suppressor 1 (MTSS1) [95]. The expression of miR-27 also enhanced the proliferation,
migration and invasion of MM cells by targeting SPRY2 [96].

Ultimately, the last miRNA cited as a known regulator of early B lymphocyte devel-
opment is the miR-212/132 cluster. Inhibition of development in pre-pro-B to pro-B-cells
was observed when mice overexpressed miR-132, resulting in the failure in transcription
factor Sox4 regulation [97], and these mice did not present any B-cell phenotype. Sox4
is important to Rag-1 expression and deregulation in this axis leads to defects in VDJ
recombination. The development in these mice could be rescued by the expression of a
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SOX4 mutant without miR-132 binding site. The only hematological disease related to this
cluster is CLL, where miR-132 is increased [98], but further patients studies are needed.

The information here revealed that several microRNAs regulate B-cell development
and any defects on this path could lead to hematological diseases. Figure 1 describes
microRNAs that positively (green) or negatively (red) regulates B-cell development
and differentiation.
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Figure 1. MicroRNAs participate in the B-cell differentiation and maturation by negative control
(red) or induction (green) of genes related to B-cell counterparts. In bone marrow stages, microRNAs
miR-17-92 cluster, miR-181, miR-34a, and miR-150 act along cell differentiation. Contrariwise, miR-
23a and miR-132 blocks B cell differentiation. In the periphery, miR-146 and miR-142 have roles in
transitional B-cells in the spleen and miR-155, miR-125 and miR-223 regulate germinal center reaction
in lymph nodes.

7. microRNAs in the Early B-1 Cell Development

A lot remains unelucidated about B-1 cells, and it includes miRNAs participation in cell
development and growth. However, some studies showed the involvement of let-7 family.

Let-7 miRNA family was discovered in Caenorhabditis elegans, which are regulated by
LIN28b and have as target the transcription factor ARID3a. Pro-B-cells or HSPCs from
mice bone marrow expressing LIN28b are more prone to giving rise to B-1a cells than
B-2. Ectopic let-7 expression in pro-B-cells from murine fetal liver gives rise to B-2 cells at
the expense of B-1a cells. Additionally, when pro-B-cells from adult mice bone marrow
overexpressing ARID3a were transferred to immunodeficient mice, there is an increase in
B-1 cell differentiation. Fetal pro-B-cells deficient in Arid3a (knockdown with short hairpin
RNA) led to reduced B-1a development. All this data indicates the loop involving B-cell
differentiation and let-7 participation (reviewed by [42]).

Figure 2 describes microRNAs that positively (green) or negatively (red) regulate B-1
cell development and differentiation. Complementary studies with adoptive bone marrow
transplantation are needed to understand the role of miRNA in B-1 cell progenitors, as well
as studies with fetal progenitors to elucidate miRNAs in early B-1 cell life.
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Figure 2. Role of microRNAs in B-1 cell differentiation. A few microRNAs are known to regulate
B-1 cell stages by negative control (red) or induction (green). In bone marrow, let-7 interferes in
pro-B-to-pre-B differentiation. In the periphery, microRNAs miR-17-92 cluster and miR-150 control
B-1 cell quantity.

8. miRNAs Regulate B-1 Cell Numbers in the Periphery

Not enough knowledge of miRNA influences in mature B-1 cells exists. However,
miR-150 and miR-17-92 cluster revealed a role in regulating the number of peripheral B-1
cells. miR-150 negatively regulates B-1a cell development due the upregulation of MYB.
This was proved in miR-150 knockout mice that have increased B-1 cell numbers in the
spleen and peritoneal cavity. Additionally, ectopic expression of this miRNA, as well as
deletion of one allele of Myb, result in reduced B-1 cell counterpart [88].

