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Abstract

Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by
providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is
the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal
variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission
collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved
organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was
characterized by distinct depth trends and local ‘‘hot spots’’, including impacts from mesoscale processes associated with
each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida
Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with
the DCM depth significantly related to the unique density layer r= 1023.6 (R2= 0.62). Particulate backscattering, bbp,
demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and
resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2= 0.49) was compared to a global
relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous
production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a
semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2= 0.87). In the wake of the
Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for
consideration in the design of an expanded and integrated observing network for the Gulf of Mexico.
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Introduction

Long-term monitoring of carbon cycling in the oceans is

required to understand oceanic ecosystem response to natural and

anthropogenic perturbations, including distinguishing trends due

to storm events, climate cycles, oil spills, and global warming.

Ocean primary production, as largely contributed to by phyto-

planktonic carbon fixation, accounts for approximately half of the

global estimated net primary production, an amount roughly

equivalent to that on land [1]. This primary production represents

the base of the marine food web, supporting nearly all oceanic life

and significantly affecting global biogeochemical cycles, including

atmospheric CO2 uptake. Thus, significant changes in phyto-

plankton biomass as linked to perturbations, such as climate

forcing [2–3], can have major implications for marine ecosystem

functioning all the way up the food chain. Photosynthetic

phytoplankton are also largely responsible for the production of

oceanic dissolved organic matter (DOM), which serves as substrate

for heterotrophic microbial populations and provides nutrients for

autotrophs. Marine DOM represents the largest oceanic pool of

reduced carbon, estimated to hold greater than 200 times the

carbon inventory of marine biomass [4]. Given the importance of

both the marine particulate and dissolved organic matter pools,

improved methods are required for jointly assessing and monitor-

ing long-term changes due to perturbations, especially given

linkages between the two components.

Autonomous profiling floats represent an emerging capability

for monitoring biogeochemical properties of the world’s oceans at

unprecedented scales. Technological advances in float platforms

and sensor technologies allow deployments of longer duration ($5

years), to greater depths (up to 2,000 m), and with higher sampling

frequencies as smaller, lower-power sensors are developed [5].

Optical instrumentation recently developed specifically for float

applications allows measurement of a suite of biogeochemical

parameters, including concentrations of chlorophyll, particulate

matter, colored dissolved organic matter (CDOM), dissolved
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oxygen, and nutrients. Recent miniaturization of sensors now

allows for joint measurement of multiple parameters from floats,

providing the ability to collect important baseline measurements

and repeat monitoring for assessing long-term trends, such as

climate-related impacts on ocean productivity, carbon cycling,

oxygenation, and acidification [3]. Thus far, optically-equipped

floats have been successfully used to provide broad spatial

(horizontal and vertical scales) and highly time-resolved measure-

ments of particle types and fluxes, including in the Pacific,

Atlantic, and Mediterranean oceans [6–8], providing information

on optical variability at previously unobserved scales. However,

there are fewer examples of the simultaneous measurement of both

particulate and dissolved organic matter cycling from floats, given

only recent advances in the technology [9].

Deep waters of the Gulf of Mexico (GOM) represent an

important frontier for better characterizing biogeochemical

processes using autonomous platform technologies. Deep GOM

waters provide valuable ecosystem services, including essential

habitats for large pelagic species, deep sea corals, and marine

mammals [10]. However, these waters are also heavily utilized by

various industries, including commercial fisheries, shipping, and

oil and gas production, with potentially harmful effects on the

environment, such as the Deepwater Horizon oil spill. Previous

work has suggested that a variety of environmental forcing factors

can influence biogeochemical cycling in these deep waters,

including seasonal mixing, Loop Current (LC) and eddy interac-

tions, distant transport of riverine waters, and upwelling along the

shelf edge [11–13]. However, thus far, an understanding of

biogeochemical processes in deep GOM waters has been mostly

limited to traditional shipboard sampling techniques and remote

sensing studies of surface waters. More highly resolved sampling,

in both time and 3-D space, is required to tease apart the various

processes driving optical variability due to phytoplankton,

particulates, and CDOM. To our knowledge, this is the first

publication to describe the high-resolution measurements obtained

from a bio-optical profiling float in deep waters of the Gulf of

Mexico, including collection of both particulate and dissolved

organic matter properties.

