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Abstract: (1) Background: With new potential drug targets emerging, combination therapies ap-
pear attractive to treat non-alcoholic steatohepatitis (NASH) and fibrosis. Chemokine receptor
CCR2/5 antagonists can improve fibrosis by reducing monocyte infiltration and altering hepatic
macrophage subsets. Fibroblast growth factor 21 (FGF21) may improve NASH by modulating lipid
and glucose metabolism. We compared effects of single drug to combination treatment as thera-
peutic strategies against NASH. (2) Methods: We analyzed serum samples and liver biopsies from
85 nonalcoholic fatty liver disease (NAFLD) patients. A CCR2/5 inhibitor (BMS-687681-02-020) and
a pegylated FGF21 agonist (BMS-986171) were tested in male C57BL/6J mice subjected to dietary
models of NASH and fibrosis (choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) up to
12 weeks; short- (2w) or long-term (6w) treatment). (3) Results: In NAFLD patients, chemokine CCL2
and FGF21 serum levels correlated with inflammatory serum markers, only CCL2 was significantly
associated with advanced liver fibrosis. In rodent NASH, CCR2/5 inhibition significantly reduced
circulating Ly6C+ monocytes and hepatic monocyte-derived macrophages, alongside reduced hepatic
inflammation and fibrosis. FGF21 agonism decreased body weight, liver triglycerides and histological
NASH activity. Combination treatment reflected aspects of both compounds upon short- and long-
term application, thereby amplifying beneficial effects on all aspects of steatohepatitis and fibrosis.
(4) Conclusions: CCR2/5 inhibition blocks hepatic infiltration of inflammatory monocytes, FGF21
agonism improves obesity-related metabolic disorders. Combined therapy ameliorates steatohepatitis
and fibrosis more potently than single drug treatment in rodent NASH, corroborating the therapeutic
potential of combining these two approaches in NASH patients.

Keywords: macrophages; monocytes; treatment strategies; chemokines; inflammation; fibroblast
growth factor (FGF); nonalcoholic steatohepatitis (NASH); fibrosis; nonalcoholic fatty liver disease
(NAFLD); metabolism
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is still increasing in prevalence and is
the most common liver disease worldwide [1]. Metabolic syndrome caused by “Western
lifestyle” with its key characteristics obesity, lipometabolic disorder, impaired glucose
tolerance, insulin resistance and type 2 diabetes is growing alongside, constituting a ma-
jor risk for the development of NAFLD [2]. The term NAFLD covers different entities
such as non-alcoholic fatty liver (NAFL) and its inflammatory form non-alcoholic steato-
hepatitis (NASH). Chronic inflammatory processes result in liver fibrosis and ultimately
liver cirrhosis, which is associated with a risk for developing hepatocellular carcinoma
(HCC) [3]. Liver fibrosis appears to be the dominant predictor of disease-specific mortality
in NAFLD [4–7]. Over the last years, translational and clinical studies have identified many
potential drug targets including metabolic, inflammatory and cell death pathways [2,8,9].
Nevertheless, at present, available data indicate a limited efficacy of single compounds in
treating patient-relevant endpoints in NAFLD [10]. In the interim analysis of a phase III
clinical trial, high-dose obeticholic acid was able to improve liver fibrosis without wors-
ening NASH, showing at least a 1-point improvement in key features of liver histology
scoring, in only 23% of patients as compared to 12% in placebo controls [11]. Combining
drugs with different targets could be a promising strategy to increase efficacy of NAFLD
treatment, particularly for “difficult-to-reach” endpoints such as fibrosis regression [2,9].

Among the potential targets in NAFLD, myeloid liver cells display a functionally dis-
tinct, inflammatory phenotype [12–14]. In mice, pharmacologically targeting the chemokine
(C-C motif) ligand 2 (CCL2)—chemokine receptor (C-C motif) 2 (CCR2) pathway reduces
monocyte infiltration and accumulation of monocyte-derived macrophages (MoMF) into
the injured liver [15,16]. Modulation of the hepatic macrophage pool finally results in ame-
lioration of liver fibrosis and steatohepatitis in mouse models [17]. In a phase II clinical trial
in NASH patients (n = 289), the dual CCR2/CCR5 inhibitor cenicriviroc has demonstrated
anti-fibrotic efficacy after one year of treatment [18]. However, the treatment benefit did not
remain significant over two years of cenicriviroc therapy [19], and the further development
of the drug in this indication has been terminated due to lack of clear efficacy signals of
cenicriviroc monotherapy upon interim analysis of a phase III clinical trial [20].

Among the potential metabolic targets in NAFLD, fibroblast growth factor 21 (FGF21)
is a systemically circulating and liver-derived hormone achieving organ specificity by
the tissue distribution of the FGF receptor and its co-receptor β-Klotho, which is mainly
expressed in hepatic and adipose tissue [21,22]. In contrast to other members of the
FGF superfamily, FGF21 acts in both a paracrine and endocrine manner, as it does not
bind to heparan sulfate [23]. FGF21 displays multiple metabolic effects. As such, FGF21
agonism has been shown to reverse hepatic fat infiltration, with additional effects on
insulin sensitivity, mediated by increased glucose uptake in adipocytes [24]. In mice, FGF21
administration has been shown to increase fatty acid oxidation and lower blood glucose as
well as triglyceride levels protecting animals from diet induced obesity and diabetes [25,26].
The PEGylated human analogue pegbelfermin (BMS-986036) reduced hepatic fat content
and improved other surrogate measures of NASH and metabolic markers in a phase II
trial in NASH patients [27]. The FALCON program investigated efficacy and safety of
pegbelfermin in patients with NASH and stage 3 fibrosis (FALCON1, ClinicalTrials.gov
Identifier NCT03486899) as well as compensated NASH cirrhosis (FALCON2, ClinicalTrials.
gov Identifier NCT03486912). Although primary endpoints were not met for either study, in
stage 3 fibrosis improvements in biopsy-assessed fibrosis and NAFLD activity score (NAS)
were observed. Improvements in non-invasive surrogate markers (liver fat, inflammation
and fibrosis) were observed upon pegbelfermin treatment in both studies [28–30].