B-1a cell numbers are reduced in mice with deletion of miR-17-92 by Cre in CD19 cells.
Additionally, it was seen that B-1a cells need CD19 expression to develop via activation of
PI3K signaling pathway and miR-17-92 overexpression can rescue B-1a development in the
peritoneal cavity of mice deficient in CD19 as a consequence of PI3K activation [99,100]. Thus,
more studies are needed to identify microRNAs as central regulators of B-1 cell quantity.

9. miRNAs Involvement in Regulating Periphery B-Cells

In order to understand microRNAs influence on immature B-cells differentiation to
T1, T2, MZB or FOB cells and also in GC response, Ig isotype switching and somatic
hypermutation, several studies investigated the quantity of B-cells in the periphery as well
antibody production, after alteration in miRNA expression.

miRNAs such as -146a, -155, -125b, -223 and -142 revealed a role in regulating B-
cell maturation, by targeting transcription factors involved in antigen-dependent B-cell
differentiation. However, to better understand microRNA participation in the periphery,
profiling during B-cell activation still needs investigation such as in silico prediction of
targets involved and functional studies.

Deficient mice in miR-146 presented diminished numbers of MZB cells in the spleen
while T1 and T2 cells were increased, showing the role of miR-146a in peripheral B-cell
differentiation. The mechanism involved is the target of Numb, which causes inhibition
of the Notch2 pathway [101]. Mice deficient in miR-155 have reduced GC reaction and
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deficient secretion of class-switched high-affinity antibodies, since this microRNA nega-
tively regulates AID [102]. Studies presented GC B-cells number reduced when B-cells
lacked miR-155 expression, whereas this condition was reverted when overexpressing
miR-155, in which mice presented increased GC B numbers and also enhanced antibody
response [103]. Recently, a new target of miR-155 called DEPTOR was described. DEPTOR
is an mTOR phosphatase that controls in migration and cytokine production of cells from
DLBCL mediated by BCR signaling [104]. In another disease, CLL, it was seen that patients
presented increased expression of miR-155, and this was correlated with poor progno-
sis [105]. Considering this scenario, a recent NGS study shows the miR-155 role in the
regulation of cell cycle phases and checkpoints. miR-155 is differentially expressed in CLL
cells in phases G0, G1, S and G2. In G0, it regulates Myc, p53 and CDK4; in G1, it regulates
CDK6 and CDK2; in S phase, it regulates CDK2; in G2 phase, it regulates WEE1/CDK1/2
and PLK1 [106]. However, patients with MM have downregulation of miR-155, which is
different from the other diseases mentioned and miR-155 inhibitor is not a valid therapeutic
approach [107].

Another microRNA that regulates GC reactions and IgM production is miR-125b, by
targeting IRF-4 and BLIMP-1 transcription factors. In vitro studies showed that B-cells
overexpressing miR-125b mimic and stimulated with LPS had reduced differentiation into
plasma cells and IgM production [108]. miR-223 is upregulated in naïve and memory
cells in comparison to GC cells, also revealing a role in this reaction. The probable targets
by which this regulation occurs are the transcription factors LMO2 and MYBL1 [109]. In
MM cells, miR-125b is increased, and inhibition of it reduces AKT levels, showing other
potential targets to diminish proliferation. Another direct target is PHLPP2 (Pleckstrin
homology domain leucine-rich repeat protein phosphatase), which acts as a negative
regulator of the PI3K pathway. This shows that miR-125b is also important to control B-cell
activation/proliferation [110].

miR-142 can be related to hypoimmunoglobulinemia and immunoproliferative disor-
der. miR-142 gene deletion resulted in enlarged MZB population, whereas B-1 cells were
decreased and IgM reduced [111].

Other miRNAs, despite the described in B-cell development, also have a role in B-cell
proliferation and are related to hematological diseases. The most common B-lymphomas
are characterized here. Its oncomiRs that impact proliferation are discussed below and
summarized in Figure 3.

