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Repeatability and Reproducibility of Computed Tomography
Radiomics for Pulmonary Nodules

A Multicenter Phantom Study
Xueqing Peng, PhD,* Shuyi Yang, PhD,†‡§ Lingxiao Zhou, PhD,|| Yu Mei, MS,¶ Lili Shi, PhD,*
Rengyin Zhang, BS,# Fei Shan, MD,# and Lei Liu, PhD***
Background: Radiomics can yield minable information from medical images,
which can facilitate computer-aided diagnosis. However, the lack of repeatability
and reproducibility of radiomic features (RFs) may hinder their generalizability in
clinical applications.
Objectives: The aims of this study were to explore 3 main sources of variability
in RFs, investigate their influencing magnitudes and patterns, and identify a sub-
set of robust RFs for further studies.
Materials and Methods: A chest phantom with nodules was scanned with dif-
ferent computed tomography (CT) scanners repeatedly with varying acquisition
and reconstruction parameters (April-May 2019) to evaluate 3 sources of variabil-
ity: test-retest, inter-CT, and intra-CT protocol variability. The robustness of the
RFswas measured using the concordance correlation coefficient, dynamic range,
and intraclass correlation coefficient (ICC). The influencing magnitudes and pat-
terns were analyzed using the Friedman test and Spearman rank correlation coef-
ficient. Stable and informative RFswere selected, and their redundancy was elim-
inated using hierarchical clustering. Clinical validationwas also performed tover-
ify the clinical effectiveness and potential enhancement of the generalizability of
radiomics research.
Results: A total of 1295 RFs that showed all 3 sources of variability were in-
cluded. The reconstruction kernel and the iteration level showed the greatest
(ICC, 0.35 ± 0.31) and the least (ICC, 0.63 ± 0.27) influence on magnitudes.
The different sources of variability showed relatively consistent patterns of influ-
ence (false discovery rate <0.001). Finally, we obtained a subset of 19 stable, in-
formative, and nonredundant RFs under all 3 sources of variability. These RFs ex-
hibited clinical effectiveness and showed better prediction performance than un-
stable RFs in the validation dataset (P = 0.017, Delong test).
Conclusions: The stability of RFs was affected to different degrees by test-retest
and differences in CT manufacturers and models and CT acquisition and recon-
struction parameters, but the influences of these factors showed relatively consis-
tent patterns. We also obtained a subset of 19 stable, informative, and nonredun-
dant RFs that should be preferably used to enhance the generalizability of further
radiomics research.
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R adiomics is a new discipline that enables the extraction of massive,
quantitative, and minable information frommedical images, includ-

ing computed tomography (CT), magnetic resonance imaging (MRI),
and positron emission tomography CT.1 Using high-throughput com-
puter algorithms, the underlying radiographic information in medical
images, which has been difficult to quantify manually, is translated into
radiomic features (RFs). Several radiogenomic studies2–4 have identi-
fied connections between RFs and genomic information, molecular
pathways, pathophysiological states, and clinical factors. In combina-
tion with other sources of medical data, high-dimensional RFs can facil-
itate precision medicine by serving as a predictive signature in clinical
decision support systems for objectively capturing the radiographic
phenotype5 in routine medical images.

To date, radiomics studies have focused more on cancer research
since radiomics approaches hold the potential of serving as virtual bi-
opsy,6 offering the advantage of constantly characterizing the spatial
and temporal heterogeneity of the tumor and its microenvironment.
Even though biopsy is treated as the gold standard in cancer diagnosis,
it can only show limited characteristics of the tumor from only a small
part of a lesion at 1 time point. In contrast, radiomics can routinely
quantify tumor phenotypes from every part of all suspicious lesions in
a noninvasive manner.7 To date, radiomics has shown great potential
for precision medicine in computer-aided screening,8,9 diagnosis,10

treatment guidance,11 and prognosis prediction.12,13

Nevertheless, both clinical and phantom studies have revealed a
lack of repeatability and reproducibility in radiomics research, which
may hinder its generalizability in clinical applications.14,15 Radiomic fea-
tures showed sensitivity and variability related to differences in manufac-
turers,16 scanners,17 and acquisition and reconstruction parameters,18–20

including pitch value, tube voltage, tube current, slice thickness, resolu-
tion, field of view (FOV), reconstructionmethod,20 reconstruction kernel,
and radiation dose. Radiomic features also showed variability in test-
retest datasets21 and various radiomics software.22 Many efforts have
been made to investigate and solve this problem.16–19,22,23 The lack of ro-
bustness in RFs makes it difficult for researchers to repeat and reproduce
radiomics achievements, and prompt solutions are required to address
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these limitations. The repeatability and reproducibility of RFs have been
strictly defined, with “repeatability” referring to multiple measurements
with RFs in the same subject with the same equipment, imaging acquisi-
tion settings, and operators over a short time frame, and “reproducibility”
referring to measurement of RFs with different equipment, imaging ac-
quisition settings, or operators in the same or different subjects.24,25
FIGURE 1. Flowchart of the overall study design. The overall study was divide
test-retest trial, data were compared between different time points (T0 and T1
between different CT scanners to calculate ICC. In the intra-CT protocol trial,
parameters to calculate ICC. GLCM, gray level cooccurrencematrix; GLSZM, g
neighboring gray tone difference matrix; GLDM, gray level dependence matr