In the pathogenesis of steatohepatitis and liver fibrosis, not one single pathway is dys-
regulated, but multiple events combine in the disease pattern of NAFLD [31–33]. Therefore,
as new potential drug targets emerge, combination therapies could possibly bring advan-
tages over single drug treatments and/or sustain therapeutic benefits [32]. A particularly
promising option appears to be the combination of antifibrotic and metabolic drugs [34].

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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In this study, we explored the therapeutic efficacy of CCR2/5 inhibition and FGF21
agonism using two novel pharmacological compounds in mouse models of liver injury
and NASH. Our data suggest beneficial and even additive effects by combining these drug
treatments, mandating clinical studies of combination therapies in patients with NASH
and liver fibrosis.

2. Results
2.1. CCL2 and FGF21 Serum Levels Correlate with Different Aspects of Human NAFLD

In order to establish the relevance of targeting CCR2/CCL2 and FGF21 in humans,
we analyzed serum CCL2 and FGF-21 levels in 85 patients with biopsy-confirmed NAFLD.
CCL2, also called monocyte chemoattractant protein-1 (MCP-1), is expressed and secreted
by various hepatic cells during fibrosis progression, as shown in mouse models as well as
human patients [35,36]. FGF21 is synthesized and secreted from the liver and has multiple
metabolic effects [24]. Deficient or aberrant FGF21 is associated with NAFLD/NASH,
and elevated FGF21 serum levels correlate with hepatic fat content in mice and humans
(reviewed in [37]). Patients in our cohort were classified as having non-alcoholic fatty liver
(NAFL; n = 31) or non-alcoholic steatohepatitis (NASH; n = 54), based on liver biopsies
evaluated by an expert pathologist (Supplementary Table S1) and supported by clinical
and biochemical patient characteristics (Table 1). Fibrosis was absent, mild or moder-
ate (F0-F2) in 73 patients, while 12 patients had progressed to advanced fibrosis (F3-F4).
CCL2 serum levels were significantly elevated in NAFLD patients with advanced fibrosis
compared to those without (p < 0.001), and also correlated with advanced fibrosis (F3-4 fibro-
sis based on histopathology and FIB-4 score) (Figure 1A,C; Supplementary Figure S1A,C;
Supplementary Table S2). On the other hand, CCL2 levels were not significantly associ-
ated with NASH activity (NAS, GGT, AST) (Figure 1A,C; Supplementary Figure S1A,C;
Supplementary Table S2). These associations were principally found in male and female
patients but did not reach significance in females due to the lower number of advanced
disease stages in females in our cohort (Supplementary Figure S1A). FGF21 serum levels
did not correlate with the stage of fibrosis in the whole cohort, nor did CCL2 concentrations
correlate with FGF21 serum levels (Figure 1B,D; Supplementary Figure S1B). However,
FGF21 was associated with biomarkers of steatohepatitis (CK-18 fragment M30, GGT, AST)
(Figure 1E). In multivariate analysis, the association between advanced fibrosis (F3-F4) and
CCL2 levels remained significant (p = 0.017) after adjusting for the AST/ALT ratio and
presence of type 2 diabetes, which were the only other factors independently associated
with advanced fibrosis in our cohort (Supplementary Table S3). In conclusion, these data
indicate differing roles for CCR2-CCL2 and FGF21 pathways in the pathogenesis of liver
fibrosis and chronic steatohepatitis in human NAFLD, corroborating the potential distinct
benefits of pharmacological targeting each pathway.

Table 1. Patient characteristics.

Characteristic NAFL (n = 31) NASH (n = 54)

Age, years 44 (30–49) 49 (40–59)
Sex (male/female) 24/7 41/13

BMI, kg/m2 41.5 (39.4–45.6) 38.5 (34.9–42.8)
Type 2 diabetes, presence 6 (19.4) 30 (55.5)

Triglycerides, mg/dL 170 (124–199) 185 (142–257)
Total Cholesterol, mg/dL 182 (157–207) 169 (137–220)
Thrombocytes, ×103/µL 241 (210–274) 219 (195–267)
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Table 1. Cont.