Methods

The measurements presented here were collected as part of the

Bureau of Ocean Energy Management (BOEM)-funded ‘‘La-

grangian Study of the Deep Circulation in the Gulf of Mexico’’,

which is measuring currents at depth in both U.S. and Mexican

waters. In totality, the study has deployed ,120 acoustically-

tracked RAFOS floats [14] at depths of 1500–2500 m to map the

deep circulation and its variability, as well as 8 autonomous

profiling APEX floats [15], the majority of which (at the time of

writing this paper) are still collecting measurements. However, one

of the APEX floats has now finished its mission, after 17 months of

deployment, and is the topic of this paper (Fig. 1A; Dataset S1).

The deployment of the profiling float for this study did not require

permits for the following reasons: 1) it was deployed in federal

waters of the US or inside the Exclusive Economic Zone and not

in State waters, and 2) it was deployed under a study for the

BOEM of the US Dept. of the Interior, under the authority of the

Outer Continental Shelf Lands Act. This Act requires the Agency

to conduct studies to evaluate the potential impacts of the oil and

gas industry on the environment.

The APEX float was equipped to provide profiles of both

physical and bio-optical measurements. The profiling float was

built by Teledyne-Webb Research, Inc. (with float dimensions of

16.5 cm diameter by 127 cm long; Fig. S1) and was interfaced

with a pumped conductivity-temperature-depth (CTD) instrument

(SBE41-CP, SeaBird), bio-optical sensors (ECO FLbbCD-AP2,

WET Labs, Inc.), and two-way Iridium communications, which

allowed for both real-time data transmission and sampling plan

adjustments. The instrument was controlled to float at a specified

depth and to profile at set time intervals throughout the water

column. While the profiler was at its specified park depth, it acted

as a passive, quasi-Lagrangian current follower. The vertical

resolution of float bio-optical sampling was set to provide

increasing resolution towards the surface, as follows: 5 m from

0–200 m water depth, 10 m from 200–500 m water depth, 25 m

from 500–1,000 m water depth, and 50 m below 1,000 m water

depth.

The float profiled in the southeastern Gulf of Mexico, traveling

from deep waters of the Florida Plain, along the West Florida

Escarpment, and into the Florida Straits (Fig. 1A). It collected a

total of 61 water column profiles (equaling 5,514 discrete

measurements) of bio-optical and physical properties during a

17-month period. The float was deployed from the R/V Pelican

on July 19th, 2011 over the Florida Plain, where the water depth

was ,3,200 m, and transmitted high-quality data through

December 18th, 2012 when it left the GOM through the Florida

Straits and was not retrieved. During its first 140 days of

deployment (through Dec. 6th, 2011), the float collected measure-

ments down to 1,500 m in deep GOM waters highly impacted by

the LC. After traveling significantly to the southeast of its initial

deployment, the float began moving into shallower waters of the

West Florida Escarpment and up the Florida Canyon. As the float

moved into shallower waters, it likely rested on the bottom

between profiles. Then, as the float rose to the surface and

descended again, it was advected by the currents, thus landing in a

slightly different spot on the bottom. While profiling was initially

set to every 14 days (7/19-8/17/2011), it was quickly decreased to

every 5 days to upload data more often and clear out the memory

backlog (8/17-4/9/2012). Finally, sampling was increased again to

every 14 days in the Florida Straits to maximize float time sitting

on the bottom, in order to delay its leaving the GOM (4/9-12/18/

2012).