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
To explore this problem, we designed a multicenter phantom
study under 3 different conditions introducing variability: test-retest,
inter-CT, and intra-CT protocols, each of which was related to a differ-
ent source of variability. First, we investigated, quantified, and com-
pared the influencing magnitudes and patterns of these factors on the
stability of the RFs. Second, we filtered a subset of RFs in which all
d into 3 parts: test-retest, inter-CT, and intra-CT protocol trials. In the
) to calculate CCC and DR. In the inter-CT trial, data were compared
data were compared under varying CT acquisition and reconstruction
ray level size zonematrix; GLRLM, gray level run lengthmatrix; NGTDM,
ix.
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features were robust under these influencing factors. Finally, clinical
validation was performed to verify whether the aforementioned subset
was clinically effective and whether it could enhance the generalizabil-
ity of radiomics research.
MATERIALS AND METHODS

Study Design
Three sources of variability were included in this study (Fig. 1):

test-retest, inter-CT, and intra-CT protocol variability. Among them,
test-retest variability refers to the RF variability caused by different
CT acquisitions, inter-CT variability is caused by differences in CT
manufacturers and models, and intra-CT protocol variability is caused
by differences in CT acquisition and reconstruction parameters. The
targeted CTacquisition and reconstruction parameters included pitch, ro-
tation time, tube voltage, tube current, FOV, slice thickness, slice interval,
reconstruction kernel, and iteration level. For each scanner, the most
recommended reconstruction method for thoracic imaging was used
to ensure optimal image quality; therefore, instead of the reconstruction
method, we included the iteration level of the targeted scanner's routine
lung reconstruction method in our intra-CT protocol trial.

Correspondingly, the overall phantom study was divided into
test-retest, inter-CT, and intra-CT protocol trials (Fig. 1). In the test-
retest trial, the same set of CT scanners and their corresponding routine
thoracic imaging acquisition protocols for lung nodules (baseline proto-
cols) were repeatedly used on 2 different days. In the inter-CT trial, 7
different CT scanners with baseline protocols were used. In the intra-
CT protocol trial, a CT scanner with its baseline protocol was chosen.
Subsequently, the above-mentioned CT acquisition and reconstruction
parameters were adjusted one by one with other parameters fixed on
FIGURE 2. The anthropomorphic thorax phantom (A) scanned by SOMATOM
simulated nodules (arrow; CT attenuation values: 100 [C] and −630 [D] Hounsf
baseline acquisition protocol.

244 www.investigativeradiology.com
the baseline protocol to obtain different CT images after adjustment
of different parameters.

Phantom
An anthropomorphic thorax phantom named chest phantom N-1

LUNGMAN26,27 (Kyoto Kagaku Co, Kyoto, Japan; Figs. 2A, B) with
simulated nodules was used. The phantom consisted of 3 parts: body
model, the internal structure of the lung, and simulated nodules, repro-
ducing the anatomical structures of the lung. The simulated nodules
were 9 spherical nodules with 3 CT attenuation values (−800, −630,
and 100 Hounsfield units) and 3 sizes (8, 10, and 12 mm in diameter).
In accordance with the instruction manual, the 9 simulated nodules
were randomly attached to the internal structure of the lung by using
double-sided adhesive tape and tweezers. The CT images of the phan-
tom (Figs. 2C, D) were close to the CT images of the human lung. How-
ever, the lung nodules were more conspicuous than they would appear
on the patient images because the phantom lacked lung parenchyma.

Image Acquisition
Three hospitals at 4 different sites were included: Shanghai Public

Health Clinical Center (JinshanDistrict), Shanghai Public Health Clinical
Center (HongkouDistrict), Zhongshan Hospital of Fudan University, and
Shanghai Sixth People's Hospital. For the test-retest and inter-CT trials,
because of the limitations imposed by vendor-specific CT acquisition
and reconstruction parameters, CT acquisition protocols for different
scanners cannot be identical. Therefore, the routine thoracic imaging ac-
quisition protocol for lung nodules of each scanner in each hospital was
adopted as the baseline protocol (Table 1). For the intra-CT protocol trial,
Aquilion ONE TSX-301C was selected to obtain CT images with vary-
ing acquisition and reconstruction parameters (Table 2), and the intra-
CT protocol trial was repeated twice to obtain a more general result.
The varying scope of acquisition and reconstruction parameters were
Definition AS (Siemens Healthineers) (B). CT images of the phantomwith
ield units) scanned by AquilionONE TSX-301C (Toshiba, Japan) with the

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 1. CT Acquisition Protocols for the Test-Retest and Inter-CT Trials

Site
CT Scanner

(Manufacturer) Pitch*
Rotation
Time (s)

Tube
Voltage
(kVp)

Tube
Current
(mA·s)

FOV
(mm)

Slice
Thickness
(mm)*

Slice
Interval
(mm)*

Reconstruction
Kernel†

Reconstruction
Method‡

Shanghai Public
Health Clinical Center
(Jinshan District)

Aquilion ONE TSX-301C
(Toshiba)

