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A B S T R A C T   

This paper presents a novel evaluation approach for optical coherence tomography (OCT) image analysis of 
pharmaceutical solid dosage forms based on deep convolutional neural networks (CNNs). As a proof of concept, 
CNNs were applied to image data from both, in- and at-line OCT implementations, monitoring film-coated tablets 
as well as single- and multi-layered pellets. CNN results were compared against results from established algo-
rithms based on ellipse-fitting, as well as to human-annotated ground truth data. Performance benchmarks used 
include, efficiency (computation speed), sensitivity (number of detections from a defined test set) and accuracy 
(deviation from the reference method). The results were validated by comparing the output of several algorithms 
to data manually annotated by human experts and microscopy images of cross-sectional cuts of the same dosage 
forms as a reference method. In order to guarantee comparability for all results, the algorithms were executed on 
the same hardware. Since modern OCT systems must operate under real-time conditions in order to be imple-
mented in-line into manufacturing lines, the necessary steps are discussed on how to achieve this goal without 
sacrificing the algorithmic performance and how to tailor a deep CNN to cope with the high amount of image 
noise and alterations in object appearance. The developed deep learning approach outperforms static algorithms 
currently available in pharma applications with respect to performance benchmarks, and represents the next 
level in real time evaluation of challenging industrial OCT image data.   

1. Introduction 

Optical coherence tomography (OCT) is an established imaging 
technology in the fields of medicine (de Boer et al., 2017), art conser-
vation (Rouba et al., 2008) and non-destructive testing (Nemeth et al., 
2013). In our past work we have established the first commercial ap-
plications of OCT in the pharmaceutical industry as a contactless and 
real-time process analytical technology (PAT) for solid dosage form 
coating processes. Specific aspects of industrial pharmaceutical film 
coatings that can be investigated via OCT have been discussed in the 
literature, e.g., film thickness and variability (Markl et al., 2015a), 
surface roughness (Markl et al., 2018) and film homogeneity (Sacher 
et al., 2019). 

Zeitler and Gladden were the first ones to propose OCT for non- 
destructive investigations of pharmaceutical coatings (Zeitler and 

Gladden, 2009). At that time, OCT images could only be evaluated 
manually via image manipulation software or Matlab. In 2010, Zhong 
et al. compared the merits of OCT and Terahertz pulsed imaging (TPI) 
for the examination of pharmaceutical coating layers on tablets. They 
applied the phase shifting method for OCT image reconstruction to 
achieve very high axial resolution for the first time on pharmaceutical 
coatings (Zhong et al., 2010). Lin et al. presented an automated interface 
detection algorithm for pharmaceutical tablet coatings in 2015 based on 
Wavelet denoising (Lin et al., 2015), which was then further refined and 
applied on in-line acquired data (Lin et al., 2016). 

Also in 2015, another automatable method for image evaluation of 
pharmaceutical coatings based on a circular fit algorithm (Markl et al., 
2015a) was presented, under which OCT images were evaluated based 
on single interferograms (analogous to a sonography “A-scan”) by 
extracting gradient features via one-dimensional convolutional kernels. 
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Based on the extracted features, the coating interfaces were determined 
using a shortest path algorithm (Markl et al., 2015b). This approach 
worked well for tablets of a defined curvature, provided that the OCT 
images are of adequate contrast and resolution. Furthermore, the ex-
pected curvature had to be pre-set manually for this type of algorithm. 
Object features deviating from the predefined curvature (e.g. the dosage 
form, edges and embossing) could lead to inaccurate results or even 
complete detection failure. The 2018 review paper from Lin et al. pro-
vides a concise overview of what has been achieved in terms of the 
application of OCT on pharmaceutical coatings (Lin et al., 2018) up until 
this time. 

Following the automated circle-fit algorithm, the first real-time al-
gorithm method based on elliptical fits was developed, which is capable 
of extracting features with fewer pre-set parameters and at considerably 
higher speeds in industrial in-line configurations (Sacher et al., 2019). 
This method allows to analyze 2-dimensional gradient features of full 
OCT images (analogous to sonography “B-scans”) calculated via ellip-
tical kernels (2-dimensional anisotropic kernels), resulting in signifi-
cantly more robust features for the elliptical fit optimization. The 
derived feature map serves as a basis for the extraction and evaluation of 
the actual image information. In contrast to the circle-fit approach, the 
relative position of a tablet tomogram inside the B-scan plays almost no 
role in the automated layer detection. However, this elliptical fit method 
has limitations. First, the edges, holes and highly porous layers cannot 
be reliably detected. Second, extreme inclinations of layers in the image 
and interfaces mirrored on the top of the OCT image cannot be evalu-
ated. Furthermore, it is important to note, that only OCT images of 
sufficient image contrast are evaluable, regardless of the algorithms 
used. This implies that the limitations of this imaging technology are 
associated with the scattering properties of the examined coating, for 
example, coatings containing high amounts of scattering pigments like 
titanium dioxide cannot be evaluated, as summarized in (Lin et al., 
2017). 

Our previous work focused mainly on comparing OCT evaluation to 
other indirect coating measurement methods (Wahl et al., 2019) and 
validating the (ellipse fit based) automated real-time algorithms for 
tablet film coating processes (Wolfgang et al., 2019). However, an image 
analysis method with a high degree of flexibility, efficiency and 
robustness is still required since industrial OCT images are unpredict-
able in terms of product shape, relative position and visual appearance. 
With that regard, current machine learning applications in the field of 
computer vision may provide superior solutions. Unlike in other fields of 
OCT (e.g., retinal pathology investigation), tomographic images of 
pharmaceutical coatings are very challenging for machine learning due 
to a high and variable level of image noise, varying contrast in the course 
of long runs, an often dramatic change in the layer appearance over the 
process (layer growth in the course of a coating run) and dynamic dis-
tortions caused by arbitrary movement of the target products. 