The bio-optical sensor suite on the float measured proxies of

phytoplankton abundance (chlorophyll fluorescence), total particle

concentration (optical backscattering), and dissolved organic

matter (CDOM fluorescence). Calibration of the sensors (serial

# FLBBCDAP2-2140) was performed by the manufacturer (WET

Labs, Inc.) prior to shipping for installation on the floats. Dark

counts were determined by the manufacturer using the signal

output of the sensor in clean water with black tape over the

detector. Sensor scaling factors were determined for each sensor

using appropriate standards (i.e., a mono-culture of phytoplankton

for chlorophyll fluorescence, microspherical beads for backscat-

tering, and a quinine sulfate dihydrate solution for CDOM

fluorescence). A separate field characterization was not performed

on the sensors and thus, it is possible that some variation from the

dark counts and scale factors determined by the manufacturer may

have occurred due to factors in the field. Data from each of the

sensors, output in counts, was converted to engineering units using

the laboratory calibrations, resulting in chlorophyll concentration

(Chl; mg l21), the volume scattering function at a centroid angle of

140u and a wavelength of 700 nm (b(140u, 700 nm); m21 sr21),

and CDOM concentration (ppb). Volume scattering data

contained significant spikes (perhaps associated with particulate

aggregates), and the data was despiked by applying a 3-point

running minimum filter followed by a 3-point running maximum

filter to separate spikes from the baseline, similar to Briggs et al.

[16]. The volume scattering function of seawater, bsw(140u,
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700 nm) was calculated following Zhang et al. [17] and subtracted

from b(140u, 700 nm) to yield the scattering due to particles,

bp(140u, 700 nm), which was converted to integrated particulate

backscattering, bbp(700 nm), according to:

bbp 700ð Þ~2pxbp 1400,700nmð Þ

where x=1.132 for this optical configuration (James Sullivan

[WET Labs, Inc.], personal communication). While the instru-

ments were not re-calibrated during the deployment, sensor drift

was considered to be relatively small given the observed temporal

stability of sensor output in the field. For example, at a reference

depth of 400 m where low variability was generally observed in

optical properties, only small differences were observed between

the first and second half of the deployment (differences for Chl,

bbp, and CDOM of 0.006 mg l21, 661026 m21, and 0.01 ppb,

respectively).

Analyses in silico were performed to describe observed

variability in the bio-optical datasets, including comparison to

the physical datasets collected. In addition to temperature (T) and

salinity (S) measured by the float, an ancillary dataset of sea surface

height anomalies (SSHA) was also employed. For the period

corresponding to float deployment, SSHA fields were determined

from remotely-sensed altimetric data obtained from the Colorado

Center for Astrodynamics Research (CCAR, courtesy of Robert

Leben). The criterion used for LC waters was defined as SSHA $

17 cm [18]. All analyses of physical and bio-optical datasets,

including creation of figures, were performed using the MATLAB

software package (The MathWorks).

Results and Discussion

Float physical and remote sensing data indicated the various

unique water masses sampled, including Loop Current and

Florida Straits waters. Over all float measurements, temperatures

and salinities ranged between 4.2–31.2uC and 34.8–36.9 psu,

respectively (Fig. 1B). Float temperature and salinity data

compared well to historical data from the Hidalgo (1962) cruise

in the GOM [19], showing the same distinctive T-S relationship.

Profiles were often associated with the LC in the upper layer,

especially over the Florida Plain, demonstrating unique T-S

characteristics, which were distinct from other profiles. In

particular, the LC was associated with the maximum temperatures

sampled in surface waters, and generally defined the outer

envelope of the T-S diagram (Fig. 1B). In contrast, waters in the

Florida Straits typically did not retain the unique LC signature and

rather defined the inner envelope of the T-S diagram, likely due to

mixing with ambient waters (Fig. 1B). In the realm below ,17uC,
deeper waters had highly uniform physical properties, fitting a

tight T-S relationship. The interaction of the float with the LC was

also apparent through comparison with altimetry data, with

several crossings of the LC boundary observed, especially during

the first part of the deployment in deep waters over the Florida

Plain (Fig. 2). Values of SSHA, matched up to float surfacings,

ranged from a minimum of 214 cm on September 3rd, 2011 to a

maximum of 58 cm on October 9th, 2011.

