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Raman spectroscopy as a non-
invasive diagnostic technique for 
endometriosis
Ugur Parlatan   1,6*, Medine Tuna Inanc1,6, Bahar Yuksel Ozgor2, Engin Oral3, Ercan Bastu4, 
Mehmet Burcin Unlu1 & Gunay Basar5

Endometriosis is a condition in which the endometrium, the layer of tissue that usually covers the inside 
of the uterus, grows outside the uterus. One of its severe effects is sub-fertility. The exact reason for 
endometriosis is still unknown and under investigation. Tracking the symptoms is not sufficient for 
diagnosing the disease. A successful diagnosis can only be made using laparoscopy. During the disease, 
the amount of some molecules (i.e., proteins, antigens) changes in the blood. Raman spectroscopy 
provides information about biochemicals without using dyes or external labels. In this study, Raman 
spectroscopy is used as a non-invasive diagnostic method for endometriosis. The Raman spectra of 
94 serum samples acquired from 49 patients and 45 healthy individuals were compared for this study. 
Principal Component Analysis (PCA), k- Nearest Neighbors (kNN), and Support Vector Machines 
(SVM) were used in the analysis. According to the results (using 80 measurements for training and 14 
measurements for the test set), it was found that kNN-weighted gave the best classification model 
with sensitivity and specificity values of 80.5% and 89.7%, respectively. Testing the model with unseen 
data yielded a sensitivity value of 100% and a specificity value of 100%. To the best of our knowledge, 
this is the first study in which Raman spectroscopy was used in combination with PCA and classification 
algorithms as a non-invasive method applied on blood sera for the diagnosis of endometriosis.

Endometriosis is defined as the growth of endometrial gland and stroma outside the endometrial cavity, which is 
caused by an outflow into the peritoneal cavity. Previous reports demonstrated that one in ten women all around 
the world sought medical support due to endometriosis and endometriosis-related symptoms including pelvic 
pain (38.7%), dyspareunia (29.5%), and infertility (11.6%)1. Given that the diagnosis of endometriosis depends on 
histopathologic examination after surgical excision, this approach requires anesthesia induction and hospitaliza-
tion. Therefore, it significantly affects the quality of life of patients. Thus, researchers focus on new non-invasive 
methods for the diagnosis of endometriosis, including transvaginal ultrasonography, analysis of blood biomark-
ers, and genetic predispositions.

Raman spectroscopy provides information about molecular structures and chemical bonds of substances via 
the detection of inelastically scattered photons2. In Raman spectroscopy, the sample is illuminated by a laser 
beam and inelastically scattered light, which is composed of different frequencies, is observed. The scattered light 
contains two types of scattering, namely Rayleigh and Raman scattering. The intensity of the light in Rayleigh 
scattering is strong and the frequencies of the scattered and the incident light are the same, whereas in Raman 
scattering, the intensity is very weak (about 10−6 of the incident beam intensity) and the frequency of the scattered 
light is different from the frequency of the incident light. The difference between the frequencies of Rayleigh scat-
tering and the inelastically scattered photons can be defined as the Raman shift. The Raman shifts correspond to 
the vibrational frequencies of the molecules in a targeted sample.

The vibrational frequencies of each chemical bond within a molecule (e.g., O-H, C-O) are different, hence 
their fingerprints can be uniquely seen in the spectrum. It was reported in a study that during the disease, the 
amount of protein biomarkers in the blood varied, and these variations could be identified using multiplex and 
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single immunologic testing technologies3. In this context, Raman spectroscopy is a useful tool for detecting 
the chemical content of a sample. Biologic samples such as tissue, blood, and serum are well-suited measure-
ment samples for Raman spectroscopy because chemical changes accompany progressions of most diseases. 
Therefore, Raman spectroscopy has significant potential to provide valuable information to physicians in medical 
diagnostics4.