Diffuse large-B-cell lymphoma (DLBCL) occurs mainly in older people, but can affect
people of any age, and it starts with a growing mass in a lymph node. Another disease
that happens mostly in elderly people is Chronic Lymphocytic Leukemia (CLL), where
the accumulation of cells happens in blood and bone marrow. The Small Lymphocytic
Lymphoma (SLL) is often considered a different version of CLL, where cells accumulate
in lymph nodes and spleen. Both are slow-growing (indolent) malignancies in most cases.
The slow-growing Follicular Lymphoma is very rare in young people, and the average
age of patients is equal to 60 years. It happens in many lymph node sites in the body
and in the bone marrow. The Mantle Cell Lymphoma (MCL) is also known to appear
in people older than 60 years but is much more common in men than in women. It
is diagnosed with a widespread disease in the lymph nodes, bone marrow and spleen,
and the tumor tends to grow fast. The disease from plasmablasts, the last step of B-cell
differentiation, is called multiple myeloma (MM). From precursor B-cells, there is the B
lymphoblastic leukemia/lymphoma, a disease characterized by an increase in bone marrow
blasts [112,113].
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Figure 3. OncomiRs related to B-cell accumulation and proliferation in hematological B malignancies:
Lymphoma, DLBCL, CLL, BCP-ALL and MM. Lymphoma disease is characterized by the accumu-
lation of cells in lymph nodes, bone marrow and spleen. MicroRNAs miR-17-92 and miR-150 are
known to regulate cell numbers in these organs. DLBCL (Diffuse large B-cell lymphoma) present
B-cell number increased in lymph nodes, and microRNAs miR-181, miR-23a, miR-155, miR-518a,
miR-645 and miR-222 can interfere in this accumulation. CLL (Chronic Lymphocytic Leukemia) has a
higher number of B-cells in blood, lymph nodes and bone marrow, where miR-17-92 (-17, -19b, -20a),
miR-181, miR-132, miR-155, miR-425, miR-29, miR-150, let-7, miR-30, miR-423, miR-744, miR-486 and
miR-4524 showed a role in control cell accumulation and proliferation in these tissues. BCP-ALL
(B-Cell Precursor Acute Lymphoblastic Leukemia) is the accumulation of B-cell progenitors in blood
and microRNAs miR-345, miR-205, miR-152, miR-128a, miR-128b, miR-155, miR-708 and miR-181
are characterized as biomarkers of B-cell number control. Lastly, MM (Multiple myeloma) where
plasma blasts accumulate in the blood, has microRNAs miR-17, miR-181, miR-34, miR-150, miR-106b,
miR-144, miR-451, miR-152, miR-338, miR-342 as regulators of proliferation and accumulation.

Lymphoma tissues and cell lines show a decrease in miR-553 levels. This microRNA is
involved in proliferation, as described by a recent study in which overexpression inhibited
proliferation and promoted apoptosis. Moreover, ß-catenin was identified as a target to this
miRNA, with bioinformatics prediction and also with luciferase assays [114].

The relation of miR-345 in the pathogenesis of B-cell precursor acute lymphoblastic
leukemia (BCP-ALL) was seen, where its overexpression suppressed cell proliferation
and boosted apoptosis of NALM-6 and RS4;1 cells [115]. Still in BCP-ALL, expression of
miR-205 was found downregulated in patients, and overexpression restrained proliferation
and promoted apoptosis of the cells. In this study, MALAT1, a long non-coding RNA
(lncRNA) was identified as a regulator of ALL cell proliferation by regulating miR-205.
This last has a target in PTK7, a protein tyrosine-kinase [116]. miR-152 is also regulated by
a lncRNA (LINC00221) and presents a role in ALL cell proliferation and apoptosis [117].
Additionally, a recent review showed that miR-128a, -128b, 155, -708 and -181 family were
related to B-ALL, where they were all upregulated [118].