Of the currently available machine learning approaches, convolu-
tional neural networks (CNN) appear to be the most promising in this 
application, especially fully convolutional networks (FCN) which can 
analyze input image data of varying sizes (Long et al., 2015). These 
models have shown state-of-the-art results in semantic image segmen-
tation in various fields, e.g., computer vision systems for autonomously 
driving cars (Zhang et al., 2018) and medical image analysis (Ronne-
berger et al., 2015). Methods of identifying retinal tissue and intra-fluid 
layers via a fully convolutional architecture called “ReLayNet”, as pro-
posed by Roy et al., have been successfully applied in the field of retinal 
OCT image segmentation (Roy et al., 2017) using a U-Net architecture. 

Recent studies, applying CNNs to evaluate OCT image data of scat-
tering layers using a U-Net architecture, investigated the merits of multi- 
layer segmentation by introducing “dense connected blocks” with re-
sidual connections. These blocks increased the accuracy of outputs, yet 
also the required calculation effort (Kepp et al., 2019). Another 
approach combined CNN segmentation based on U-Net, with extensive 
post-processing by Savitzky-Golay-filtering for interface detection and 

Fourier domain filtering for smoothing of contours, in order to segment 
follicular structures of skin (del Amor et al., 2020). 

However, since such deep neural networks require a large amount of 
computational power for real-time results, one of the challenges is to 
develop a lean network architecture while maintaining an accurate and 
robust performance. Another challenge is to provide qualitative training 
and validation data. Since industrial OCT images of pharmaceutical 
coatings have very high variations in appearance, contrast and some-
times shapes, a tailor-made neural network, based on the U-Net archi-
tecture introduced by Roy et al., was developed and trained. An 
appropriate training data set for the OCT application should include a 
large number of high-quality images, with a large variation in terms of 
visual appearance, manually segmented by a human expert. As in other 
machine learning applications, the accuracy of annotated training data 
is critical for the performance of the resulting model. 

Given that established static algorithms with fixed parameters 
perform well when the OCT images of tablets are correctly presented, we 
compared various challenging scenarios with the established static al-
gorithms to the CNN models. Especially tricky images include those with 
poor contrast, high image noise, arbitrary shapes and a highly scattering 
or porous layer appearance. 

In this study, we present a novel approach, which applies fully 
convolutional deep learning algorithms to live OCT imaging of non- 
static tablets or pellets for process monitoring. Machine learning alter-
natives, such as classical convolutional networks, random forests and 
other pixel classifications approaches were discarded due to their 
extensive calculation demands, which obviate the real-time capability 
requirement. 

2. Materials 

In order to generate OCT image data of challenging nature, several 
established solid dosages forms for acquiring suitable OCT images were 
selected. The selected products are summarized in Table 1. 

All tested products are commercial samples, with the exception of 
Thrombo ASS tablets. These were coated in-house using various process 
parameters and coating compositions in order to generate different ap-
pearances of the final layers due to the varying process dynamics. The 
goal was to investigate the robustness of the developed algorithms in the 
presence of process variations. 

2.1. Tablets tested 

2.1.1. Scattering tablet coatings 
Thrombo ASS 100 mg tablets were chosen as an example of a 

strongly scattering enteric coating, containing more than 30% of scat-
tering talcum particles. In order to generate OCT in-line data of the 
coating trials for this product, original tablet cores (GL Pharma, Lan-
nach, Austria) were coated in a DRIACONTI-T pharma lab coater (Driam 
Anlagenbau GmbH, Eriskirch, Germany). Coating was performed in a 
semi-continuous manner in three subsequent chambers, with a filling 
volume of 1.8 l and 1.4 kg of tablets in each run. Each chamber has a 
Schlick spray nozzle (Düsen-Schlick GmbH, Coburg, Germany) with a 
bore diameter of 0.5 mm. Atomizing pressure of 0.7 bar and a drum 
speed of 22 rpm remained constant throughout all experiments. The 
individual process settings for the coating runs are listed in Table 2. 

The coating formulation consists of EUDRAGIT L 30 D-55, a common 
enteric coating prepared according to the manufacturer’s specification 
(Evonik Industries AG, 2011). Iron (III) oxide with the percentage 
indicated by the run names (0.5%, 2% and 10% weight) was added to 
the basic composition to generate highly scattering coating layers. Two 
additional runs were done with 0.5% and 2.5% weight of indigo carmine 
as a blue dye to test the dye’s impact on the OCT images. One run was 
performed with half the amount the talcum in the coating solution. In all 
remaining runs (indicated only by number in Table 2), coating solutions 
as specified by the manufacturer was applied. These runs were 
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performed using different process parameters to vary the OCT image 
layer appearance based only on the process conditions. A detailed 
description of all experiments conducted has been summarized in Zettl, 
2017. 

OCT in-line monitoring was conducted using an OCT system devel-
oped in-house as described in Markl et al., 2014, with a 1D OCT sensor 
mounted inside the third coater chamber scanning through the perfo-
ration of the pan. The OCT system features an axial resolution of 4.1 μm 
(in air) based on the light source applied (832 nm central wavelength 
and 75 nm bandwidth) and a lateral resolution of 14 μm (in focus) 
determined by the optics in the sensor head. The maximum A-scan rate 
of the system is 59.2 kHz, resulting in a maximum acquisition speed of 
57.8 frames per second with 1024 × 1024 pixel (12 bit) OCT image 
resolution (B-scan). To ensure comparability, data evaluation for all 
experiments in this study was conducted on the same hardware after the 
various trials. 

Validation of the algorithms for Thrombo ASS OCT images was un-
dertaken by comparing the results of a predefined test set to manually 
annotated data generated by human experts and to a reference method. 
The latter was data generated by evaluating the light microscopy images 
of cross-sectional cuts of the tablets examined via OCT, as described in 
Wolfgang et al., 2019. 