Studies have shown that disease diagnostics with Raman spectroscopy is possible for both tissue and blood 
serum samples. Raman spectra of blood serum samples were used to diagnose many types of diseases, including 
Alzheimer’s disease5, oral cancer6, nasopharyngeal cancer7, colorectal cancer8, dengue infection9, lung cancer10, 
hepatitis B11, and breast cancer12. Endometriosis, however, has thus far only been studied using Raman spectros-
copy through tissue. Lieber et al., indicated that Raman spectroscopy could differentiate tissues diagnosed as 
normal or endometriotic from tissues that were diagnosed as benign-cystic or cancerous13. Patel et al. showed that 
stages of endometrial cancer could be distinguished using Raman imaging14. In another study by Notarstefano et 
al., luteinized granulosa cells were measured using Raman micro-spectroscopy to separate ovarian endometriosis 
from control samples15.

Recently, k-Nearest Neighbor (kNN) and Support Vector Machines (SVM) combined with Principal 
Component Analysis (PCA) have frequently been used together with spectroscopy in disease diagnostics. kNN is 
a classification method based on the commonality within groups; every single spectrum can be treated as a point 
in a multidimensional space. This method calculates the Euclidean distance between each pair of spectra points. 
Then, by regarding the majority vote of its nearest neighbors, the class assignment of a sample is performed16.

Support Vector Machine algorithm is a powerful, supervised learning algorithms, which were introduced by 
Vapnik17. It is used as a classification method in which every data element is viewed as a point in n-dimensional 
space (n is the number of features) with the value of each feature being the value of an individual coordinate. 
Classification of the data is achieved by determination of the hyperplane that maximizes the margin between the 
groups. It is an elegant approach for the classification of spectral data18–21.

In some recent studies, classification methods and Raman spectroscopy were used together for disease diag-
nostics. Dingari et al. reported that Raman spectroscopy and multivariate classification could discriminate lesions 
in stereotactic breast biopsies, irrespective of microcalcification status22. Li et al. developed a method for the 
non-invasive detection of colon cancer using Raman spectroscopy together with PCA and kNN23.

In this article, we report the first Raman spectroscopy-based classification model that can be used as a 
non-invasive diagnostic technique for endometriosis. This new approach requires only blood serum from a 
patient with endometriosis for the diagnosis of the disease. Therefore, the diagnosis of endometriosis could be 
achievable without laparoscopy.

Results and Discussion
The mean Raman spectra of the two groups are demonstrated in Fig. 1b. Although the intensity difference 
between the groups in the spectral range of 500–750 cm−1 is apparent, this spectral interval was not used in the 
classification processes because the signal variance is high in that region. The appropriate region was chosen for 
the classification using the variable selection procedure, which is described in the methods section. For this pro-
cedure, the mean accuracy values of the classification models with the standard deviations (given in parentheses) 
were calculated and are given in Table 1. The final feature selection was decided by considering the region with 
the highest mean accuracy value, which was found as 790–1729 cm−1 spectral interval. Then, PCA was applied on 
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Figure 1.  (a) Background (BG) and baseline-corrected (BC) Raman spectra of a serum sample. (b) Normalized 
BC mean Raman spectra of the control and patient groups. Standard deviations of each group were plotted and 
overlaid as shaded curves.
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the normalized and baseline corrected Raman spectral data to extract the relevant features for the selected region 
(790–1729 cm−1). The number of PCs was set in the 95% of the total variance explained (TVE). The percentage 
TVE values for PCs were calculated as 48.3, 17.2, 13.6, 5.2, 4.3, 2.9, 2.1, and 1.6, respectively. This condition 
requires 8 PCs for this model. All 8 PCs were included in the model. Figure 2a shows the PCA scores of the first 
against the third PC to visualize the discrimination of the two groups on the orthogonal feature plane.