Characteristic NAFL (n = 31) NASH (n = 54)

AST, U/L 24 (22–30) 33 (25–51)
ALT, U/L 36 (30–49) 46 (32–75)
GGT, U/L 29 (19–45) 50 (28–110)

CCL2, pg/mL 342.8 (267.0–400.3) 349.5 (291.0–451.8)
FGF-21, pg/mL 265.6 (156.4–573.1) 296.4 (189.8–587.3)
CK-18 M30, U/L 252.7 (184.0–340.4) 270.9 (177.7–480.0)

Results are expressed as mean ± SD or median (interquartile range) for continuous variables, depending on the
normality of the distribution, and n (%) for categorical variables. ALT: Alanine Aminotransferase; AST: Aspartate
Aminotransferase; BMI: body mass index; CCL2: chemokine (C-C motif) ligand 2; CK-18 M30: cytokeratin-18
M30 fragments; FGF-2: fibroblast growth factor 21; GGT: γ-glutamyltransferase.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW  4  of  18 
 

 

Thrombocytes, ×103/μL  241 (210–274)  219 (195–267) 

AST, U/L  24 (22–30)  33 (25–51) 

ALT, U/L  36 (30–49)  46 (32–75) 

GGT, U/L  29 (19–45)  50 (28–110) 

CCL2, pg/mL  342.8 (267.0–400.3)  349.5 (291.0–451.8) 

FGF‐21, pg/mL  265.6 (156.4–573.1)  296.4 (189.8–587.3) 

CK‐18 M30, U/L  252.7 (184.0–340.4)  270.9 (177.7–480.0) 

Results are expressed as mean ± SD or median (interquartile range) for continuous variables, de‐

pending on the normality of the distribution, and n (%) for categorical variables. ALT: Alanine 

Aminotransferase; AST: Aspartate Aminotransferase; BMI: body mass index; CCL2: chemokine 

(C‐C motif) ligand 2; CK‐18 M30: cytokeratin‐18 M30 fragments; FGF‐2: fibroblast growth factor 

21; GGT: γ‐glutamyltransferase. 

 

Figure 1. Correlation of CCL2 and FGF21 serum levels with severity of human NAFLD. Serum sam‐

ples were obtained from patients with biopsy‐proven NAFLD (n = 85). (A,B) CCL2 and FGF‐21 se‐

rum levels measured by ELISA and correlated with histologically assessed severity of liver fibrosis 

and steatohepatitis.  (C,D) Correlation of CCL2 serum concentrations with biomarkers of  fibrosis 

(FIB‐4 and GGT) and FGF‐21 serum levels. (E) Association of FGF‐21 serum levels with biomarkers 

of steatohepatitis (CK‐18 fragment M30, GGT and AST). ns = non‐significant, *** p < 0.001 (unpaired 

Student t test in (A,B) Spearman’s r and p‐values of linear correlation analysis in (C–E)). 

Figure 1. Correlation of CCL2 and FGF21 serum levels with severity of human NAFLD. Serum
samples were obtained from patients with biopsy-proven NAFLD (n = 85). (A,B) CCL2 and FGF-21
serum levels measured by ELISA and correlated with histologically assessed severity of liver fibrosis
and steatohepatitis. (C,D) Correlation of CCL2 serum concentrations with biomarkers of fibrosis
(FIB-4 and GGT) and FGF-21 serum levels. (E) Association of FGF-21 serum levels with biomarkers
of steatohepatitis (CK-18 fragment M30, GGT and AST). ns = non-significant, *** p < 0.001 (unpaired
Student t test in (A,B) Spearman’s r and p-values of linear correlation analysis in (C–E)).
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2.2. Combination Therapy by Dual CCR2/CCR5 Inhibition and FGF21 Agonism Ameliorates
Steatohepatitis and Fibrosis More Effectively than Single Drug Treatment

In mice and humans, infiltration of monocytes and accumulation of MoMF into the
chronically injured liver can be inhibited by CCR2/5 antagonists [15,17], while fibrob-
last growth factor 21 (FGF21) can ameliorate pathogenic drivers of NASH and fibrosis
by affecting lipid and glucose metabolism [22,26]. To evaluate therapeutically targeting
those pathways we employed the choline-deficient, L-amino acid-defined, high-fat diet
(CDAHFD) liver injury model to induce steatohepatitis and liver fibrosis over a total pe-
riod of 12 weeks and started pharmacological treatment at week 7 over the last 6 weeks
(Figure 2A). Target engagement for efficient pharmacologic inhibition of CCR2 and CCR5
was confirmed by elevated levels of CCL2 and CCL5 (i.e., the respective ligands) in the
serum (Supplementary Figure S2E). Both, vehicle and compound treatment were very well
tolerated—no mouse had to be ruled out from the study groups. Control animals showed a
continuous weight gain over time, while we observed a model specific, initial weight loss
followed by stabilization of the bodyweight to baseline levels in CDAHFD fed mice. In
comparison to vehicle groups, mice that received PEG-FGF21v demonstrated moderate
weight loss, as anticipated, unlike CCR2/5 inhibitor-treated mice. Combination treatment
showed additive effects, as mice displayed the lowest bodyweight overall (Figure 2B).
Inhibition of CCR2/CCR5 was accompanied by significantly reduced infiltration of hepatic
macrophages (Figure 2C,I), serum alanine transaminase (ALT) levels (Figure 2D) and liver
fibrosis (Figure 2C,E). Assessment of the NAFLD activity score (NAS) components revealed
beneficial effects of FGF21 administration on hepatic steatosis, which was confirmed by a
lower hepatic triglyceride content, while CCR2/5 inhibitor treatment was associated with
reduced lobular inflammation (Figure 2B,E,F). Whereas an ALT decrease was observed
following PEG-FGF21v treatment, liver fibrosis was mainly mitigated by CCR2/5 inhibition
(Figure 2C–E).
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Figure 2. Combination therapy by dual CCR2/CCR5 inhibition and FGF21 agonism ameliorates
steatohepatitis and fibrosis more effectively than single drug treatment. (A) Pharmacologic treatment
with CCR2/CCR5 inhibitor (CCR2/5i) and/or PEG-FGF21 variant (FGF21v) was conducted over
the last 6 weeks of 12 weeks CDAHFD (choline-deficient, amino acid-defined high-fat diet) admin-
istration to induce steatohepatitis and fibrosis. (B) Line graph of bodyweight development of all
treatment groups (ctrl: control diet; Vhc: vehicle). (C) Representative H&E, Sirius Red and F4/80
immunohistochemistry staining (×10 magnification; scale bars = 100 µm. (D–F) Assessment of liver
injury by serum alanine transaminase levels (ALT), of liver fibrosis by quantification of Sirius Red
area fraction and hydroxyproline content and of hepatic triglyceride content. (G) Single parameters
of the histopathological NAFLD activity score (NAS). (H–J) Quantification of flow cytometry for
Ly6C+ blood monocytes, hepatic monocyte-derived macrophages (MoMF) and Kupffer cells (KC) and
quantification of F4/80 positive area fraction. All data are presented as mean SD (n ≥ 6 per group),
ns = non-significant, * p < 0.05, ** p < 0.01, *** p < 0.001 (one-way ANOVA with post-hoc testing).