2.1.2. Porous tablet coatings 
Commercial Glucotrol XL 5 mg and Glucotrol XL 10 mg tablets were 

used as examples of a porous coating with a porous asymmetric semi-
permeable membrane system to generate an osmotic push-pull system in 

combination with the tablet core (Donald L. Wise, 2000). The tablet 
samples were examined using a commercial at-line sampling device, 
with the corresponding OCT system “OSeeT Pharma 1D” (both from 
Phyllon GmbH, Graz, Austria). The tablet samples consisting of approx. 
100 tablets each were moved into a small perforated bench-top drum 
setup, mimicking the behavior of a tablet bed inside a coating drum. The 
OSeeT Pharma 1D system has the same axial resolution of 4.1 μm (in air) 
at a lateral resolution of 14 μm but at a higher acquisition speed of 
100,000 A-scans per second. 

Validation of the results of Glucotrol XL for the various algorithms 
was conducted by comparing them to the evaluation of the same OCT 
data set performed by two human experts using the scientific open 
source image processing software ImageJ2 (Rueden et al., 2017). 

2.2. Pellets tested 

As an example of arbitrarily-shaped single layer pellets, the com-
mercial product Effexor XR (Venlafaxin) was chosen, with the pellet 
cores containing the drug and coated with an extended release coating 
layer. In order to assess multi-layered pellet coatings, the commercial 
product Detrol (Tolterodine tartrate) was selected, which contains 
multi-layered coated pellet cores, with layers containing the drug and 
layers moderating the release behavior. All pellet samples were provided 
by Pfizer Inc. 

All pellets were examined in an at-line setup, using a rotating Petri 
dish Schütt Petriturn-E lab tool (Schuett-biotec, Göttingen, Germany), 
combined with a commercial in-line 1D OCT sensor (Phyllon GmbH, 
Graz, Austria) mounted above it, scanning the pellets as they passed by 
the sensor. The sensor was connected to the corresponding Phyllon 
OSeeT Pharma 1D base-unit for data acquisition. 

Validation of the layer segmentation for the CNN algorithms was 
visually performed by four human experts based on the appearance of 
the OCT input and output images. 

2.3. Computational hardware 

To ensure comparability of the results, all evaluations in this study 
were executed on the same hardware. All training, evaluation and 
validation steps were performed using a NVidia GTX 1080 Ti graphics 
card (GPU), which is an integral part of the commercial OSeeT Pharma 
1D system. The CPU used was an Intel Core i5 with 8 GB of DDR3 RAM. 
The operating system was Microsoft Windows 10. 

3. Methodology 

In order to benchmark the performance, the CNNs developed were 
compared to the most evolved, in-line version of the ellipse-fit approach 
as described in Sacher et al., 2019. 

Table 1 
Overview of products for generating OCT images.   

Scattering Porous Arbitrary Shaped Multi-layered 

Product name Thrombo ASS 100 mg Glucotrol XL 5 and 10 mg Effexor XR Detrol 
Type Biconvex tablets Biconvex tablets Pellets Pellets 
Coating Enteric coating Osmotic coating Extended release coating Extended release coating 
OCT image 

Table 2 
Process parameters of the examined in-line runs to achieve varying appearances 
for the resulting OCT coating layer images.  

Run 
name 

Solution 
applied [g] 

Duration 
[min] 

Flow rate 
[g/min/kg] 

TInlet 

[◦C] 
PPattern 

[bar] 

0.5% 
Fe2O3 

681 112 4.5 52.5 1.3 

2% Fe2O3 641 112 4.5 52.5 1.3 
10% 

Fe2O3 

680 112 4.5 52.5 1.3 

0.5% Dye 677 112 4.5 52.5 1.3 
2% Dye 643 112 4.5 52.5 1.3 
2.5% Dye 618 112 4.5 52.5 1.3 
15% 

Talcum 
789 201 3 45 1 

Run 1 680 167 3 45 1 
Run 2 780 84 6 45 1 
Run 3 675 167 3 60 1 
Run 4 710 84 6 60 1 
Run 5 618 167 3 45 1.6 
Run 6 642 84 6 45 1.6 
Run 7 727 112 4.5 52.5 1.3 
Run 8 637 112 4.5 52.5 1.3 
Run 9 681 112 4.5 52.5 1.3 
Low 

Temp. 
640 113 3 35 1  
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3.1. Training data generation and inference 

One of the most challenging tasks in generating CNNs is the prepa-
ration of a suitable amount of training data (several hundred annotated 
images). This involves manually annotating entire OCT images at the 
pixel level. For this, experienced experts attempted to identify the 
coating layer area as accurately as possible to produce a binary seg-
mentation mask, which serves as ground-truth information describing 
foreground (coating) and background pixels. The annotated image data 
was split into training data (approximately 80% of all images annotated) 
and validation data, in order to generate a dice score. External validation 
of the results was completed based on OCT data, which had been vali-
dated by microscopy results of cross-sectional cuts at the same positions 
of OCT investigation. Unlike more established fields of application 
where CNNs are used, no publicly available databases for annotated OCT 
images of pharmaceutical dosage forms currently exist. As a conse-
quence, all annotation data, as well as validation data, had to be 
generated from scratch for this study. 

During CNN training, the network loss is calculated based on these 
segmentation masks and back propagated throughout the network to 
optimize the layer weights accordingly. The network loss describes the 
network error in the training data during training and is optimized as 
close to zero as possible for training and validation data in an iterative 
manner. In this way, the model learns how foreground and background 
pixels appear with respect to their neighborhood. 