Some of the peaks labeled on the loading graph, given in Fig. 2b, demonstrate shifts and variations, which can 
be interpreted as changes in structure and the amount of some chemicals in serum during the disease. Among 
these bands, 1005 cm−1 was tentatively assigned to phenyl ring angular vibrations due to phenylalanine content or 
C=CH bending vibration due to the ground state beta carotene content24. The presence of beta carotene also con-
tributed to the 1156 and 1520 cm−1 bands, which are C-C and C=C stretching bond vibrations, respectively25. The 
peak at 1450 cm−1 was assigned to CH2 bending vibration, which exists in lipids, phospholipids, and some amino 
acids26. Besides these, the peaks around 1239 and 1650 cm−1 were assigned to amide III (parallel beta sheet) and 
amide I, respectively. They are related to the secondary structure of proteins such as alpha helix (1657 cm−1), 
parallel β-sheet (1630 cm−1), and turn (1670 cm−1)12. The importance of these bands in the diagnosis of endome-
triosis is not yet clear, and it is to be investigated in the future. On the other hand, the alteration of the bands at 
1156 and 1520 cm−1 may refer to a change in the amount of beta carotene in the patient group. One explanation 
for this change could be that the alteration of retinoic acid metabolism in patients with endometriosis27. Taylor et 
al. reported a decrease in carotenoids in endometriotic tissues, which may be provide hope for medical therapies 
as adjuvants or alternatives to the surgical excision28. Therefore, beta carotene, which is an important member of 
the carotenoid family, may have a protective role against endometriosis.

After PCA, the study was carried a step further to examine the performance of the machine learning algo-
rithms on the classification of the Raman spectral data. For this purpose kNN (fine and weighted) and SVM 
(cubic and quadratic) were used. The data set included measurements from 49 patients and 45 healthy individu-
als. The training and the cross-validation (5-fold) data sets were separated by selecting 85% of the total data (con-
taining 41 patient and 39 control measurements) randomly. The remaining 15% (including 8 patient and 6 control 
measurements) of the data was used as unseen data to assess the predictive power of the classification models.

The performance of the applied classification methods in terms of sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) is presented in Table 2. Sensitivity and specificity are measures 
of classification success in predicting diseased and control specimens, respectively. Detailed explanations of these 
terms are given in Table 3. The results indicated that application of the kNN-weighted algorithm on the spectral 
data exhibited the highest classification model accuracy among the others. Using this algorithm in the training 
procedure, 33 of 41 patients and 35 of 39 control samples were correctly classified. During the testing phase, the 
model was allowed to guess the correct label (“patient” or “control”) of the unseen datum one by one. The results 
indicated that the model correctly classified 8 of the 8 patients and 6 of the 6 control samples. In short, this result 
indicates a promising potential for the use of Raman spectroscopy together with the kNN-w classification algo-
rithm for non-invasive diagnostics of endometriosis.

Feature Selection Mean Accuracy (%)

Region (cm−1) kNN-f kNN-w SVM-c SVM-q

450–1729 76.2 (2.9) 78.0 (3.6) 73.8 (4.1) 76.9 (4.3)

790–1729 79.4 (3.8) 82.1 (2.5) 80.0 (2.3) 82.5 (2.9)

1140–1729 72.8 (5.1) 77.3 (2.2) 77.5 (3.4) 78.5 (2.2)

1368–1729 63.3 (1.9) 65.8 (4.2) 68.5 (5.8) 64.5 (1.8)

Table 1.  Comparison of the mean accuracy results of kNN and SVM classification models for the four selected 
regions after 10 repetitions of calculations.

Figure 2.  PCA performance on the training data set, which includes normalized BC data from 41 patients and 
39 healthy individuals. (a) PCA score plot (PC1 vs. PC3) (b) Loading 1 and Loading 3 spectra.
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Conclusion
Developing a non-invasive method for endometriosis is challenging and currently under investigation. There 
are new strategies for improving transvaginal ultrasonography skills to diagnose mostly deep infiltrating endo-
metriosis. Biomarker or genetic predisposition studies are being published in a growing manner. Laparoscopy is 
the most secure way to diagnose endometriosis, but it is an invasive method requiring such that patients should 
undergo a kind of surgery. Instead, a non-invasive method would be more economical and patient-friendly for 
the diagnosis of endometriosis. In this respect, as it was demonstrated for the first time in this article, Raman 
spectroscopy technique together with PCA and the classification algorithms could be a good candidate as a 
non-invasive diagnostic method for endometriosis.