Importantly, combination treatment with the CCR2/5 antagonist and the PEG-FGF21v
reflected beneficial effects of both single drug treatments regarding body weight evolution,
hepatic triglyceride content, histological liver injury and fibrosis. In addition, combined
therapy even had additive effects on hepatocyte ballooning and on the NAS overall. Positive
additive effects were also revealed on gene expression levels related to inflammation
(Tnf, Mcp1) and fibrosis (Tgfβ, αsma, Col1a1, Timp1) (Supplementary Figure S2F). CCR2/5
inhibitor-treated animals demonstrated a strong inhibition of blood monocytes (Figure 2H)
and F4/80-positive macrophage accumulation in the liver (Figure 2C,J). Flow cytometric
characterization of liver macrophages demonstrated that CCR2/5 inhibition specifically
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reduced infiltrating MoMF neither affecting resident hepatic macrophages (Figure 2I) nor
blood and liver lymphocyte populations (Supplementary Figure S3A,B). These data suggest
that combination of CCR2/5 inhibition and PEG-FGF21v treatment is even more potent
than single drug treatment alone.

2.3. Effects of CCR2/CCR5 Inhibition and FGF21 Agonism on Hepatic Infiltration of Monocytes in
Acute Liver Injury

Surprisingly, CCR2/5 inhibition and PEG-FGF21v treatment resulted in a comparable
reduction in hepatic macrophages in experimental NASH, raising the question whether
both would act directly on inflammatory cells. The chemokine CCL2 is known to attract
monocytes via CCR2 to the site of injury leading to the differentiation of monocytes into
MoMF [35,38]. In order to investigate the impact of both compounds on inflammatory
cell recruitment, we employed an acute liver injury model induced by a single injection of
carbon tetrachloride (CCl4) in mice. This model induces a sterile injury with strong cell
recruitment [15]. Immune cell populations and liver injury were assessed 36 h after CCl4
injection (Figure 3A). As expected, CCR2/5 inhibition was associated with significantly
reduced numbers of hepatic monocytes and F4/80-positive hepatic monocyte-derived
macrophages (MoMF) (Figure 3B,C,G) as well as blood monocytes (Figure 3F). The reduc-
tion in monocytes and MoMF was accompanied by a significant amelioration of the liver
injury, as assessed by quantification of the necrotic area fraction (Figure 3B,C) and serum
ALT and AST levels (Figure 3D). Of note, CCR2/5 inhibition did not affect other myeloid
or lymphoid immune cell populations. In corroboration of these findings, combination
therapy reflected the inhibition of monocyte infiltration into acutely injured liver that was
also seen by CCR2/5 inhibitor single treatment. Interestingly, PEG-FGF21v treatment
was associated with a trend towards reduced levels of blood neutrophils (Figure 3F) and
significantly lower AST and ALT serum levels (Figure 3D) without an impact on necrotic
area fraction (Figure 3C). In general, these findings support that CCR2/5 inhibition blocks
monocyte infiltration in acute liver injury. Importantly, this effect is not affected by combina-
tion treatment with PEG-FGF21v, stressing the different mode of action of both compounds.
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Figure 3. Blocking hepatic infiltration of monocytes and macrophages by CCR2/CCR5 inhibition in
acute liver injury. (A) Acute liver injury was induced by a single CCl4 injection. Mice (n = 4 per group)
received vehicle (Vhc), CCR2/CCR5 inhibitor (CCR2/5i) and/or PEG-FGF21 variant (FGF21v). Liver
injury and immune cell migration was assessed 36 h after injury induction. (B) H&E and F4/80
immunohistochemistry staining of representative liver sections of control and treatments groups
(×10 magnification; scale bars = 100 µm). (C,D) Quantification of F4/80 positive area fraction.
Hepatic injury was assessed by necrotic area fraction and serum alanine (ALT) and aspartate (AST)
transaminase levels. (E–G) Representative flow cytometric plots of blood (MO = monocytes; Granulo
= granulocytes) and liver (MO = monocytes; MoMF = monocyte-derived macrophages; KC = Kupffer
cells) immune cell populations and corresponding quantification. Data are presented as mean ± SD
(n = 6–8 per group), ns = non-significant, * p < 0.05, ** p < 0.01, *** p < 0.001 (one-way ANOVA with
post-hoc testing).