Fig. 1 provides an example of an OCT image that contains three 
tablet instances of the product Glucotrol XL 5 mg and its ground-truth 
segmentation mask as binary images. The right image shows the cor-
responding inference output of a trained CNN model as an overlay for 
the illustration. This output segmentation map represents the proba-
bility of each pixel being a foreground or “coating-layer” pixel, which 
results in an almost full segmentation of all visible coating layers, 
although of varying intensity and orientation. 

As the image patch detail in Fig. 1 indicates, a full coating layer 
segmentation of unseen OCT image data is possible under this approach, 
regardless of the elliptical product shape. 

To further extend the amount of available OCT image training data in 
terms of quantity and variety, and to reduce the effort of manual image 
annotation, the datasets were augmented by random horizontal flipping 

and additional random brightness variation during training. The reason 
why the images were not flipped vertically or rotated during augmen-
tation is that the aim was to preserve the nature of an A-scan, including 
such effects as the OCT-signal sensitivity roll-off (de Boer et al., 2017). 
This secures the behavior and appearance of any optical reflection on the 
interfaces that the network should implicitly learn. 

To overcome the potential lack of training image patch diversity in 
terms of unseen layer thicknesses, synthetic image training patches of 
128 × 128 pixel were additionally generated using the concept of Deep 
Convolutional Generative Adversarial Networks (DCGANs) (Radford 
et al., 2016). Neff et al. investigated an application of GANs to thorax X- 
ray images for medical image segmentation using a U-Net architecture 
(Neff et al., 2017). They showed that GANs have significant potential in 
terms of medical image training data synthesis, especially when datasets 
are small. This inspired the application of this data augmentation 
approach to coating thickness variation. During a real coating process, a 
CNN’s robustness against thickness is crucial. To investigate this 
approach, real images of thin and thick coating layers and synthetic 
images of in-between coating thicknesses were fed in the CNN during 
training by interpolating the GAN input vector. The goal was to mimic 
unseen coating thicknesses in order to improve the overall segmentation 
performance throughout the coating process. However, these experi-
ments did not improve the layer segmentation accuracy, which is in 
agreement with the findings of Neff et al. 

3.2. Fully convolutional neural network 

The chosen CNN is based on the U-Net architecture that was first 
proposed by Ronneberger in 2015 (Ronneberger et al., 2015). This type 
of architecture is fully convolutional (Long et al., 2015) and consists of 
an encoder path and a decoder path, with additional skip connections in 
between. In total, the network has 23 trainable layers, hence it is a deep 
learning network. The encoder path has several subsequent 2D con-
volutional layers, each followed by a max-pooling layer. This decreases 
the spatial feature size, increasing the level of abstraction. In this way, 
relevant higher-level features can be encoded to represent contextual 
information. The subsequent decoder path up-samples the feature 
channels via 2D up-convolutions, whereby the context information is 
propagated up to the output layer (output segmentation map) by 

Fig. 1. Example of an OCT image for Glucotrol XL 5 mg product samples. Top-left: OCT image containing three scanned products arbitrarily positioned and 
orientated. Top-middle: Manually produced ground-truth segmentation mask with annotated coating layer pixels as a binary image. Top-right: CNN-based coating 
layer segmentation map overlay in red colour. Details of a cropped image patch (black bounding box): a) Cropped OCT image patch of 128 × 128 pixel; b) ground- 
truth mask; c) CNN output segmentation map; and d) segmentation map overlay in red. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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additionally using the relevant feature channels from the encoder path 
via the skip connections. As shown by Ronneberger, this improves the 
overall segmentation performance since the finely-resolved low-level 
features can be used to refine the up-sampling of deeper, coarsely- 
resolved semantic information on the decoder path (Ronneberger 
et al., 2015). The working principle and the building blocks of this ar-
chitecture are illustrated in Fig. 2. 

Due to the inherent nature of 2D convolution used by the original U- 
Net architecture, the spatial dimensions are reduced after each con-
volutional layer. This would inevitably require cropping of the feature 
maps from the encoder path to fit the decoder feature dimensions via the 
skip connections. Using the original U-Net architecture would result in a 
lower resolution of the output segmentation map. In contrast, the pro-
posed architecture retains the spatial size on each level of abstraction 
(each convolutional layer indicated by blue arrows in Fig. 2) by using 
zero-padding before each convolution as implemented in the Keras 
framework (Chollet et al., 2015). Only the max-pooling layers (indicated 
by turquoise arrows in Fig. 2) reduce the dimensions accordingly. As a 
result, all cropping operations were removed to obtain an output seg-
mentation map of the same size as the input image. The second major 
difference from the U-Net architecture is that the developed CNN re-
quires fewer output channels across all convolutional layers, providing 
an architecture that has approximately 60 times fewer parameters to 
train (reduction from 31,030,593 to 485,673 parameters in total), which 
correspondingly reduces the inference time and being approximately 28 
times more efficient during inference. The speed-up factor is related to 
applying the original U-Net architecture, which provides an inference 
time of 455 ms per full OCT image on the same hardware. Our reduced 
model complexity, in contrast, shows an inference time of only 16 ms. 
This reduces the GPU memory consumption and satisfies the real-time 
requirement for the system. 

The major advantage of this fully convolutional architecture is the 
lack of fully connected or dense layers, which provides a very conve-
nient feature: If the input image size is changed, only the spatial di-
mensions of the intermediate results (the feature channels) are altered 
without having to adapt the network architecture to the actual input 
size. Considering that training images are cumbersome to generate, this 

significantly boosts the number of available training samples. Training 
can be conducted on image patches of a smaller size rather than full-size 
images. The only requirement for these cropped training patches is to 
display a sufficiently large area that captures all relevant image features. 
For example, the network must “see” almost the full height of a thicker 
coating layer in a cropped patch, as shown in Fig. 1. It will become more 
reliable during training since it learns that two interfaces denote the 
coating layer. The textural information for the coating layer itself is also 
learned, which is an essential contribution to the network confidence 
upon application. 