0.813 0.5 120 75 350 1.0 1.0 FC56 AIDR 3D (standard)

Shanghai Public
Health Clinical Center
(Jinshan District)

SCENARIA (Hitachi) 0.8281 0.5 120 75 350 1.0 1.0 66 Intelli IP (Lv.2)

Shanghai Public Health
Clinical Center
(Hongkou District)

Brilliance 64 (Philips) 0.891 0.5 120 75 350 1.0 1.0 L Standard
(enhancement = 1.0)

Zhongshan Hospital
of Fudan University

SOMATOM Definition
AS (Siemens
Healthineers)

0.9 0.5 120 75 350 1.0 1.0 B60f ADMIRE
(strength = 3)

Zhongshan Hospital
of Fudan University

Aquilion ONE
TSX-301A (Toshiba)

0.828 0.5 120 75 350 1.0 1.0 FC56 AIDR 3D (standard)

Zhongshan Hospital
of Fudan University

UCT550 (United
Imaging Healthcare)

0.8875 0.5 120 75 350 1.0 1.0 SHARPC Adaptive filter function
(enhancement = 2.5)

Shanghai Sixth
People's Hospital

Revolution CT
(GE Healthcare)

0.992 0.5 120 75 350 1.25 1.25 LUNG ASiR (Plus/SS40)

The number of decimal places was consistent with the corresponding CT scanner control panel.

* The pitch value, slice thickness, and slice interval of each CT scanner can only be selected from several fixed values, which cannot be identical. Subsequently, we
selected the closest value of each CT scanner as the baseline level.

†Because differentmanufacturers had different reconstruction kernels, the reconstruction kernel of each scanner routinely used for thoracic imaging was chosen as the
baseline level.

‡ For each scanner, the most recommended reconstruction method for thoracic imaging was used to ensure optimal image quality.

CT indicates computed tomography; FOV, field of view.
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chosen based on previous studies16,18,19,28,29 and radiologists' previous
knowledge. For example, tube voltage (baseline level: 120 kVp) was ad-
justed to 80 kVp and 135 kVp, because 80 kVp was usually used in
low-dose CT and 135 kVp was used for high doses in the corresponding
hospital. Finally, 44 sets of CT images were obtained (April-May 2019).

The 44 sets of CT images were then shared across different trials.
For the test-retest trial, we obtained 2 scans per CT scanner, totaling 14
scans. For the inter-CT trial, we obtained 7 scans per examination, total-
ing 14 scans, allowing a different analysis of the same data as that in the
test-retest trial. For the intra-CT protocol trial, the baseline CT images
were shared each time we investigated different acquisition and recon-
struction parameters: pitch (adjusted twice, 3 scans per time summed
6 scans), rotation time (adjusted once, 2 scans per time summed 4
scans), tube voltage (adjusted twice, 3 scans per time summed 6 scans),
tube current (adjusted twice, 3 scans per time summed 6 scans), FOV
TABLE 2. The Adjustment Range of CT Acquisition and Reconstruction P

Pitch
Rotation
Time (s)

Tube Voltage
(kVp)

Tube Current
(mA·s) FOV (

0.637 0.5 80 25 35
0.813 0.75 120 75 40
1.388 135 100

The number of decimal places was consistent with the CT scanner control panel.

* Aquilion ONE TSX-301C was chosen for the intra-CT protocol trial.
† Slice interval was not adjusted as an independent CT acquisition parameter but

scenarios.
‡ Different iteration levels of reconstruction method AIDR 3D were included.

CT indicates computed tomography; FOV, field of view.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
(adjusted once, 2 scans per time summed 4 scans), slice thickness/
slice interval (adjusted twice, 3 scans per time summed 6 scans), recon-
struction kernel (adjusted twice, 3 scans per time summed 6 scans), and
iteration level (adjusted 3 times, 4 scans per time summed 8 scans).

Image Segmentation and Feature Extraction
Homemade software and segmentation tools were used for the

semiautomatic segmentation. To minimize the influence of segmenta-
tion15 and amplify the effectiveness of RFs with internal segmentation,11

internal square segmentation was chosen. For 8-, 10-, and 12-mm-
diameter nodules, square regions with lengths of 6, 8, and 10 mm were
selected in their maximum cross-section layer by a chest radiologist with
7 years of experience in CT and MRI scan interpretation (see Fig. S1,
Supplemental Digital Content, http://links.lww.com/RLI/A653, which il-
lustrates the CT images of 3 simulated nodules with their internal square
arameters for the Intra-CT Protocol Trial*

mm)
Slice Thickness/Slice
Interval (mm/mm)†

Reconstruction
Kernel

Iteration
Level‡

0 1.0/1.0 FC17 Mild
0 2.0/2.0 FC56 Standard

5.0/5.0 FC86 Strong
Enhanced

corresponded to the slice thickness to simulate realistic clinical CT acquisition
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segmentations in the inter-CT trial). A chest radiologist with 20 years of
experience in CT and MRI scan interpretation manually confirmed that
all segmented regions were contained within the nodule.