2.4. Potent Additive Effects of Combination Therapy Are Already Active at Early Disease Stages

Based on the positive effects of single and combination therapy on histological end-
points in the 6-weeks treatment model, we next investigated the early effects of pharma-
cological therapy in the CDAHFD mouse model. In contrast to our long-term model, we
assessed liver injury after only two weeks of pharmacological treatment, thus at week 8
after injury induction (Figure 4A). Histologic analysis showed moderate levels of fibrosis
and steatohepatitis after 8 weeks CDAHFD (Figure 4B). All aspects of disease phenotype
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were most effectively improved in the combination treatment (Figure 4B–D). Liver injury
as assessed by serum alanine transaminases (ALT) was significantly reduced in mice which
received PEG-FGF21v. However, liver injury was ameliorated most significantly when
PEG-FGF21v was combined with the CCR2/5 antagonist (Figure 4C). Similarly, liver triglyc-
erides were moderately (non-significantly) reduced with PEG-FGF21v, but significantly
lower in the combination treatment (Figure 4C). Single drug treatment caused trends (non-
significant) towards reduced levels of fibrosis at this timepoint (Figure 4D), but a stronger
fibrosis reduction upon combined therapy with CCR2/5 antagonist and PEG-FGF21v. Sim-
ilarly, although all therapy regimens significantly reduced the NAS, combination treatment
was most effective for all aspects of NAS (Figure 4C).
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Figure 4. Beneficial effects of combination therapy after short term treatment. (A) Steatohepatitis
and fibrosis were induced by CDAHFD (choline-deficient, amino acid-defined high-fat diet) over a
total period of 8 weeks. Effects of pharmacologic treatment were assessed after administration of
CCR2/CCR5 inhibitor (CCR2/5i) and/or PEG-FGF21 variant (FGF21v) over the last two weeks of in-
jury induction. (B) Representative liver section of H&E, Sirius Red and F4/80 immunohistochemistry
staining (×10 magnification; scale bars = 100 µm). (C,D) Serum alanine transaminase (ALT) levels,
NAFLD activity score, hepatic triglyceride and hydroxyproline content as well as quantification
of Sirius Red area fraction display the liver phenotype. (E,F) Quantification of F4/80 positive area
fraction and flow cytometrically determined monocyte-derived macrophages (MoMFs) and liver
Kupffer cells (KC). All data are presented as mean SD (n ≥ 6 per group) ns = non-significant, * p < 0.05,
** p < 0.01, *** p < 0.001 (one-way ANOVA with post-hoc testing).

The particular effects of the CCR2/5 antagonist on the composition of the hepatic
immune cell compartment were present in single CCR2/5 inhibitor or combination therapy.
Analogous to long-term treatment, monocytes and monocyte-derived macrophages were
significantly reduced upon pharmacological treatment without affecting resident liver
Kupffer cells or lymphoid immune cells (Figure 4F). Collectively, while individual aspects
of distinct drug targeting remained preserved in combination treatments, targeting multiple
pharmacological pathways appeared more potent for improving the liver disease phenotype
than single drug treatment—providing justification for clinical studies of combination
treatments of these mechanisms in patients with NASH and fibrosis.

3. Discussion

The prevalence of NAFLD and NASH is increasing, leading to the projection that
liver-related morbidity and mortality will dramatically increase within the next decades
in many areas of the world [39]. At present, lifestyle modification is the mainstay of
therapeutic recommendations, while no specific pharmacological treatment is available
for the therapy of NAFLD/NASH [40]. With many drugs targeting multiple pathways
in metabolism, inflammation and fibrogenesis under development, it can be expected
that several drugs will be approved in the foreseeable future [2,10]. Nevertheless, many
compounds, including obeticholic acid, cenicriviroc and pegbelfermin, have only improved
the investigational endpoints in a subset of patients exposed to these drugs [11,19,27]. The
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involvement of many pathophysiological mechanisms and the crosstalk between them
in NAFLD could partly explain why targeting a single pathway might be insufficient.
Combination treatment is therefore an attractive possibility to overcome these problems,
although there is currently little evidence to suggest specific combinations.

In this study, we demonstrate that the combination of targeting inflammatory path-
ways through inhibiting the CCR2 and CCR5 chemokine receptors and reducing lipid
deposition in hepatocytes through a pegylated FGF21 analogue ameliorated all histological
features of NASH, including liver fibrosis, in mice. The combination regimen had additive
effects compared to the use of the single compounds. These data are furthermore substanti-
ated by an analysis of hepatic immune cells, hepatic fat content, serum CCL2 and FGF21
levels, which reflect the distinct pathophysiological modes of action for both compounds.