In DLBCL, a recent study showed the role of miR-518a-CCR6 loop, indicating that this
feedback regulates proliferation [119]. Moreover, miR-645, upregulated in DLBCL tissues
and cell lines, is involved in proliferation. Its downregulation inhibited proliferation,
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cell cycle progression and promoted apoptosis of cells by targeting Dachshund family
transcription factor 1 (DACH1), bounding in 3′-UTR [120]. Another microRNA that inhibits
the proliferation of DLBCL cells is miR-196a-3p, which is downregulated in this disease and
targets ADP ribosylation factor 4 (ARF4) and also promotes cell apoptosis [121]. In contrast,
overexpression of miR-222 promoted proliferation and inhibited apoptosis of DLBCL cells,
by targeting Phosphatase 2 regulatory subunit B alpha (PPP2R2A) [122].

In CLL, it was described that miRNA-425 inhibits CLL cell proliferation by a mecha-
nism involving BTK (Bruton tyrosine kinase) [123]. miR-29a, miR-150 and miR-155 were
upregulated in the early stages of CLL but were modest predictive biomarkers of CLL
risk [124]. Other microRNAs such as let-7e, miR-30, miR-423, miR-744, miR-486, and miR-
4524 were found differentially expressed in CLL patients and have a role in the regulation
of cell cycle phases and checkpoints, revealing its participation in proliferation once more.
These microRNAs regulate cyclins and cyclin-dependent kinases, e.g., Cyclin A, B, D, and
E, and CDKs 1, 2, 4 and 6. Moreover, they also regulate other gene expressions such as
MYC, P53, ATM, PLK1, CDC25A, and transcription factors ATR and E2F [106].

Similarly to other diseases described above, MCL also has a relation with miR-17-
92 cluster, which is upregulated in MCL cells and modifies cell proliferation [125]. The
cluster miR-106a~363, which is composed of microRNAs -18b, -19b-2, -20b, -92a-2, -106a,
and -363, appears to function in cell proliferation in the same way as paralogous miR-
17-92 cluster, but this remains to be elucidated [126]. Moreover, miR-100 inhibits cell
proliferation by targeting mTOR [127], miR-15a/16-1 cluster is downregulated in MCL
patients and interferes in cell cycle regulation by CCND1, which is a direct target of these
two microRNAs [128] and the miR-29 family also have participation in regulating MCL cell
proliferation, regulating cyclins expression [129–131].

Multiple miRNAs are related to multiple myeloma. miR-144, downregulated in MM
patients and MM cell lines, targets MEF2a (myocyte enhancer factor 2A) and inhibits the
proliferation, migration and angiogenesis of MM cells and the overexpression reverses the
effects [132]. The direct target of miR-144 is transmembrane tyrosine kinase c-MET, which is
involved in invasion, migration, proliferation and angiogenesis [133]. miR-144 also induced
apoptosis in a recent study by inhibiting Wnt/ß-catenin pathway [134], and similarly, miR-
451 induced cell death by targeting c-Myc [135]. Inhibition of miR-338 action, upregulated
expression of BRD4, and augmented MM cells proliferation [136]. Another study showed
the activation of BRD4 signaling via targeting miR-152 in MM cells [137]. Overexpression
of miR-342 in MM cells suppressed cell proliferation, arrested cell cycle transition from
G1 to S phase, and promoted apoptosis of MM cells [138]. Moreover, miR-26a diminished
cell proliferation and migration by targeting CD38 [139]. Other microRNAs related to
inhibition of MM cell proliferation are miR-25, which targets the PTEN/PI3K/AKT signal-
ing pathway [140]; miR-29b, by targeting DNMT3A/B and HDC4 [141,142]; miR-30-5p,
which targets BCL9 [143]; miR-192 by suppressing TGIF2 [144] miR-140-5p, which targets
VEGFA [145] and miR-489 by targeting LDHA [146]. All these data reveal the importance
of microRNAs in controlling cell proliferation and accumulation.