PyRadiomics (version 2.2.0) with default calculation settings,30

an open-source library implemented in Python capable of extracting a
large panel of features from medical images, was used to extract the
RFs. Original and filtered RFs were extracted (Fig. 1). However, be-
cause of the fixed-shape segmentation, all morphological RFs were ex-
cluded. Finally, 1295 RFs were included in our analysis. More details of
the RFs from PyRadiomics have been described previously.30

Clinical Validation
A clinical validation dataset31 with CT images containing 384

ground-glass nodules measuring 5 to 10 mm in diameter (353 patients;
men: 87, women: 266; age: 51.2 ± 11.4 years) was used in this study.
Pathological diagnosis, 8 CT semantic features of radiological impor-
tance in the radiologists' prior knowledge,32 and CT RFs were collected
in this dataset (see Table S1, Supplemental Digital Content, http://links.
lww.com/RLI/A653, which demonstrates the characteristics of the clin-
ical dataset). The correlation of RFs with both pathological diagnosis
and semantic features was analyzed to explore the clinical effectiveness
of each robust RF.

For further validation of the results of stability analyses, the entire
dataset was divided into 2 parts with nonoverlapping CT scanners (see
Table S2, Supplemental Digital Content, http://links.lww.com/RLI/
A653, which demonstrates the CT scanners and acquisition parameters
used for the clinical dataset); the larger part was randomly divided into
a training dataset and a testing dataset, and the smaller part was used as
a validation dataset. Subsequently, we trained 2 prediction models for
pathological diagnosis with unstable RFs and robust RFs separately
and compared their performance to validate whether our stability results
could enhance the generalizability of radiomics research (Fig. 1).

Statistical Analysis
The concordance correlation coefficient (CCC)33 with a cutoff

value of 0.85 and the intraclass correlation coefficient (ICC)34,35 (based
on a single-rating [k = 1], absolute-agreement, 2-way mixed-effects
model) with a cutoff value of 0.7536 were calculated for repeatability
and reproducibility measurements. The dynamic range (DR)37 with a
cutoff value of 0.90 was calculated for informativeness measurement.
The Friedman test and pairwise Wilcoxon signed-rank test were used
to compare the magnitude of the influence of different acquisition and
reconstruction parameters. The Spearman rank correlation coefficient
was used to analyze the consistency of the influencing patterns of differ-
ent sources of variability. Hierarchical clustering based on Euclidean
distance was used to eliminate redundant RFs, and in each cluster, the
RF with the largest DR was selected as the representative RF.

For clinical validation, the Wilcoxon rank-sum test was used to
explore the discriminative effectiveness of the representative RFs. The
least absolute shrinkage and selection operator (LASSO) and logistic
regression were used to establish prediction models for pathological di-
agnosis. Receiver operating characteristic analysis was also conducted,
and the area under the curve (AUC) values were compared with the
Delong test. A P value less than 0.05 was considered to indicate a sta-
tistically significant difference. Multiple tests were corrected using the
false discovery rate (FDR) method. All statistical analyses were per-
formed using R software (version 4.0.3; R Foundation for Statistical
Computing, Vienna, Austria).
RESULTS

The Variability of RFs
The CCC, DR, and ICC for the 3 sources of variability were cal-

culated to quantify the robustness and informativeness of each RF
246 www.investigativeradiology.com
(Fig. 3A). For the test-retest variability, the ratio of repeatable RFs
was 20.93% (271/1295; CCC, 0.56 ± 0.31), and the ratio of informative
RFs was 20.39% (264/1295; DR, 0.83 ± 0.08). For inter-CT variability,
the ratio of reproducible RFs was 20.54% (266/1295, ICC: 0.46 ± 0.30).
For intra-CT protocol variability, different CTacquisition and reconstruc-
tion parameters showed different magnitudes of influence (Table 3).

The Influencing Magnitudes of CTAcquisition and
Reconstruction Parameters

For different CTacquisition and reconstruction parameters, their
influencing magnitudes showed statistically significant differences
(FDR < 0.001, Friedman test). Using the pairwise Wilcoxon signed-
rank test (see Table S3, Supplemental Digital Content, http://links.
lww.com/RLI/A653, which demonstrates the results of the pairwise
comparison), the influencing magnitudes were ranked: the reconstruc-
tion kernel showed the greatest influence with lower ICC and fewer re-
producible RFs (ICC, 0.35 ± 0.31, 182/1295, 14.05%), the second was
the slice thickness and slice interval (ICC, 0.52 ± 0.29, 305/1295,
23.55%), the third was the FOV (ICC, 0.53 ± 0.33, 412/1295,
31.81%), the fourth were the pitch (ICC, 0.55 ± 0.30, 380/1295,
29.34%), tube current (ICC, 0.54 ± 0.32, 444/1295, 34.29%), and tube
voltage (ICC, 0.55 ± 0.30, 409/1295, 31.58%), the fifth was the rotation
time (ICC, 0.57 ± 0.32, 461/1295, 35.60%), and the iteration level
showed the least influence on the reproducibility of RFs with higher
ICC and more reproducible RFs (ICC, 0.63 ± 0.27, 524/1295, 40.46%)
(Figs. 3B, C).