The “ideal combination” of anti-NASH drugs remains to be determined. However,
based on the central role of macrophages as chief regulators of inflammation-induced
insulin resistance, hepatic inflammation and fibrogenesis [14], we reasoned that an “anti-
inflammatory” compound would be beneficial in a combination therapy regimen. Research
from our group and others has demonstrated the therapeutic potential of blocking the
CCL2/CCR2-mediated monocyte infiltration in the liver [17,41]. The CCR2/5 inhibitor
cenicriviroc was investigated in the phase 2b CENTAUR trial, in which cenicriviroc signifi-
cantly increased the proportion of patients achieving fibrosis regression after one year of
treatment [18]. In our study, the CCR2/5 inhibition, using a novel oral CCR2/5 antagonist
(BMS-687681), strongly reduced the number of MoMF, and led to improved liver fibrosis.
Results from the second year of follow-up in the CENTAUR trial suggested that the antifi-
brotic effect of cenicriviroc might not be durable in the long-term [19], possibly because the
underlying metabolic stress is not alleviated. One could speculate that the combination of
CCR2/5 antagonists with a metabolic, antisteatotic drug (such as an FGF21 agonist) can
improve NASH and fibrosis in human patients more effectively than either drug alone [34],
as we have shown in this study using a fibrotic NASH mouse model.

FGF21 belongs to the endocrine and paracrine subfamily of FGFs that also include
FGF15, 19 and 23. FGF21 is synthesized in the liver and released into the systemic circula-
tion. The co-receptor β-Klotho is essential for FGF21 activity and downstream effects [42].
FGF21 gains organ specificity, as the co-receptor is mainly produced in the liver and
white adipose tissue, so that FGF21 stimulates glucose uptake in adipocytes and lowers
triglyceride levels in rodents [21,22]. In line with our findings in the CDAHFD mouse
model, previous studies showed that FGF21 successfully amended obesity and diabetes
in a high-fat diet (HFD) model [24]. Ongoing clinical trials demonstrated significantly
reduced content of hepatic triglycerides in NASH patients treated with FGF21 agonists
compared to the placebo group [27]. The efficacy and safety of the FGF21 analogue peg-
belfermin has been evaluated in two phase 2b clinical study in patients with NASH and
stage 3 fibrosis (FALCON1, ClinicalTrials.gov Identifier NCT03486899) and patients with
compensated NASH cirrhosis (FALCON2, ClinicalTrials.gov Identifier NCT03486912) [28].
Both studies could not reach primary endpoints (≥1 stage improvement in fibrosis without
NASH worsening after 24 weeks or 48 weeks)—however, pegbelfermin treatment resulted
in higher rates of fibrosis (≥1 stage reduction in 27% of the patients dosed at 40 mg SQ
q.wk.) and NASH improvement (hepatic fat content (HFF) ≥10% reduction in 23% of
the patients dosed at 40 mg SQ q.wk.). In addition, pegbelfermin administration showed
beneficial effects in both studies based on various non-invasive surrogate markers (decrease
of liver transaminases and plasma pro-peptide of type lll collagen, increase of adiponectin
concentrations) [29,30]. However, further development of pegbelfermin was terminated
for non-cirrhotic NASH, as no clear dose-dependent reduction in liver fibrosis could be
demonstrated by the single agent regimen.

A currently open question in the field is whether treatment strategies against NAFLD
should be personalized based on gender/sex. Male individuals predominantly show more
severe stages of NAFLD such as NASH and fibrosis than female individuals during the
reproductive age. However, after menopause, NAFLD occurs at a higher rate in women,
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supporting that estrogen is protective [43]. In the gender specific analyses we observed a
significant correlation in male NAFLD patients between CCL2 serum levels and advanced
fibrosis stages as well as a positive trend for female patients (p = 0.064). Of note, CCL2 serum
concentrations did not correlate with biopsy proven NASH activity (NAS). FGF21 levels
were associated with biomarkers of NASH and histopathologic scoring (F3-F4 fibrosis)
in female patients but we did not observe a significant correlation based on the whole
cohort. Nonetheless, we have to be careful interpreting the data based on our patient cohort,
because the above-mentioned gender discrepancy was also apparent in our clinical cohort
resulting in a low statistical power especially in the female population. As expected from
the literature, our cohort that was enriched for advanced disease stages displayed a lower
number of female than male patients (total female patients n = 20 vs. n = 65 males).

In this project, we employed the CDAHFD model to induce NAFLD [32]. While the
ideal NAFLD model does not exist, there is consensus that the experimental model should
reflect key characteristics of human disease [10]. CDAHFD fed mice develop steatohepatitis
and severe liver fibrosis over a relatively short period of time. In contrast to the more
commonly used methionine-choline deficient (MCD) dietary model, mice do not experience
a drastic weight loss that is typical for the MCD diet, but recover to baseline levels after
an initial weight loss [44]. However, the therapeutic effects of PEG-FGF21v on steatosis
and metabolism can presumably not be sufficiently studied in MCD diet. On the other
hand, effects on fibrosis improvement by CCR2/CCR5 inhibition have been reported before
in the MCD diet model [17], to a similar extent as we describe it now for the CDAHFD.
Additionally, the PEG-FGF21v as monotherapy has been demonstrated to show therapeutic
benefit on parameters of weight loss, steatosis and fibrosis in the CDAHFD mouse [45].
However, the CDAHFD model lacks some features of the metabolic syndrome such as
obesity or insulin resistance. Thus, further studies should aim at addressing effects of
combination therapy on “extrahepatic metabolic diseases” including hyperinsulinemia,
atherosclerosis or cardiovascular diseases.