During the sampling period, variable chlorophyll concentrations

contributed evidence supporting a heterogenous picture of deep

Gulf of Mexico oligotrophic waters, as punctuated by spatial hot

spots and temporal peaks in biomass. The majority of variability in

Chl occurred in the upper water column (above 200 m; Fig. S2A)

where concentrations ranged from 0.01 to 2.38 mg l21. Average

values observed near-surface (0.1460.09 mg l21; Fig. 3A) were

similar to those previously reported in offshore GOM waters

[13,20]. However, the highly-resolved float measurements dem-

onstrated a greater degree of variability in Chl, with concentra-

tions in the Deep Chlorophyll Maximum (DCM) on average 10

times higher than at the surface, and as much as 30–40 times

higher in some locations. The DCM ranged in depth from 30 to

120 m (Fig. 3A), with the average depth greater in deep GOM

waters (91618 m) versus in the Florida Straits (65618 m).

Notably, the depth of the DCM approximately doubled as the

float twice moved from outside to inside the LC during the first

five months of the deployment (Figs. 2, 3A), indicative of a deeper

Figure 1. Map of float surface position in the Gulf of Mexico and T-S diagram for the deployment. (A) Float surface position, starting
with its deployment on July 19th, 2011 and showing each surfacing (circles), until its last useful profile on December 18th, 2012. Note that profiles are
not evenly spaced in time (see Methods). (B) T-S diagram for the float deployment demonstrating characteristic shape for the GOM, including profiles
associated with the LC, Florida Straits, and all other water masses sampled. The T-S relationship compares well with an example profile from the
historic Hidalgo (1962) cruise.
doi:10.1371/journal.pone.0101658.g001

Bio-Optical Variability in the Deep Gulf of Mexico

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e101658



nitracline in the LC compared to ambient waters [13]. Pycnocline

shoaling and resulting subsurface upwelling events offshore of the

Southwest Florida Shelf punctuated surface Chl with relatively

high values, such as in the deep GOM during 8/29-9/3/2011 and

in the Florida Straits during 12/17/2011–2/12/2012 when

surface Chl reached ,0.3–0.4 mg l21 (Fig. 3A). Across the entire

deployment, DCM depth was highly correlated to the depth of the

density layer r=1023.6 (Fig. 4a; R2=0.62, p,0.001), which

corresponded to a mean temperature of 25.4uC and salinity of

36.4 psu and roughly to the depth of the pycnocline (Fig. S4).

As an indicator of the total particulate pool, backscattering

demonstrated significant complexity throughout the water column,

with contributions from diverse particle types. Natural particle

assemblages contain a range of living and non-living particles,

which can all contribute to optical backscattering in the ocean,

depending on their composition and size distribution, including

phytoplankton, heterotrophic organisms (mostly bacteria), viruses,

detritus, and minerals [21–22]. While backscattering often peaked

with chlorophyll (Figs. 4b, S3), it also demonstrated high values at

other depths in the water column, indicative of the unique

dynamics of the total particulate pool (Fig. 3B). Across the entire

float deployment, peak particle concentrations typically occurred

at the following depths: (1) coincident with chlorophyll peaks in the

upper layer (Fig. 5A), (2) just below the DCM (Fig. 5A), (3) in a

surface layer (Fig. 5B), (4) at intermediate depths (200 to 1000 m;

Fig. 5C), and (4) near-bottom (Fig. 5D). Elevated bbp values in the

upper water column (above 200 m) often occurred at the same

locations as high values of chlorophyll (Figs. 5A, S3A–B), as

evidenced by the significant relationship between bbp and Chl

(Fig. 4b; R2=0.49, p,0.001). The smaller observed slope between

bbp and Chl for most of the dataset (Chl.0.03 mg m23) compared

to other oceanic regimes (Fig. 4B, [23]), suggests a lower

backscattering efficiency for phytoplankton and associated parti-

cles in the GOM due to differences in particle size distribution

and/or composition. As indicated by ocean color imagery,

anomalously high bbp on July 30th, 2012 (Fig. S3b, 4b) appears

to have been linked to a plume of terrigenous origin advected

offshore into the float’s path, introducing a water mass with a

significantly different particulate and dissolved composition.