The Influencing Patterns of Different Sources of Variability
The influencing patterns were analyzed using Spearman rank

correlation coefficients calculated with CCC or ICC values of each
RF from each pair of sources of variability. The higher the Spearman
rank correlation coefficient, the more consistent the influencing pat-
terns of the 2 sources of variability, which meant that the RFs that were
more stable under 1 of the 2 sources of variability (ICC ranked higher in
all RFs) were more likely to be stable under the other source of variabil-
ity. The Spearman rank correlation coefficient matrix (Fig. 4A) showed
that the influencing patterns of all sources of variability were positively
correlated with each other with statistical significance (FDR < 0.001;
see Table S4, Supplemental Digital Content, http://links.lww.com/
RLI/A653, which demonstrates the FDR values of the Spearman rank
correlation coefficients). Overall, all sources of variability showed rela-
tively consistent influencing patterns on RFs (all blue in Fig. 4A), with
the reconstruction kernel and the iterative level differing more from the
others (2 lighter blue columns in Fig. 4A). Among them, the tube volt-
age and tube current showed the most consistent influencing patterns
(ρ = 0.93, FDR < 0.001) with the ICC ranking distribution near the
45-degree diagonal (Fig. 4B). The RFs with higher ICC values under
varying tube voltage settings tended to show higher ICC values under
varying tube current settings, and vice versa. However, the FOVand re-
construction kernel showed the most inconsistent influencing patterns
(ρ = 0.56, FDR < 0.001) with a scattered ICC ranking distribution
(Fig. 4C). The RFs with higher ICC under varying FOV settings did
not necessarily show a higher ICC under varying reconstruction
kernel settings.

A Subset of Representative Robust RFs
Stable and informative RFs from each source of variability were

selected. Their intersection yielded 124 RFs that showed stability and
greater informativeness under all sources of variability (Fig. 5). The to-
tal intersection consisted of original RFs (9/124, 7.26%), wavelet-
filtered RFs (22/124, 17.74%), square-filtered RFs (13/124, 10.48%),
square-root-filtered RFs (10/124, 8.06%), logarithm-filtered RFs (8/
124, 6.45%), exponential-filtered RFs (29/124, 23.39%), and local bi-
nary pattern–filtered RFs (24/124, 19.35%) (Fig. 5C). Hierarchical
© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 3. A, Overview of the variability of RFs. Each row is one RF; each column is one variability measurement fromone trial. Unsupervised clustering of
RFs was used on the y axis. Of the intra-CT protocol trial, from left to right, followed by pitch, rotation time, tube voltage, tube current, FOV, slice
thickness and slice interval, reconstruction kernel, and iteration level. Boxplot (B) of the ICC values and bar graph (C) of the stable RF count under varying
CT acquisition and reconstruction parameters.
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clustering was then used to remove redundancies in the above 124 RFs
(see Fig. S2, Supplemental Digital Content, http://links.lww.com/RLI/
A653, which illustrates the dendrogram showing the progression of
the hierarchical clustering). Nineteen RFs with the largest DRs in each
cluster were selected as representative RFs (Table 4; see Table S5,
Supplemental Digital Content, http://links.lww.com/RLI/A653, which
demonstrates the robustness measurement results of the 19 representa-
tive RFs). These included 2 original RFs, 3 wavelet-filtered RFs, 5
square-filtered RFs, 2 square-root-filtered RFs, 2 logarithm-filtered
RFs, 4 exponential-filtered RFs, and 1 local binary pattern-filtered
RF. In addition, the subset contained 12 first-order RFs and 7 texture
RFs. The scatterplot (Fig. 6A) showed that the wavelet-LLL-filtered
TABLE 3. Robustness Measurement Results of Each Trial

Trial Measur

Test-retest CC
Test-retest DR
Inter-CT ICC
Pitch (intra-CT protocol) ICC
Rotation time (intra-CT protocol) ICC
Tube voltage (intra-CT protocol) ICC
Tube current (intra-CT protocol) ICC
FOV (intra-CT protocol) ICC
Slice thickness and slice interval (intra-CT protocol) ICC
Reconstruction kernel (intra-CT protocol) ICC
Iteration level (intra-CT protocol) ICC

* Data are provided as mean ± SD.
† Data are expressed as numerator/denominator (percentage). The cutoff values we

CCC indicates concordance correlation coefficient; CT, compute tomography; DR

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
root mean squared as one of the representative RFs was concentrated
and nonoverlapping in the 9 simulated nodules and could distinguish
different nodules. Meanwhile, the wavelet-HLH-filtered informational
measure of correlation2 as a representative of unstable RFs was
scattered and overlapped with each other in the 9 simulated nodules
and could hardly distinguish different nodules (Fig. 6B). The corre-
sponding Bland-Altman plot (Figs. 6C, D) based on data from the
test-retest trial also showed that in comparison with the unstable
wavelet-HLH-filtered informational measure of correlation2, the
mean difference line (solid blue line) of the stable wavelet-LLL-
filtered root mean squared was relatively closer to zero (solid red
line), with a narrower 95% confidence interval (CI) (dashed blue line).
ement Value* Ratio†

C 0.56 ± 0.31 271/1295 (20.93%)
0.83 ± 0.08 264/1295 (20.39%)
0.46 ± 0.30 266/1295 (20.54%)
0.55 ± 0.30 380/1295 (29.34%)
0.57 ± 0.32 461/1295 (35.60%)
0.55 ± 0.30 409/1295 (31.58%)
0.54 ± 0.32 444/1295 (34.29%)
0.53 ± 0.33 412/1295 (31.81%)
0.52 ± 0.29 305/1295 (23.55%)
0.35 ± 0.31 182/1295 (14.05%)
0.63 ± 0.27 524/1295 (40.46%)

re 0.85, 0.90, and 0.75 for CCC, DR, and ICC, respectively.