In conclusion, this study confirms the therapeutic efficacy of CCR2/5 antagonists and
FGF21 agonists in an experimental model of steatohepatitis and fibrosis. Additionally,
we demonstrated that targeting inflammatory and metabolic pathways at the same time
ameliorated various aspects of NAFLD to a greater extent than single drug treatment alone.
Our data suggest that combination therapies bear the potential of additive effects in the
course of disease progression, supporting the hypothesis of multiple pathophysiologic
triggers that need to be addressed in parallel in the treatment of NAFLD. Therefore, further
studies seem warranted to test combinations of different drug targets in human NAFLD
and NASH.

4. Materials and Methods
4.1. Patient Cohort

Patients with biopsy-proven NAFLD (n = 85) were prospectively recruited at the
Ghent University Hospital, Belgium, between 2011 and 2018, as previously described [46].
Appropriate exclusion of liver disease of other etiologies, including alcohol-induced or
drug-induced liver disease, viral or auto-immune hepatitis, metabolic and cholestatic
liver diseases, was performed using specific clinical, biochemical, histological and/or
radiographic criteria. All patients were caucasian and had a negative history of alcohol
abuse as indicated by an average daily alcohol consumption of ≤20 g. None of the subjects
were on treatment with corticosteroids or insulin. After applying these exclusion criteria,
we included 85 patients for analysis.

Blood samples were collected after overnight fasting. All samples were centrifuged,
fractionated and serum stored at −80 ◦C until further analysis. Laboratory evaluation
included standard liver biochemistry (alanine aminotransferase (ALT), aspartate amino-
transferase (AST), γ-glutamyl transpeptidase (GGT)), complete blood count, triglycerides
and total serum cholesterol. Body mass index (BMI) was calculated as body weight/height2
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(kg/m2). Diabetes mellitus was defined according to the American Diabetes Association
criteria [47].

Human liver biopsies were routinely processed and stained with hematoxylin-eosin
(H&E) and Sirius red. An experienced pathologist (A.H.) evaluated the biopsies, blinded
to the patient characteristics. Only biopsies with at least 6 complete portal tracts were
deemed appropriate for adequate histological evaluation. Histological features were scored
according to the NASH Clinical Research Network scoring system [48]. A diagnosis of
non-alcoholic fatty liver (NAFL) was made if ≥5% of hepatocytes contained macrovesicular
lipid droplets, whereas the diagnosis of NASH was based on the joint presence of steatosis,
hepatocyte ballooning and lobular inflammation [49,50]. Fibrosis was evaluated using the
NASH Clinical Research Network fibrosis staging system [48].

The study protocol was approved by the Ghent University Hospital Ethical Committee
and conducted according to the principles of the Declaration of Helsinki. Participants gave
their written informed consent, which was validated by the Ethical Review Board.

4.2. Animal Experiments

7-week-old C57BL6/J wildtype mice (Janvier Labs, Le Genest-Saint-Isle, France) were
housed in a specific-pathogen-free environment at the Animal Facility of the University
Hospital Aachen in a 12-h light/dark cycle with free access to food and water. In vivo
animal experiments were performed with male mice at eight weeks of age under conditions
approved by the appropriate institutional and governmental authorities according to Ger-
man legal requirements (State Agency for Nature, Environment and Consumer Protection
in North-Rhine Westphalia, LANUV NRW).

4.3. Pharmacological Treatment and Induction of Liver Injury

Both pharmacologic compounds were kindly provided by Bristol-Myers-Squibb. The
CCR2/5 antagonist (BMS-687681) was dissolved in sterile water at pH 3 containing 0.5%
methylcellulose (400 cps) and 0.1% Tween-80. The CCR2/5 antagonist was administered
via oral gavage (PO) at either 45 mg/kg body weight (BW) b.i.d. in single drug treatment
or 15 mg/kg BW b.i.d. in combination treatment. PEG-FGF21 variant (BMS-986171)
was suspended in a vehicle containing 20 mM Tris(hydroxymethyl)aminomethane and
250 mM sucrose at pH 8.3. PEG-FGF21v was administered by subcutaneous (SC) injection
at 0.6 mg/kg BW twice weekly.

Carbon tetrachloride (CCl4) (Merck, Darmstadt, Germany) solved in corn oil was
injected once intraperitoneally (IP) at 0.6 mL/kg BW to induced acute liver injury. All mice
were sacrificed after 36 h and liver and blood samples were retrieved for analysis.

As a representative NAFLD model, mice were fed a choline-deficient, L-amino acid-
defined, high-fat diet (CDAHFD) (A06071302, Research Diets, New Brunswick, NJ 08901,
USA) for up to 12 weeks. Pharmacologic treatment started as single drug or combination
therapy after 6 weeks of diet administration. Mice were sacrificed after two or six weeks of
treatment for final analysis.