To further improve this study, one might classify particular spectral bands of the serum spectrum that cor-
respond to the suspected biomarkers of endometriosis. However, because there are insufficient literature data 
for reference Raman signals of all biomarkers of endometriosis (i.e., annexin V, VEGF, CA-125, slCAM-13), the 
Raman spectrum of each suspected biomarker should be measured as the reference spectrum to make more reli-
able inferences about the disease.

Methods
Patient Selection.  Forty-nine patients who had a surgical diagnoses of endometriosis and 45 healthy women 
with no history of pelvic pain or infertility were enrolled in this study after ethical approval was granted by the 
Ethics Committee of the Faculty of Medicine, Acibadem University. Each participant gave written informed con-
sent. All experiments were performed in accordance with relevant guidelines and regulations. Student’s t-test was 
applied on the data of volunteers who joined the study. There were no statistically significant differences between 
the patient and control groups in terms of age, BMI (body mass index), presence of uterine myomas, and adeno-
myosis, as given in Table 4. The patients were not divided into subgroups for the investigation because there is no 
known account to determine whether the main presenting symptom has a different underlying pathophysiology. 
Four patients had uterine myomas in the patient group, and three women had uterine myomas in the control 
group; all were asymptomatic. In the patient group, two patients had adenomyosis. Women with comorbidities, 
drug users, and patients with pelvic pain that was not proven to be endometriosis and who were not on their 
secretory phase (16–28th day) of the menstrual cycle were excluded.

Sample Preparation.  Blood samples were taken in 10-mL serum separator tube (Vacusera) and centrifuged 
at 1500 g for 10 minutes to isolate the serum. All the serum samples were stored at 4 °C and measured a maximum 
of two days after the collection. For the measurement, approximately 0.5 mL of the serum sample was prepared 
in a quartz cuvette.

Experimental Setup.  The experimental arrangement was built around a home-built microscope that 
included a water immersion microscope objective (60X, NA, Olympus). A single mode diode laser (CrystaLaser) 
with wavelength 785 nm and power 100 mW was used for Raman excitation. The unwanted back-reflected beams 
were filtered using a Faraday isolator (FI, EOTech), which was placed in front of the diode laser. A laser line 

Training kNN-f(a) kNN-w(b) SVM-c(c) SVM-q(d)

Specificity 84.6 (33/39) 89.7 (35/39) 84.6 (33/39) 87.1 (34/39)

Sensitivity 78.0 (32/41) 80.5 (33/41) 75.6 (31/41) 75.6 (31/41)

PPV 84.2 (32/38) 89.2 (33/37) 75.6 (31/35) 83.8 (31/37)

NPV 78.6 (33/42) 81.4 (35/43) 83.8 (34/45) 76.7 (33/43)

Test kNN-f(a) kNN-w(b) SVM-c(c) SVM-q(d)

Specificity 100 (6/6) 100 (6/6) 100 (6/6) 100 (6/6)

Sensitivity 87.5 (7/8) 100 (8/8) 87.5 (7/8) 87.5 (7/8)

Table 2.  Comparison of the predictive ability of kNN and SVM classification models. All results are given 
in percentages. Information given in parentheses represents the ratio of number of correct predictions to the 
number of true class measurements. (a)fine, (b)weighted, (c)cubic, (d)quadratic.

Actual Positive
(P)

Actual Negative
(N)

Predicted Positive True Positive
(TP)

False Positive
(FP)

PPV
TP/(TP + FP)

Predicted Negative False Negative
(FN)

True Negative
(TN)

NPV
TN/(TN + FN)

Sensitivity
TP/(TP + FN)

Specificity
TN/(TN + FP)

Accuracy
(TP + TN)/(P + N)

Table 3.  The definitions of sensitivity, specificity, positive predictive value (PPV), negative predictive value 
(NPV), and accuracy.
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filter (LF) was employed to obtain a clean laser profile around 785 nm (Semrock, LL01-780-12.5). The sample 
was illuminated through a focusing lens and the back-scattered light at 180 °C geometry was collected using 
the same lens. The laser power on the sample was detected around 70 mW. The Rayleigh scattered photons were 
filtered using two sequentially located Raman edge filters (Semrock). The Raman scattered beam was focused on 
a 100 μm slit of a spectrometer (f = 303 mm, f#4.3, Andor) using an achromatic lens with a focal length 50 mm. 
The spectrometer was equipped with a 600 lines/mm grating and with a thermoelectric-cooled CCD camera (at 
−90 °C, Andor iDus DU420A-OE). A schematic view of the equipment can be seen in Fig. 3.