, dynamic range; FOV, field of view; ICC, intraclass correlation coefficient.
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FIGURE 4. A, Spearman rank correlation coefficient matrix of the influencing patterns of all sources of variability. B, Scatterplot of the ICC rankings under
varying tube voltage and tube current settings. Each point corresponds to an RF, and the horizontal and vertical coordinates are the ICC rankings under
the corresponding source of variability. Different colors correspond to the filter to which the RF belongs. C, Scatterplot of the ICC rankings under varying
FOV and reconstruction kernel settings.
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Thus, we obtained a stable, informative, and nonredundant subset
of RFs.

Clinical Validation

Clinical Effectiveness of the Representative Subset
Toverify the clinical effectiveness of the 19 representative robust

RFs, their correlations with pathological diagnosis and 8 CT semantic
features were analyzed (Fig. 7). For the pathological diagnosis, 16 of
19 RFs showed statistically significant differences when differentiating
invasive adenocarcinoma (IAC) from adenocarcinoma in situ (AIS) and
minimally invasive adenocarcinoma (MIA) (FDR < 0.05, Wilcoxon
rank-sum test; see Table S6, Supplemental Digital Content, http://
links.lww.com/RLI/A653, which demonstrates the results of differential
analysis), with the highest AUC reaching 0.722 (95% CI, 0.664-0.780;
see Table S7, Supplemental Digital Content, http://links.lww.com/RLI/
A653, which demonstrates the AUC values of 19 representative RFs in
pathological diagnosis and semantic features). For each of the 8 CT se-
mantic features, at least 3 RFs of the subset showed statistically signif-
icant differences between the groups. When the mean value was used to
distinguish the type of nodule, we obtained the highest AUC (AUC,
0.845; 95% CI, 0.801-0.889; see Table S7, Supplemental Digital Con-
tent, http://links.lww.com/RLI/A653, which demonstrates the AUC
values of 19 representative RFs in pathological diagnosis and semantic
features). Among the 8 semantic features, the RFs showed better perfor-
mance in distinguishing the type of nodule, spiculation, lobulation,
bubblelike appearance, pulmonary vascular change, and pleural inden-
tation (columnswith more asterisks in Fig. 7) than the tumor-lung inter-
face and air bronchogram (columns with fewer asterisks in Fig. 7).
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Enhancement of the Generalizability of the
Representative Subset

To validate the effects of our stability results on generalizability,
we trained 2 logistic regressionmodels for differentiating IAC fromAIS
andMIAwith 1171 unstable RFs (excluding the intersection of 124 RFs
from a total of 1295 RFs) and the 19 representative RFs separately. Be-
cause of their large number, the 1171 unstable RFs were selected by
LASSO (see Fig. S3, Supplemental Digital Content, http://links.lww.
com/RLI/A653, which illustrates the RF selection process with the
LASSO regression model) to obtain the optimal RFs to establish an
“unstable model” with logistic regression (see Table S8, Supplemental
Digital Content, http://links.lww.com/RLI/A653, which demonstrates
the coefficients of the “unstable model”). As for the 19 representative
RFs, logistic regression was directly used for establishment of the “stable
model” (see Table S9, Supplemental Digital Content, http://links.lww.
com/RLI/A653, which demonstrates the coefficients of the “stable
model”). A comparison of the Receiver operating characteristics of the 2
models showed different results for the different datasets. The “unstable
model” outperformed the “stable model” in the training dataset (Fig. 8A;
see Figs. S4A, B, Supplemental Digital Content, http://links.lww.com/
RLI/A653, which illustrates the predicted risk scores of the 2 models in
the training dataset) and the testing dataset (Fig. 8B; see Figs. S4C,D, Sup-
plemental Digital Content, http://links.lww.com/RLI/A653, which illus-
trates the predicted risk scores of the 2 models in the testing dataset) with-
out statistical significance. However, the “stable model” outperformed the
“unstable model” in the validation dataset (Fig. 8C; see Figs. S4E, F, Sup-
plemental Digital Content, http://links.lww.com/RLI/A653, which illus-
trates the predicted risk scores of the 2 models in the validation dataset)
with statistical significance (P = 0.017, Delong test; AUC for the
© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 5. A, Venn diagram. Each bar in the bar graph represents the number of RFs that are stable in the groups corresponding to the bottom bright
spot and unstable in the others. B, Bar graph of stable RF counts in each group. C, Pie chart of the composition of the total intersection. The number is
expressed as the group quantity/total quantity (percentage).