4.4. Phenotypic Assessment and Model Endpoints

Conventional hematoxylin-eosin (H&E) and sirius red stainings were performed ac-
cording to established protocols and necrotic area fraction was quantified with ImageJ [16].
NAFLD activity score (NAS) was assessed by a medically qualified investigator blinded
to the treatment groups, and colometric tests were conducted for hydroxyproline. Im-
munohistochemistry stainings for F4/80 (Abcam) were performed on paraffin-embedded
liver sections [51]. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST)
activities were measured (UV test at 37 ◦C) in serum (Roche Modular pre-analytics system,
Rotkreuz, Switzerland).
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4.5. Flow Cytometry of Mouse Samples

Liver and blood leukocytes were analyzed by multicolor flow cytometry using an
LSR-Fortessa (BD Biosciences), as described [16]. Livers were perfused with cold phos-
phate buffered saline (PBS) (Pan Biotech, Aidenbach, Germany), homogenized and di-
gested by collagenase type IV (Worthington Biochemical Corporation, Lakewood, NJ,
USA) in a heated bath (37 ◦C). Leukocytes were then isolated by Nycodenz gradient
(Alere technologies, Oslo, Norway) differential centrifugation steps. The cells were stained
with fluorochrome-conjugated antibodies, employing a myeloid (CD31/FITC, CD4/FITC,
CD3/FITC, CD19/FITC, Ly6G/FITC, CD68/PE, CD11b/PERCP-Cy5.5, F4/80/PE-Cy7,
Tim4/APC, Gr1/APC-Cy7, MHCII/V450, CD45/V500, CX3CR1/BV711 and 7-AAD/PE-
Cy5) and a lymphoid (CD31/FITC, Ly6G/FITC, CD19/PERCP-Cy5.5, TCRβ/PE-Cy7,
CD44/APC, NK1.1/APC-Cy7, CD4/V450, CD45/V500, CD8a/BV711 and 7-AAD/PE-Cy5)
panel (Supplementary Table S5).

Whole blood was subjected to red cell lysis by Pharmlyse (BD Biosciences, San Jose, CA,
USA) and stained with a mixed myeloid-lymphoid panel (Ly6G/FITC, Gr1/PERCP-Cy5.5,
CD115/PE, TCRβ/PE-Cy7, CD11b/APC, NK1.1/APC-Cy7, CD19/Al700, CD4/V450, and
CD8a/BV711). After staining, the samples were analyzed with the LSR Fortessa (BD
Biosciences) and FlowJo v10.2 (FlowJo LLC, BD Biosciences, Ashland, Oregon 97520, USA)
(Supplementary Table S5). Counting beads (BD Biosciences) were added to single-cell
suspensions to determine absolute cell numbers in liver and blood.

4.6. Multiplex Magnetic Bead Assay

Mouse chemokine (C-C motif) ligand (CCL) 2, CCL5, CXCL1 and interleukin (IL)-
10 serum protein levels were determined with a multiplex bead-based assay (Bio-Plex®

MAGPIX™ Multiplex Reader, Bio-Rad, Temse, Belgium), using coupled beads from mouse
cytokine group I (Bio-Rad). The reported assay sensitivity, intra- and inter-assay coefficients
of variation are 3.7 pg/mL, 5% and 7% for CCL2, 0.6 pg/mL, 4% and 4% for CCL5,
0.3 pg/mL, 3% and 30%, for CXCL1, and 1.0 pg/mL, 4% and 5% for IL-10, respectively.

4.7. RNA Extraction and Quantitative Real-Time qPCR

RNA was extracted from 20 mg mouse using the RNeasy plus mini kit (Qiagen),
according to the manufacturer’s protocol. The RNA quality was evaluated by spectropho-
tometry (Nanodrop, Thermo Fisher Scientific, Ghent, Belgium), calculating the A260/A280
ratio. cDNA synthesis was performed starting from 1 µg RNA, using the SensiFAST cDNA
synthesis kit (Bioline, London, UK). cDNA was added to a 384-well plate with specific
primers (Biolegio, Nijmegen, The Netherlands) (Supplementary Table S4) and Sensimix
SYBR No-ROX Mastermix (Bioline). Samples were run and analyzed on the Lightcycler
480 II (Roche). PCR reactions using water instead of template showed no amplification.
Measurements were performed in duplicate and Cq values were calculated with the second
derivative maximum method. Average Cq values were normalized to the Cq of stable
housekeeping genes, according to analysis in GeNorm (Biogazelle, Ghent, Belgium).

4.8. Enzyme-Linked Immunosorbent Assay

Serum CCL2 and FGF21 concentrations in human serum were determined using Hu-
man Quantikine ELISA kits (DCP00 and DF2100 respectively, R&D, Oxon, UK) according
to the manufacturer’s protocols. Human cytokeratin-18 M30 fragments were measured
using the M30 Apoptosense ELISA kit (TECOmedical, Nijkerk, The Netherlands).

4.9. Statistics

Statistical analysis was performed using SPSS 25.0 (SPSS Software, IBM Corp., Ar-
monk, NY, USA) and GraphPad Prism 6 (GraphPad Software Inc., La Jolla, CA, USA). The
appropriate parametric or non-parametric tests were applied. A two-tailed p value < 0.05
was considered statistically significant. Continuous variables are presented as median
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(interquartile range) or mean ± standard deviation (SD), depending on the normality
of distribution.

For analysis of patient data, significant correlations were determined by calculating
the Spearman’s correlation coefficient. Multivariate binary logistic regression analysis on
variables significantly associated with advanced fibrosis in univariate analysis, followed by
stepwise backward elimination, was performed to identify factors independently associated
with the presence of advanced fibrosis.

All experimental data from mice are presented as mean ± SD. Differences between
groups were evaluated by two-tailed unpaired Student t-test, one-way ANOVA and Pear-
son’s linear correlation analysis (GraphPad Prism 6).

Supplementary Materials: The following supporting information can be downloaded at: https:
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