Future studies analyzing individual particle characteristics, in

addition to bulk optical properties [22], would contribute better

understanding of the roles that distinct particle types and

characteristics play in determining the optical field in deep

GOM waters.

In the oligotrophic waters of the open Gulf of Mexico, the deep

chlorophyll maximum and associated biological community play a

significant ecological role in structuring the food web. Evidence

presented here demonstrates consistently elevated chlorophyll

concentrations at depth in the Southeastern GOM (Fig. 3A), and

an associated particle assemblage as evidenced by high backscat-

tering values (Fig. 4B). These hot spots of chlorophyll and related

primary production occur where nutrient availability is locally

enhanced, such as at the pycnocline depth, and are a significant

contributor to water column primary production, recently

estimated at a median value 0.28 gC m22 d21 for the open Gulf

[24]. On an areally-integrated basis, this median estimate resulted

in the open Gulf having a larger regional primary production

budget than the shallower Gulf regions (i.e., West Florida Shelf,

Louisiana Shelf, Texas Shelf, and Mexican Shelf). In terms of the

carbon pump, the net result of physical and biological factors in

the open Gulf is such that it is also one of the largest net sinks of

CO2 of all Gulf regions, estimated at 20.48 mol C m22 y21 [25].

The export of organic matter (marine snow) from this biological

pump in the open GOM helps support a diverse benthic habitat of

bacteria, meiofauna, megafauna, fishes, and deep water corals

[26–27]. In addition to phytoplankton, productivity hot spots are

also associated with higher stocks of zooplankton and micronekton

in the deepwater GOM [20,28]. Grazing of algal cells by

zooplankton may be responsible for pheophytin peaks observed

in previous studies just below the chlorophyll maxima, and thus,

Figure 2. Example comparisons of SSHA fields to float surfacing locations on four dates. (A) July 20th, (B) August 17th, (C) September 3rd,
and (D) October 9th, 2011. The float location (blue star) is identified relative to the Loop Current boundary, as determined by the 17-cm isopleth (thick
black line).
doi:10.1371/journal.pone.0101658.g002
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may explain the bbp peaks observed in the present study just below

the DCM (Fig. 5A). Virus and bacterial concentrations can also be

highly correlated with chlorophyll in the oligotrophic southeastern

GOM [29]. Together, the association with phytoplankton of these

diverse particle types likely contributed to the high backscattering

signal observed in and around the DCM in the present work.

In the lower layer of the water column, backscattering often

peaked in deep scattering layers (DSL) and demonstrated highest

values near-bottom. The majority of profiles contained backscat-

tering peaks in DSL between 200 to 1,000 m, with layer thickness

ranging from 109s to 100’s of meters (e.g., Figs. 3B, 5C). These

layers may have contributions from a variety of sources, including

aggregations of zooplankton and micronekton at depth, as

previously observed using acoustics in other parts of the GOM

[30], and/or horizontal advection of particles seaward from the

continental slope [31]. Zooplankton and related particles are a

Figure 3. Contour plots demonstrating spatiotemporal variability in bio-optical float profiles. (A) Chl, (B) bbp, and (C) CDOM. Note
difference in vertical axes for Chl (upper 200 m) versus bbp and CDOM (entire depth profile) to emphasize depth zones of maximum variability. For
reference, the density layer r=1023.6 is shown in panel A (black line) with sample times (black dots), and bottom depth is shown in panels B and C
(shaded grey). The times corresponding to SSHA imagery in Fig. 2 are indicated in panel A (white dashed lines) to show float location relative to the
LC boundary.
doi:10.1371/journal.pone.0101658.g003