In summary, the above steps produce a fully convolutional archi-
tecture highly suitable for the intended task. Many more training sam-
ples can be provided (thousands of image patches) to the network, with 
only a limited number of full-size training images (a few hundred) 
available. However, arbitrarily large images may be fed in the trained 
image segmentation model during testing, which is only limited by the 
available GPU memory and possible real-time constraints. 

3.3. CNN training 

The basic training approach for all CNN models in this study uses 
randomly cropped training patches of reduced image size as input data. 
The 1:1 sampling ratio remains between the foreground and background 
patches to ensure balanced training, whereby a foreground image patch 
is defined as the one containing at least one foreground ground-truth 
pixel. The mini-batch size is set to 512 random image patches sampled 
from four random OCT images of the training set. As a measure of the 
network’s loss, the dice score is used, which is a score for overlap be-
tween two areas defined as: 

Dice(P,M) =
2|P ∩ M|

|P| + |M|
,

where P is the predicted segmentation map and M is the ground-truth 
mask, both with pixels within the range [0,1]. Thus, the network ap-
plies a sigmoid output layer. A perfect overlap has a dice score of 1.0, 
whereas 0.0 describes disjointed areas. 

Fig. 2. The proposed CNN architecture schema described by an encoder and decoder path with skip connections in between (grey arrows). The input layer represents 
a grayscale OCT image. The output layer produces a segmentation map of pharmaceutical coating. This approach preserves the spatial dimensions after every 
convolution due to zero-padding. Intermediate data representations are illustrated for the encoder path, which increases the level of abstraction and the number of 
feature channels. 
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The network weight initialization was determined empirically and 
yielded the best results when the “he_normal” initializer (He et al., 2015) 
was applied. The latter samples the weights according to a normal dis-
tribution with a modified standard deviation that considers the number 
of input neurons for each input layer. To learn the network parameters, 
the Adam optimizer (Kingma and Ba, 2015) was used as provided by the 
Keras framework (Chollet et al., 2015), which has empirically shown to 
be the most suitable and effective to train our network. To avoid over-
fitting, early-stopping was applied by focusing on the validation loss, 
terminating optimization of the training process when the underlying 
(validation) loss increased. 

The same general approach may be applied to generate networks 
that can detect multiple features at once, e.g., multiple layers as part of 
the coating. Nevertheless, it requires additional output channels or 
output segmentation maps describing a specific layer. Segmentation is 
performed concurrently in the output layer, making the results for all 
coating layers available simultaneously. 

In the course of this study, several CNNs were trained, each to serve a 
specific purpose. A specific process shown in Fig. 3 was followed. Once a 
small number of training images was generated (OCT image - segmen-
tation mask pair), the network was trained and subsequently tested 
using a blind test set of approximately 10% of unseen training images 
(subset of the training dataset) to assess the validation loss. If the 
network performed well in terms of visual output and a dice score above 
0.9 was achieved, training was stopped. Otherwise, more training data 
was added, some architecture details were improved or training pa-
rameters were enhanced. The final generic CNN model required 70 
Thrombo ASS images and 45 Glucotrol XL 5 mg images for training. All 
implementations were written in Python 3.6 (Python Software Foun-
dation, https://www.python.org/). 

Our next task was to establish how many OCT images are required 
for learning a specific tablet type from scratch and what impact this has 
on the network generalization. To that end, the network was trained on 
an increasing dataset size of randomly sampled Thrombo ASS OCT im-
ages chosen from a fully annotated dataset of 83 full sized OCT images. 
The chart in Fig. 4 shows the segmentation performance for 10 fixed, 

unseen images over an increasing training dataset size. The statistics are 
based on five training runs. Note that each additional training image 
potentially provides thousands of training image patches for training the 
network. 

4. Results 

4.1. Validation of the tablet and pellet results based on validations sets 
generated by experts 

Validation of the results was performed based on test sets containing 
OCT images of coating layers of different appearance: single and multi- 
layered coatings. The OCT images were evaluated by human experts, 

Fig. 3. Flowchart overview of how to iter-
atively evolve a CNN model. After an initial 
development of a CNN architecture, the CNN 
is trained on a given training dataset. If the 
final validation loss is sufficiently low, the 
model is considered to be ready for appli-
cation. Otherwise the model is retrained and 
evaluated after either (i) tuning the CNN 
architecture, (ii) adapting the training pa-
rameters or (iii) generating additional 
training data, which ideally improves the 
CNN model performance.   

Fig. 4. CNN segmentation performance based on varying training set sizes for 
the Thrombo ASS product. Points show the average dice score over 5 runs for 10 
unseen test images; Whiskers denote the maximum and minimum dice scores. 
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forming the reference for validation. The findings were compared to the 
output of the corresponding neural networks. A summary is provided in 
Table 3, clearly indicating a strong agreement between ground truth and 
results for the CNN. 

The dice score presented in Table 3 relates to the test images and not 
to training of the network. With respect to these results, the score 
measures the degree of variability of the images compared to the 
coverage of the network, which is in fact higher for arbitrarily shaped 
objects (e.g., pellets). The root mean squared error (RMSE) for the in-
terfaces describes the deviation of each calculated interface from the 
“real” (reference) interface path. 

The second validation approach compares the results for the auto-
matically evaluated OCT images of Thrombo ASS tablets to the interface 
thicknesses and standard deviation in the coating thickness measured by 
means of microscopy as a reference. The comparison is summarized in in 
Table 4. A detailed description of the procedure can be found in Wolf-
gang et al., 2019. For better comparison, the CNN output (a pixel area) 
was converted into a coating thickness value by dividing the segmented 
area through the number of contributing A-Scans and multiplying it by 
an OCT-system-specific conversion factor and a material-specific 
correction of the refractive index. For the Thrombo ASS, an assumed 
refractive index of the coating of 1.48 is used, as reported in Wolfgang 
et al., 2019. Mean values and standard deviations are calculated over all 
contributing A-Scans of the CNN output in order to be comparable. 