TABLE 4. 19 Representative RFs

Filter Representative RF

Original Energy
Mean

Wavelet-LLH wavelet.LLH_original_firstorder_90Percentile
wavelet.LLH_original_firstorder_Range

Wavelet-LLL wavelet.LLL_original_firstorder_RootMeanSquared
Square square_original_firstorder_Energy

square_original_firstorder_Median
square_original_gldm_GrayLevelNonUniformity
square_original_gldm_LargeDependence
LowGrayLevelEmphasis
square_original_glrlm_LongRunLow
GrayLevelEmphasis

Square root squareroot_original_firstorder_Energy
squareroot_original_glrlm_GrayLevel
NonUniformity

Logarithm logarithm_original_firstorder_Entropy
logarithm_original_glcm_Imc2

Exponential exponential_original_firstorder_Maximum
exponential_original_firstorder_Minimum
exponential_original_glrlm_RunEntropy
exponential_original_glrlm_RunLength
NonUniformityNormalized

Local binary pattern lbp.2D_original_firstorder_Energy

RF indicates radiomic feature.
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“unstable model,” 0.548, 95% CI, 0.414-0.683; AUC for the “stable
model,” 0.723, 95% CI, 0.604-0.843).
DISCUSSION
Radiomics can obtain massive, quantitative, and minable infor-

mation from medical images such as CT scans,38 which can facilitate
precision medicine.39 However, the lack of repeatability and reproduc-
ibility of RFsmay hinder their generalizability in clinical applications.40

We designed a multicenter phantom study to explore the 3 main sources
of variability in radiomics in simulated clinical scenarios. The results
showed that test-retest scenarios, differences in CT manufacturers and
models, and differences in CT acquisition and reconstruction parame-
ters cause different degrees of variability in RFs. Among them, the re-
construction kernel, slice thickness, slice interval, and FOV showed
greater influence than the other sources. Nevertheless, the influencing
patterns of the above sources of variability were positively correlated.
Subsequently, by performing intersection and hierarchical clustering,
we obtained a subset of stable, informative, and nonredundant RFs
with clinical discriminant power. This subset of representative RFs
was also proven to have the potential to enhance the generalizability
of radiomics research.

The test-retest trial showed a lower level of repeatability than
other studies.18,37,41 Berenguer et al18 showed a repeatability ratio of
91% (161/177 RFs) in the test-retest analysis. Balagurunathan et al37

found that 30.14% (66/219) of RFs showed good CCC and acceptable
DR. Mahon et al41 found that 54.4% (for tumors) and 78.5% (for nor-
mal tissues) of 59 texture features were considered repeatable. The
possible reasons for our lower level of repeatability might be the in-
clusion of more CT manufacturers and models in our study, the lon-
ger test-retest time interval than that in previous studies,37 and the
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FIGURE 6. Scatterplots of wavelet-LLL-filtered root mean squared (A) and wavelet-HLH-filtered informational measure of correlation2 (B) in 9 simulated
nodules: nodule 1: −800 HU, 8 mm; nodule 2: 100 HU, 12 mm; nodule 3: 100 HU, 8 mm; nodule 4: −800 HU, 12 mm; nodule 5: −630 HU, 12 mm;
nodule 6: −630 HU, 8 mm; nodule 7: −800 HU, 10 mm; nodule 8: 100 HU, 10 mm; nodule 9: −630 HU, 10 mm (CT attenuation value, diameter).
Bland-Altman plots of wavelet-LLL-filtered root mean squared (C) and wavelet-HLH-filtered informational measure of correlation2 (D). HU,
Hounsfield units.
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greater number of RFs analyzed in our study. Moreover, in the test-
retest trial, we only performed the repetition twice on different days
while trying to capture all the variabilities that could happen in a
FIGURE 7. FDR matrix of the differential analysis results of 19 representative R
dataset. The asterisk in the cell represents FDR <0.05.
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test-retest situation at once. Adding repetition time may have helped
us obtain a more solid result for the average repeatability at different
time intervals with or without position changes. The same reasons
Fs in the pathological diagnosis and 8 CT semantic features of the clinical

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 8. ROC curves of the “unstablemodel” and the “stable model” in the training dataset (A), the testing dataset (B), and the validation dataset (C).
ROC, receiver operating characteristic; AUC, area under curve.
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could also explain the lower level of reproducibility in the inter-
CT trial.18

For the intra-CT protocol trial, we quantified and compared the
magnitude of influence of different CT acquisition and reconstruction
parameters and obtained their influence magnitude rankings. We found
that the reconstruction kernel, slice thickness, slice interval, and FOV
had a greater influence on the reproducibility of RFs, where slice thick-
ness, slice interval, and FOV contributed to voxel size. Ultimately, it
was the reconstruction kernel and the voxel size that had a major influ-
ence, which was consistent with the findings of previous stud-
ies.16,19,28,29,42 This result could provide a reference for subsequent
multicenter radiomics research and also facilitate the establishment of
a standard CT acquisition procedure for radiomics research. Uniform
setting of the reconstruction kernel and voxel size has been recom-
mended to receive more attention, whereas uniform setting of other
parameters can be slightly relaxed when strict standardization could
not be implemented. However, we did not include the reconstruc-
tion method in the intra-CT protocol trial. Because reconstruction
parameters such as reconstruction kernel showed a greater influ-
ence on RFs, the impact of the reconstruction method on RFs needs
further investigation.