Figure 4. Bio-optical and bio-physical relationships determined based on float profile dataset. (A) depths of DCM vs. density layer
r= 1023.6, (B) Chl vs. bbp in the upper 200 m, and (C) CDOM vs. potential density over the entire water column. In panel B, comparison is shown to
results from the algorithm of Morel and Maritorena ([23], dashed line) [2001]. The anomalously high bbp values correspond to the float profile from
July 30th, 2012, during which time a plume of terrigenous origin was advected offshore into the float’s path.
doi:10.1371/journal.pone.0101658.g004
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likely explanation, especially for profiles in deeper waters away

from the slope, and are indicative of a potential prey source for

higher trophic levels, including cetaceans, which frequent these

waters. Due presumably to contributions from non-living particles,

the highest values of bbp occurred near the bottom as the float

profiled into shallower waters and close to the maximum water

depth (Fig. 3B, 5D), with values as high as 0.01–0.05 m21. These

high near-bottom bbp values are indicative of either natural

resuspension in a bottom nepheloid layer or resuspension by the

float itself landing on the bottom and disturbing the top sediment

layer, while it sat at the bottom in shallower depths between

profiles. However, the latter possibility of resuspension by the float

landing would likely have been localized in space and would not

explain the high backscattering observed 100’s of meters above the

bottom (e.g., Fig. 5D). If natural resuspension is the cause, then

these measurements indicate currents strong enough at the

bottom, at depths of 700–1,200 m, to resuspend particulate

matter. Such resuspension events in this region are plausible given

the predominance of mud as a bottom type [32] and maximum

near-bottom current speeds of 40–60 cm s21 (unpublished data

from BOEM ‘‘Loop Current Dynamics Study’’). However, the

true cause of high bottom backscattering would need to be further

investigated in the future to remove the potential for sampling

artifacts. Further bottom boundary layer experiments could also

help elucidate environmentally-relevant mass (sediment) flows and

net fluxes of resuspended materials. Based on previous research, it

is most likely that the dense water of these particle-laden lower

layers in the Florida Straits cannot pass through the shallower

sections further downstream [33].

In the upper water column and near-bottom, vertical variability

in CDOM profiles demonstrated the various biological and

physical sources and sinks that can impact this optically-active

dissolved organic matter pool, including autochthonous produc-

tion, photobleaching, and resuspension. The fast turnover, most

bioavailable forms of dissolved organic carbon occur in the surface

ocean, in contrast to the longer-lived and more recalcitrant

materials which circulate in deep oceanic waters [34]. In the open

ocean, possible sources of CDOM production include excretion by

organisms, viral lysis, and remineralization of sinking particulate

matter, which variously contribute to both the deep CDOM

reservoir and mixed layer CDOM; the major sink in the latter is

photobleaching as controlled by irradiance and mixed layer depth

[35–36]. Across all profiles in our dataset, CDOM was lowest in

surface waters ranging from 0.3 to 1.9 ppb (Fig. 3c, S3c), with

photobleaching as the major sink in the upper mixed layer,

especially during the non-winter months when the water column

was more stratified. Similarly, low CDOM has previously been

reported in surface Sargasso Sea waters, where stratification and

high solar radiation levels lead to bleaching countering local

production of CDOM [37]. The high vertical resolution in our

profiles did provide evidence of localized contributions from

autochthonous production, with CDOM peaks in the upper layer

Figure 5. Float profiles exemplifying depth trends and peaks in bbp, Chl, CDOM, and potential density (PotDens). Examples each are
provided of bbp peaks at the following depths: (A) coincident with and just below the DCM, (B) in a surface layer, (C) at intermediate depths (700 to
900 m), and (D) near-bottom. In panels A and B, only the upper 200 m of the profiles are shown to emphasize the region of maximum variability in
bbp.
doi:10.1371/journal.pone.0101658.g005
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corresponding to peaks in particles. For example, more than half

of the profiles clearly demonstrated CDOM peaks co-occurring

with elevated chlorophyll concentrations (e.g., Fig. 5B–D), and

occasionally coinciding with bbp peaks as well. A steep increase in

CDOM of 2–6x was observed between the surface and the

pycnocline (Fig. S3c), with such increases also observed in the

Sargasso Sea [37]. In our dataset, highest CDOM values were

observed near-bottom, reaching a maximum of 4.0 ppb (Fig. 3C),

presumably corresponding to resuspension events, though sam-

pling artifacts again can not be ruled out. In New England shelf

waters, Boss et al. [38] collected data supporting that bottom

sediments can act as a source of dissolved organic carbon during

sediment resuspension events. However, this is the first time

measurements have suggested this phenomenon in deep GOM

waters.