4.2. Comparison of computational speed 

For the coated Thrombo ASS tablets, a broad range of OCT image 
appearances is recognized, which is reflected in a different performance 
under both CNN and ellipse-fit evaluation approaches, as shown in 
Fig. 6. A qualitative summary on the various OCT image features and 
their impact on the investigated algorithms is listed in Table 5. Espe-
cially challenging are those images, where the coating-core interface is 
faded or blurred and hardly visible, as it is the case when scattering 
pigments (e.g., Fe2O3) are present in the coating or the coating is highly 
porous or agglomerated, resulting in extensive scattering as well. 
However, it has to be pointed out that even for human experts it is nearly 
impossible to distinguish an interface for those images. 

In order to compare the computational speed of the algorithms, the 
total time required to evaluate all OCT images of entire coating exper-
iments was determined for all available test sets. Evaluation results for 
all 17 conducted coating experiments are summarized in Fig. 5. Note 
that raw data in these evaluations contain datasets of various sizes 
(3886–8734 full OCT images). Not all images contain evaluable infor-
mation, i.e. yielding valid detections. The total time reported includes 
the time required for data reading from the hard drive and image 
analysis. Therefore, in a real-world in-line monitoring application, the 

evaluation time required could be significantly lower since in this case 
raw data is transported directly from the sensor to the GPU via the PCI 
express interface. 

The tested CNN is slightly more efficient in terms of computational 
speed than the ellipse-fit evaluation. However, as stated above, the 
major part of elapsed time refers to read times from the hard drive for 
both approaches. Furthermore, the CNN-based evaluation is capable of 
detecting multiple products within one OCT image, yielding a high 
number of total detections per test set, as described in the following 
section. 

4.3. Sensitivity: number of evaluations from defined test sets 

A comparison of detection sensitivity highlights the excellent per-
formance of the CNN approach. When evaluating highly scattering 
coating layers containing iron (II) oxide (Fe2O3), the ellipse-fit could 
barely detect the valid interfaces. Therefore, the corresponding bars in 
Fig. 6 are very small. 

4.4. Challenging coating layer evaluation 

Under the ellipse-fit based evaluation approach, the most chal-
lenging coating layer type is the one with a highly porous coating layer 
structure. This is especially the case for Glucotrol XL 10 mg tablets. Pores 

Table 3 
Validation results for CNN and ellipse-fit compared to those obtained by human 
experts for test sets of OCT images. The results are on a pixel basis.  

Sample name Thrombo ASS 
100 mg 

Glucotrol XL 
5 mg 

Detrol Effexor XR 

Dosage Form Tablet 
(enteric coat) 

Tablet 
(osmotic 
coat) 

Pellet 
(multi- 
layer) 

Pellet 
(single- 
layer) 

# Full Train Images 59 36 39 11 
Coating Height 

(Reference), [px] 
37.2 ± 3.1 45.8 ± 4.2 7.9 ± 1.7 15.3 ± 2.6 

Coating Height 
(Prediction), 
[px] 

36.4 ± 2.6 45.4 ± 3.0 8.0 ± 1.6 14.8 ± 2.1 

Dice Score 0.93 0.94 0.67 0.86 
RMSE Top 

Interface, [px] 
1.5 1.7 1.5 1.8 

RMSE Bottom 
Interface, [px] 

3.1 3.5 1.6 2.5  

Table 4 
Comparison of results for CNN evaluation and light microscopy. Reported values 
are mean values ± standard deviation.  

Sample Light microscopy (μm) CNN (μm) Ellipse (μm) 

1 75.2 ± 2.2 75.8 ± 3.5 76.5 ± 3.4 
2 57.3 ± 3.8 59.2 ± 5.5 56.3 ± 3.3 
3 74.4 ± 3.1 71.5 ± 4.7 73.3 ± 3.1 
4 75.3 ± 6.1 80.0 ± 4.8 86.9 ± 3.6 
5 65.1 ± 3.8 64.3 ± 5.1 67.3 ± 5.1 
6 68.1 ± 3.6 67.5 ± 3.4 68.8 ± 4.1 
7 57.8 ± 3.9 60.0 ± 3.6 62.7 ± 3.8 
8 75.5 ± 8.7 66.2 ± 4.0 69.1 ± 3.9 
9 64.4 ± 4.9 67.4 ± 2.5 68.6 ± 4.5 
10 80.1 ± 4.9 79.1 ± 3.9 84.0 ± 3.3 
11 54.1 ± 5.3 59.0 ± 3.5 59.5 ± 3.7 
Mean all 68.0 ± 8.4 68.2 ± 7.3 70.3 ± 3.8  

Table 5 
Qualitative assessment of image features and their impact on the performance of 
the algorithms.  

Image feature Range of variation CNN able to 
evaluate the whole 
range of variation 

Ellipse-fit able to 
evaluate the 
whole range of 
variation 

Scattering 
properties of 
coating layer 

From weak to 
strong scattering 

Yes, but 
challenging for 
strongly scattering 
layers 

No, strongly 
scattering layers 
are impossible to 
evaluate 

Definition of 
coating-core 
interface 

Well defined to 
nearly invisible for 
humans 

Yes, but 
challenging for 
faded/blurred 
interfaces 

No, weak 
interfaces are not 
properly detected 

Fringes and 
other image 
artefacts 

None to a few Yes, no impact on 
performance 

Yes, but impact 
on proper 
interface 
detection 

Surface 
roughness 

Smooth to well 
visible topography 

Yes, no impact on 
performance 

Yes, but impact 
on proper 
interface 
detection 

Orientation of 
objects in 
image 

Perpendicular to 
high inclined 

Yes, object 
orientation does 
not affect the 
segmentation 

No, highly 
inclined objects 
are not proper 
evaluated  
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within the layer scatter the OCT light beam and produce a kind of 
visually “speckled” coating, which in most cases impedes a proper 
ellipse-fit evaluation by failing to recognize the coating-core interface. 
This is illustrated in Fig. 7, in which an ellipse-fit detection outlier is 
compared to the corresponding CNN-based segmentation output. In 
addition, Fig. 8 shows an at-line run comparison between both algo-
rithms for the same product, with the ellipse-fit based evaluation and 
CNN-based algorithm yielding 86 and 329 detections, respectively, in 
564 randomly sampled (empty and non-empty) full OCT images. 