10. miRNAs Derived from Exosomes

Another important fact to be considered is that microRNAs are released from the pro-
duction site in the free or protein-bounded form and can also be encountered in circulating
extracellular vesicles or exosomes derived from tumor cells. Exosomes are products from
the endosomal sorting pathway consisting of a bilayer membrane with 20–150 nm that can
transport proteins, nucleic acids, lipids, metabolites, and organelles, which can contribute
to tumor metastasis, angiogenesis, drug resistance, and affect other biological process.
Importantly, exosomes contain specific constituents but also carry components that reflect
the cell of origin [147,148]. Exosomal microRNAs stay protected from RNase of biological
liquids and can be present in many body fluids, revealing an important molecule that can
affect lymphomagenesis, for example, and also represent a biomarker in early detection
and prognosis of hematological malignancies [149]. Moreover, the detection of exosomal
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miRNAs replaces some invasive methods (bone marrow aspiration) and dependence on
leukemic cells in the blood, for example. Exosomes are detectable in systemic circulation to
provide a lot of useful information for prediction [150].

Cells from hematological malignancies, like other tumors, produce exosomes. These
products have a role in promoting the progression of cancer, are implicated in reprogram-
ming of the bone marrow microenvironment, could promote drug resistance and carry
oncogenic proteins [151]. Thus, microRNAs, which control cell differentiation, maturation
and proliferation processes could be derived from exosomes originating in hematological
malignancies and can reveal important biomarkers.

In CLL, it was described that an increased amount of miR-150 and miR-155 in exosome
cargo [152] and miR-146a and -148a seem to have a relation in this disease too [153].
Additionally, miR-155 has been found downregulated in exosomes from patients with
multiple myeloma [154] and lymphoma [155]. Other miRNAs identified in MM exosomes
include miR-135b, let-7b and miR-18 [156]. As we reviewed, the microRNAs from the let-7
family are very important in the development of B-cells. This family is also present in the
exosome cargo. In Hodgkin lymphomas, let-7 family was found in exosomes [157], and in
CLL, let-7g was also described. In DLBCL, decreased exosomal miR-107, decreased miR-375-
3p and increased exosomal miR-385-3p have importance in diagnostics, highlighting the
miR-107, which targets 14-3-3n and restrains tumorigenesis by suppressing cell proliferation
and invasion [158].

Importantly, a recent study demonstrated a series of exosomal panels related to
leukemias, myeloma and lymphomas, illustrating the already mentioned microRNAs in this
review, such as miR-150, -155, -1246, -17-5p, -20a-5p, -16-5p, -15a-5p, -192-5p, -21-5p, -320b
and let-7d [150]. This shows the importance of studying exosomes and other extracellular
vesicles as a source of microRNAs to become biomarkers or targets for treatments.

11. Concluding Remarks

It is established that microRNAs have an important role in controlling several processes
to maintain host homeostasis. By controlling gene expression, microRNAs participate in
development, differentiation, metabolism, proliferation, and survival. Here, we show
the early and the most advanced studies in B-cell differentiation and proliferation related
to microRNA control. Deregulations in microRNA expression can lead to hematological
diseases, such as lymphomas, leukemias, and myeloma. Additionally, we show that
microRNAs can be released in a free form or in exosomes, indicating a new perspective on
using microRNAs as biological targets in hematological diseases.

This review focused on B development and proliferation, showing the principal
microRNAs and their targets. Several others deeply describe microRNAs expression in
hematological diseases [159,160]. However, a lot remains unelucidated about some targets
that microRNAs can bind. That is because a lot of studies use bioinformatic analysis to
predict targets but do not pursue functional experiments to confirm. Moreover, several
microRNAs are described to regulate B-2 development, but few studies show this in B-1
cell subtypes. This indicates that there is a lot to discover, and this can contribute to
finding biomarkers to diagnose or treat diseases related to failures in B-cell development
and/or proliferation.
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