At intermediate depths and greater, changes in CDOM were

largely consistent with physical mixing and water mass distribu-

tions, suggesting its utility as a semi-conservative tracer at depth in

the Gulf of Mexico. CDOM concentrations in deep GOM waters

roughly followed the same depth patterns previously observed for

nutrients, such as nitrate and phosphate [39], in each of the

primary deep water masses, which include: 18uC Sargasso Sea

water (depths 200–400 m), Tropical Atlantic Central water

(TACW, depths 400–700 m), Antarctic Intermediate Water

(AAIW, depths 700–1,000 m), and Upper North Atlantic Deep-

water (UNADW, depths ,1,000 m and greater) [19]. Below

200 m, CDOM continued to increase with depth to 1,000 m,

though with a much smaller rate of change than in the upper

water column; below 1,000 m, CDOM was approximately

constant with depth (Fig. 6). Average CDOM concentrations

equaled the following values in each of the water masses: 2.5 ppb

in 18uC Sargasso Sea water, 2.7 ppb in TACW, 3.0 ppb in AAIW,

and 3.1 ppb in UNADW. Below 200 m, CDOM concentrations

were strongly and positively related to potential density (R2=0.87,

p,0.01; Fig. 4c) and temperature (R2=0.81; not shown),

indicating physical mixing as an important determinant of

variability and the role of CDOM as a semi-conservative

oceanographic tracer in GOM deep waters. Past studies in the

North Atlantic have supported the potential of CDOM as a tracer

of ocean circulation processes for subducted water masses [35],

and our present results lend evidence for a similar role in the Gulf

of Mexico.

During and following the Deepwater Horizon oil spill, a ship-

based dataset of CDOM fluorescence was collected in the

northcentral Gulf of Mexico in order to track the presence of

the subsurface hydrocarbon plume. This dataset spanned the time

period from just after the oil spill started until several months after

the well was capped (May to October, 2010, [40]). While those

CDOM profiles were generally in a similar range of values and

demonstrated a similar depth increase to our dataset, many of the

profiles showed large spikes in CDOM at depths of ,800–

1,200 m corresponding to the presence of the subsurface

hydrocarbon plume [41]. However, as expected given the location

of the present float dataset ($400 km to southwest of spill site) and

length of time since the oil spill ($1 year), the deepwater

hydrocarbon fluorescence anomaly evidenced in the oil spill

dataset was not present in this float data. During future oil spill

events, bio-optically equipped profiling floats could prove a useful

tool for improved detection of subsurface hydrocarbon plumes, in

addition to traditional ship-based measurements.

Conclusions

We observed highly dynamic biogeochemistry in both the

particulate and dissolved matter pools in deep waters of the

southeastern Gulf of Mexico, using an APEX profiling float

equipped with bio-optical sensors. Understanding such variability

in the open ocean is important because the particulate and

dissolved pools play a key role in determining underwater light

availability and the resulting impact on biogeochemical cycling. As

well, in deeper layers of the water column, bio-optical variability

provides insight into the various oceanographic and biological

processes at play. However, there are few previous examples of

deepwater bio-optical studies in the Gulf of Mexico, in comparison

to numerous studies in shallow and shelf regions [42–44]. The

present study demonstrated complex variability in the particulate

matter pool in deep GOM waters, as measured by chlorophyll

fluorescence and optical backscattering (bb (700 nm)), with peaks

observed at various depths throughout the water column. This

dataset provided evidence for a dynamic DCM in the GOM

impacted by mesoscale processes, as well as evidence for the

formation of deep scattering layers between 200–1,000 m, likely of

biological origin, and the potential importance of sediment

resuspension at depths .500 m. As well, backscattering was

significantly related to chlorophyll concentration in the upper

water column (Fig. 4B), a parameterization which could improve

ocean color, satellite-based retrievals of phytoplankton biomass, as

it has in other oceanic regimes [45].