Experiment and Analysis.  The measurement and spectral analysis scheme is given in Fig. 4. According 
to this scheme, first, the toluene spectrum was measured using an exposure time of 0.2 s for wavenumber cali-
bration. Secondly, the distilled water spectrum was acquired using an exposure time of 30 s with 14 successive 
scans. The average of the water spectra was used for the background subtraction. Next, the Raman spectra of the 
serum samples were measured using the same integration parameters as with the water measurements. Each 
serum sample was measured twice sequentially. After cosmic-ray removal from the spectral data, 14 scans were 
decreased to 10 scans by excluding those with higher variance, and then these ten scans were averaged for each 
measurement. The spectra, which belonged to the same volunteer, were then averaged. Thereby, the data under-
went pre-processing through a graphical user interface (GUI) that we wrote on the MATLAB platform. The 
GUI performs the pre-processing steps, namely calibration, background (BG), and baseline correction (BC), as 
demonstrated in Fig. 1a. The developed wavenumber calibration method, which uses the Raman spectrum of 
toluene, was applied26. The reference bands of the toluene spectrum were used to calibrate the distilled water and 
serum spectra2. The distilled water spectra were subtracted from the corresponding serum spectra to exclude 
signals coming from the water and cuvette. This step makes the spectrum background-corrected (BG). After the 
BG correction, there still remain auto-florescence signals coming from the serum sample. To further exclude 
these unwanted signals, baseline correction was applied for each spectrum by fitting a cubic spline curve on the 
selected 12 wavenumber points on the spectrum. To perform baseline subtraction, the selected wavenumbers 
(corresponding to the data points) were identical for each spline curve to ensure objectivity for each sample. 
Afterwards, the spline curve was subtracted from the BG spectrum to obtain the baseline-corrected (BC) spec-
trum (Fig. 1a). Then, vector normalization was applied for each BC spectrum. The mean spectra of the normal-
ized BC data of the two groups can be viewed in Fig. 1b.

To further explore the data, PCA was applied to the vector-normalized BC data. This is a method for data 
description and compression, which is useful for reducing the dimension of large data sets while preserving most 
of the information. Its discriminating power for grouping data into clusters makes PCA noteworthy for diagnos-
tic studies. After PCA analysis, built-in MATLAB functions were used to apply kNN (fine and weighted) and 
SVM (cubic and quadratic) classification methods to construct classification models. The feature selection was 
performed by re-constructing all the models 10 times for the selected regions because the 5-fold cross-validation 
algorithm of MATLAB’s classification software is a random process. The standard deviation and the mean 
accuracy values for each model determined and the best interval of the spectrum, on which the accuracy of 

Control group Patient group p-value

# of Volunteers 45 49

Adenomyosis (n) 0 2 (4.08%) 0.290

Uterine myoma (n) 3 (6.60%) 5 (10.20%) 0.561

BMI 25.53.3 24.63.6 0.179

Mean Age (years) 27.17.8 29.45.4 0.315

Table 4.  Demographic data for the patient and control groups. (n): number of patients with myomas/
adenomyosis. BMI: body mass index. Confidence level: 0.95.

Figure 3.  The experimental arrangement for Raman spectroscopy.
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classification methods were the highest, were calculated. The average and the standard deviation values of the 
accuracy calculations are shown in Table 1. After feature selection, 85% of the total spectral data was selected as 
a training group, which included 41 patient and 39 control measurements. Then, the remaining 15% was set as 
test data, which contained 8 patient and 6 control measurements. By concerning the training and test results, the 
specificity, sensitivity, PPV, NPV, and the accuracy of the classification models were calculated according to the 
equations given in Table 3.

Data availability
The corresponding author can provide the datasets of this study upon reasonable request.
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