4.5. In-line evaluation comparison 

For the 15% Talcum run, the entire process evaluation of over more 
than 3 h coating time was re-processed based on recorded raw data 
(Fig. 9). The ellipse-fit reported 1007 coating layer detections, whereas 
CNN yielded 5998 detections from the same data set consisting of 7254 
OCT images. The reason is that CNN is capable of evaluating multiple 
tablets in one OCT image while the static ellipse-fit can process only one 
tablet per OCT image. The CNN-based evaluation proved to be 

Fig. 5. Comparison of computational time required for CNN and for ellipse-fitting for a complete evaluation of selected in-line data sets of Thrombo ASS, covering a 
multitude of image appearances introduced by different process parameters and coating solution variations. 

Fig. 6. Comparison of algorithmic sensitivity and robustness of CNN to that of ellipse-fitting for selected in-line data sets of Thrombo ASS, covering a multitude of 
image appearances introduced by different process parameters and coating solution variations. 
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sufficiently robust against changes in the coating layer thickness and 
layer appearance in the course of a coating run, as indicated by signif-
icantly fewer outliers (0.08%) compared to the ellipse-fit (2.88%) for the 
same test data. 

The limit of detection for the ellipse-fit algorithm in terms of layer 
thickness is 12 μm, which is determined by the optical resolution of the 
system in combination with the nature of static elliptical interface 
identification that can only evaluate in steps of full pixels. In contrast, 

the CNN approach allows an evaluation of thinner layers (down to 8 
μm), while still offering reliable detection. This is possible since in-
terfaces are found by the CNN as areas and the evaluation is made on a 
subpixel level. 

4.6. Arbitrary shapes and multi-layers 

Since the CNN-based layer segmentation proved to perform well for 

Fig. 7. Coating layer detection on a Glucotrol XL 10 mg product example, with a highly porous structure showing an ellipse-fit outlier. The ellipse-fit approach fails 
to correctly detect the bottom coating-core interface. The CNN is capable of detecting the full layer area, determining correct interface paths with a much higher 
accuracy. The red and blue lines illustrate the top interface paths and the coating-core interface paths, respectively. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. At-line data evaluation of Glucotrol XL 10 mg tablets. Ellipse-fit evaluation (left) and CNN-based evaluation (right), including outliers (obtained via a review 
of all data by a human expert) and the batch mean thickness. The tablets were sampled using a commercially available Phyllon sampling device. 

Fig. 9. In-line data evaluation for 15% Talcum run over more than 3 h of coating time. Ellipse-fit evaluation (left) and CNN-based evaluation (right), including 
outliers and linear fit. The results show individual thickness measurements over time and are based on a fixed dataset. The examples are shown for thin and thick 
layer detection. 
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single-layered tablets in terms of thickness and shape variety, multi- 
layered pellet evaluation was the logic next step. Fig. 10 shows an 
illustration of multi-layer segmentation with a pre-trained CNN model. 
The scanned objects are images of Detrol pellets acquired on a rotating 
Petri dish, with a static OCT sensor mounted above to prevent distortion 
of the OCT image due to random movement. Note that the CNN was not 
trained to learn the top layer (seal layer) since its thickness was repre-
sented by only a few pixels and was indistinguishable (for the human 
annotators) from the actual top interface. 

The major advantage of CNN-based evaluation in this application is 
that the presented CNN is capable of following the real layer shape by 
simultaneously classifying each layer. Furthermore, multiple products in 
a single OCT image can be evaluated in parallel. In this case, the CNN 
model outputs three segmentation maps, one for each learned layer type. 

5. Discussion 

5.1. Comparison of algorithms 

The presented CNN approach outperforms the ellipse-fit evaluation 
in terms of speed on the same hardware under all test scenarios and has 
enhanced robustness against a challenging textural appearance of 
porous coatings (e.g., Glucotrol XL tablets) and challenging shapes (e.g., 
the pellet examples described above). Furthermore, the total number of 
detections under the CNN approach for defined in-line data test sets is 
considerably higher than that under the ellipse-fit approach by a factor 
of 4.5 up to 324 for scattering layers, as shown in Fig. 6 for the various 
Thrombo ASS coating runs. This advantage is only partly due to the 
CNN’s capability to segment multiple objects and parts of the trained 
objects at once. It holds true even when the objects appear mirrored in 
the image, while the ellipse-fitting can segment only one properly 
aligned object per OCT image. The major reason why the CNN out-
performs the ellipse-fit is because it can recognize shapes and areas of 
interest, even with weak image contrast and high noise. Another notable 

advantage of the CNN approach is that thinner coating layers (down to 8 
μm) can be investigated on the same hardware since the CNN can 
evaluate areas and offers reliable sub-pixel information. 

As the results summarized in Fig. 5 and especially Fig. 6 indicate, 
different compositions and varying process conditions introduce a high 
variability in the appearance of recorded OCT images. The developed 
CNN algorithm showed a high robustness even under these adverse 
circumstances, outperforming the ellipse-fit particularly in terms of 
highly scattering coatings containing inorganic pigments (Fe2O3), in 
which case the ellipse-fit failed to evaluate the layers for 2% and 10% 
loading. Looking at the runs containing different amounts of dye, the 
difference in performance for both approaches was comparable to the 
runs without dye at the same process conditions, indicating neglectable 
influence of added dye on the resulting image quality. 