Additionally, the present study provided evidence of the

important role that water column density structure, as impacted

by water mass variability and vertical mixing, plays in structuring

both particulate and dissolved concentrations in the deep GOM in

addition to other processes (e.g., photo-oxidation, autochthonous

production, grazing, etc.). While previous studies have suggested

such a role in the GOM [28], the large number of observations

afforded by the present float deployment allowed actual param-

Figure 6. CDOM from all float profiles overlaid with the major
Gulf of Mexico water masses below 200 m. The primary deep
water masses include: 18uC Sargasso Sea water (200–400 m), Tropical
Atlantic Central water (TACW, 400–700 m), Antarctic Intermediate
Water (AAIW, 700–1,000 m), and Upper North Atlantic Deepwater
(UNADW, ,1,000 m and greater) [19]. Mean CDOM values for all
profiles is indicated (solid black line). Note that all CDOM .3.5 ppb
were removed from this figure and associated mean, to remove
anomalies due to high near-bottom values.
doi:10.1371/journal.pone.0101658.g006
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eterization of the relationships of both chlorophyll and CDOM

versus water column density (Fig. 4), including in the wintertime

when ship-based measurements are typically rare. Such relation-

ships could significantly improve the current emerging generation

of Gulf-wide coupled, biogeochemical models, which aim to

capture the spatiotemporal variability in particulate and dissolved

matter pools [46–47]. For example, the present float measure-

ments help fill an important deepwater gap in model validation

data, with the predominance of data currently in shallow waters,

such as the Louisiana-Texas shelf [47].

The emerging role of autonomous underwater vehicles (AUVs)

promises to be a critical asset in future ocean observing systems, as

they provide economical, long-term deployments and measure-

ments at unprecedented resolution. As well, such autonomous

platforms allow for sampling during high-wind periods, when

traditional oceanographic methods are impracticable. The present

study demonstrates the utility and feasibility of optically-equipped

profiling floats for providing new understanding of biogeochemical

processes in deep GOM waters, at a critical time for the future of

ocean observing in this region. Following the Deepwater Horizon

oil spill, in 2012 the U.S. Congress passed the RESTORE Act,

which was created to invest oil spill funds into recovering GOM

ecosystems that were affected by the disaster. Marine ecosystem

monitoring is amongst the activities that can be funded by this

legislation, with the oil spill having acutely demonstrated the need

for improved oceanographic observing systems [48]. Looking

towards the future, our research lends support to the use of

autonomous drifting profilers as a powerful tool for consideration

in the design of such an integrated observing network for the Gulf

of Mexico.

Supporting Information

Figure S1 Picture of APEX float being deployed in the
Gulf of Mexico. The antenna and pumped CTD are located at

the top of the float, whereas the optical sensors are located near

the bottom of the instrument (Photo Credit: CANEK group,

CICESE).

(TIF)

Figure S2 Contour plots of bio-optical profiles over the
entire depth range the float transited. (A) Chl, (B) bbp, and

(C) CDOM. Bottom depth is shown for reference (shaded grey).

Note that profiles are not evenly spaced in time (see Methods).

(TIF)

Figure S3 Contour plots of bio-optical profiles for the
upper 200 m to emphasize upper-water column dynam-
ics. (A) Chl, (B) bbp, and (C) CDOM. The reference density layer

r=1023.6 is shown (black line). Note that profiles are not evenly

spaced in time (see Methods). The times corresponding to SSHA

imagery in Fig. 1 are indicated in panel A (white dashed lines) to

show where the float was located relative to the LC boundary.

(TIF)

Figure S4 Comparison of two physical-mixing indica-
tors: the depth of the density layer r=1023.6 and
pycnocline depth. The pycnocline depth was calculated for

each profile based on the maximum gradient in density in the

upper 300 m of the water column.

(TIF)

Dataset S1 Float data used in this analysis. Text file

contains the following columns: year, month, day, depth (m), T

(uC), S (psu), Chl (mg l21), bbp (m
21), and CDOM (ppb).

(TXT)
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