On the basis of the positive relationship of influencing patterns
between sources of variability, we confirmed that the stability results
from different sources of variability could be generalized. Even though
only limited sources of variability were included in our study, our subset
of representative RFs had the potential to be extended to more sources
of variability that had not been included in this study or had not yet
been found.

While the subset of representative RFs showed stability under
all sources of variability, they also showed clinical effectiveness with
statistical significance in differentiating pathological diagnosis and
predicting the appearance of CT semantic features. We further com-
pared the performances of the representative RFs and unstable RFs on
the clinical dataset in distinguishing IAC fromAIS andMIA. Although
the “unstable model” showed higher AUC values than the “stable
model” in the training and testing dataset, the “stable model” beat the
“unstable model” with statistical significance in the validation dataset,
which shared no overlapping CT scanners with the training and testing
datasets. However, both of them performed poorly in the validation
dataset, which may have been caused by the elimination of morpholog-
ical RFs in our results in the first place. In addition, the main reason for
the decrease in the “unstable model”may be the different distribution of
AIS, MIA, and IAC in the training dataset and the validation dataset.
The better generalization of the “stable model” indicated that better
© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
generalization of radiomics research might be achieved with the pre-
ferred usage of our subset of representative RFs.

This study had several advantages. First, as a multicenter pro-
spective study, we included almost all mainstream CT manufacturers
in China (GE, Philips, Siemens, Toshiba, Hitachi, and United Imaging
Healthcare) and analyzed both their test-retest and inter-CT variability.
Second, we studied most of the acquisition and reconstruction parame-
ters encountered in the daily CT acquisition procedure according to
their actual clinical adjustment ranges and obtained their influence
rankings. With these 2 efforts, we simulated realistic clinical CT acqui-
sition scenarios, which can improve the clinical transformation capabil-
ity of our results and enhance their guiding value for subsequent
radiomics research. Third, we included asmany RFs as possible, includ-
ing first-order RFs, texture RFs, and filtered RFs, to determine more
stable RFs. Fourth, by comparison of influencing patterns, the general-
ization of our stable RFs to awider range of influencing factorswas ver-
ified. Last, but most importantly, we not only obtained a subset of rep-
resentative RFs with clinical effectiveness but also validated their en-
hancement for the generalizability of radiomics research.

This study also had some limitations. First, to eliminate the influ-
ence of segmentation, we adopted 2D square segmentation and strictly
limited it to the interior of the simulated nodules according to the results
of previous studies.11 Second, our phantom lacked lung parenchyma
and our simulated nodules were all pure with limited CT attenuation
values and sizes, and their position might change slightly during phan-
tom movement, which might have had an unknown impact. Third, be-
cause all CT scanners are currently in clinical use in hospitals and the
test timewas limited, the study of CTacquisition and reconstruction pa-
rameters was performed on only 1 CT scanner. Fourth, the limited num-
ber of repetitions in the test-retest trial may hinder the reliability of our
repeatability results. Fifth, as morphological RFs were eliminated in the
first place in our study, their repeatability and reproducibility required
further study. Lastly, although we validated our results in a clinical can-
cer dataset, the generalizability of our study to other lung diseases
remains unknown.

Recent phantom studies on radiomics robustness have often used
the Credence Cartridge Radiomics phantom,16,17 chest phantom N-1
LUNGMAN,26,27 and the NEMA image quality phantom.43,44 We
chose the chest phantom N-1 LUNGMAN to simulate the real lung
CT image as possible. However, because the phantom lacked lung pa-
renchyma, a gap still exists between our phantom images and real pa-
tient images. For further study of radiomics robustness, phantoms are
needed to achieve better simulation of patient lung images, especially
better simulation of lung nodules not only on attenuation values and
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diameters but also on texture and shape. Although only spherical nod-
ules were used in our study, the same phantommanufacturer also offers
spiculated, lobulated, and subsolid nodules, which could help in the in-
vestigation of morphological RFs in future studies. However, the lack of
lung parenchyma remains a question. To the best of our knowledge, 3D-
printed phantoms45–47 for lung radiomics may be a solution because
they could reproduce an individual patient's CT images with high preci-
sion of anatomic details and radiation attenuation properties.

In conclusion, this study evaluated the 3 main sources of vari-
ability in RFs: test-retest, CT manufacturers and models, and CTacqui-
sition and reconstruction parameters. We obtained an influence ranking
of acquisition and reconstruction parameters and proved the consis-
tency of the influence patterns of sources of variability. We also ob-
tained a subset of stable, informative, and nonredundant RFs with clin-
ical effectiveness that could potentially enhance the generalizability of
radiomics research. For retrospective research, we suggest the preferred
use of the representative subset to enhance generalizability and clinical
transformation ability. The inclusion criteria for robust RFs could be re-
laxed or other unstable RFs could be included after these RFs are in-
cluded. For prospective research, on the basis of the influence rankings,
we suggested that acquisition and reconstruction parameters with
greater influences need stricter control in subsequent studies and more
urgent standardization in the ongoing establishment of standard pro-
cesses in radiomics research.22
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