Nevertheless, the CNN-based evaluation is still in a proof-of-concept 
state and requires enhanced post-processing, such as filtering false de-
tections. The major challenge in training CNNs is that training data must 
be manually generated by providing a highly accurate annotation, 
which can be cumbersome work at the pixel level. However, as shown in 
Fig. 4, under the proposed image patch training approach only 30 
training images suffice for achieving a dice score of 0.931 for the 
Thrombo ASS tablets. 

Pellets are more challenging than tablets since they have a much 
thinner coating in general. Pellet cores can have arbitrary shapes, often 
causing the coated layer to have a non-spherical or non-elliptical cur-
vature. As a consequence, the ellipse-fit approach reaches its limits when 
applied to such thin coatings, returning a comparatively high amount of 
false detections or even failing to segment a layer. However, these issues 
can be resolved using the proposed CNN-based segmentation (Fig. 10). 
The noticeably lower dice score of pellet layer detection can be 
explained by its dependency on the underlying areas. Since pellet layers 
are quite thin, discrepancies between the manually annotated ground- 
truth layer area and the CNN output segmentation area have a much 
higher impact on this value. Thus, the resulting dice score may be 

Fig. 10. CNN-based multi-layer segmentation illustration for the Detrol pellets. (Top) OCT input image showing 3 pellet instances and an explanation of layers. 
(Bottom) Segmentation overlay of three CNN output maps, each using a confidence threshold of 0.5, denoting the controlled release layer in red, the API layer in 
green and the water-insoluble barrier layer in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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considered to be a less significant metric in this special case. 
Regarding multi-layered pellets, the deep learning approach was 

proven to be a key method for simultaneously evaluating multiple layer 
types in one product. This was expected since while learning a specific 
layer (e.g., the controlled release layer), the network can consolidate its 
prediction by using the surrounding image information for all other 
layers. This way, the other layers, interfaces or any additional ordered 
image structures support the CNN’s learning. The ellipse-fit approach on 
the other hand often yields false detections due to mistaking layers that 
have a similar appearance. 

Unlike the ellipse-fitting that relies on fixed parameters and thresh-
olds, the CNN is capable of segmenting even faint interfaces with very 
weak contrast ratios. Nevertheless, the interfaces must still be visible to 
the human expert in order to train the network. Another aspect of the 
comparatively “rigid” architecture of static algorithms, such as ellipse- 
fitting, is that the image size and the framerate must match the pre-
requisites of the software. In contrast, the presented deep learning 
network remains flexible in terms of input and output image size and 
framerate and is only limited by the performance of available hardware. 
Even a continuous OCT image data stream could be fed in the CNN in 
order to evaluate every recorded A-scan. In other words, with the pro-
posed CNN approach the performance directly scales with the compu-
tational power of the system it is running on. 

5.2. Constrains and limitations of the CNN approach 

One of the major drawbacks of CNN-based OCT image analysis is that 
a sufficient amount of training data must be created from scratch, 
especially in the case of coating layers with new types of visual 
appearance. This requires human experts to conduct the annotation of 
entire OCT images at the pixel level by marking the layer area as 
accurately as possible, which can be challenging if the interfaces are 
only weakly defined. Since the network’s segmentation performance is 
primarily affected by the training data accuracy, this is a crucial point. In 
addition, the CNN models are in general highly sensitive to the input 
image noise, which can be a disadvantage. During live acquisition of 
OCT images, changes in the noise may occur, meaning that the seg-
mentation may have unexpected behavior. 

6. Summary and conclusions 

Analyzing tablet or pellet coatings in OCT images during live 
acquisition is a challenging task not only due to the image quality 
constraints but also due to arbitrary object shapes and random object 
locations and movement. The latest ellipse-fit algorithm used to identify 
coating interfaces may have issues with that regard for non-elliptical 
products. 

In this work, a proof of concept was developed for applying con-
volutional neural networks (CNNs) to coating layer segmentation and 
classification while still retaining the real-time characteristic of the 
overall evaluation algorithm. The proposed CNN-based coating layer 
segmentation has very high detection rates since it can simultaneously 
evaluate multiple products in one OCT image without additional 
computational effort. This also applies to multi-layered pellets, on which 
multiple coating layers were identified at once via a single CNN model. 
Another advantage of the novel approach is that scanned pharmaceu-
ticals outside the ideal OCT image position (resulting in mirrored 
coating layers) can be learned and segmented without any additional 
algorithm adaptions. In contrast to the established static ellipse-fit al-
gorithm, the CNN-based method requires fewer setting parameters, 
which makes it comparably straightforward for configuration and 
application. Validation of the results for defined test sets with chal-
lenging coatings (e.g., scattering and porous coatings) attested to the 
excellent performance and reliability of the CNN approach. 

A limitation to a broad application of CNNs in the field of pharma-
ceutical OCT image evaluation is that no readily available training data 

for pharmaceutical OCT image segmentation is currently available. 
Training data must be generated manually by human experts and for 
every application. As a consequence, annotation errors or bias can in-
fluence the final CNN-based segmentation accuracy, which may also 
affect the measurement validity. 

Future work will include examining the overall detection reliability 
of and further improvements to the CNNs’ training and robustness. 
Learning additional product properties, such as pore presence, could 
enable a calculation of inner surfaces of the coating and improve the 
overall layer homogeneity calculation. Another aspect with regard to 
CNNs would be to learn and correct the individual light beam inclination 
of live OCT data, which may be derivable from the top interface 
reflection appearance. This could make possible a live compensation for 
the refraction effects based on the unseen surface angle and a correction 
of the final layer thickness measurement. 
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