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Abstract: Reductions in fasting serum fructose or erythrocyte sorbitol have been proposed as markers for early proof of mechanism 
in clinical development of aldose reductase (AR) inhibitors. However fructose is significantly impacted by meals and evaluation of 
erythrocyte sorbitol poses technical challenges. To more accurately assess the performance of these markers in biological samples, a gas 
chromatography-mass spectrometry assay was modified and validated. Serum was collected on three consecutive days from 13 healthy 
volunteers (HV) and 14 patients with type 2 diabetes mellitus (T2DM), and assayed for sorbitol and fructose using this assay. Serum 
fructose and sorbitol were relatively constant across the three days. Fasting fructose levels were comparable between the two groups 
(T2DM: 1.48 ± 0.49 mg/L; HV: 1.39 ± 0.38 mg/L, mean ± standard deviation, P = 0.61), but fasting sorbitol levels were significantly 
higher in diabetics (T2DM: 0.280 ± 0.163 mg/L; HV: 0.164 ± 0.044 mg/L, P = 0.02). Feeding resulted in a 5–6 fold increase in serum 
fructose levels, but only a 5%–10% increase in sorbitol. Only sorbitol remained significantly elevated pre- and post feeding in T2DM 
patients relative to HV. These data suggest that serum sorbitol may be a robust proof of mechanism biomarker and facilitate dose selec-
tion for clinical development of AR inhibitors.
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Introduction
According to the National Health and Nutrition 
Examination Survey (NHANES) 1999–2002, less 
than 50% of diabetic adults met or exceeded the 
American Diabetes Association (ADA) recommenda-
tion of HbA1c , 7%.1 These findings were despite the 
availability of insulin and several drug classes target-
ing glucose lowering. New classes of drugs targeting 
microvascular diabetic complications independent of 
glycemic control could therefore be of considerable 
value for the management and treatment of diabetes.

A number of metabolic pathways have been impli-
cated as pathophysiologic contributors to microvas-
cular diabetic complications, most notably, increased 
polyol pathway flux, protein kinase C activation, 
increased protein glycation leading to formation 
of advanced glycation end products (AGEs), and 
hexoamine pathway activation.2,3 All of these mecha-
nisms, driven by hyperglycemia, are believed to con-
tribute to oxidative-stress mediated tissue damage.

The predicted role for the polyol pathway in the eti-
ology of diabetic complications is well documented.2,3 
The two enzymes in the polyol pathway, aldose 
reductase (AR), which catalyzes the reduction of 
glucose to sorbitol, and sorbitol dehydrogenase (SDH), 
which catalyzes the oxidation of sorbitol to fructose, 
are abundant in tissues prone to diabetic complica-
tions. Under hyperglycemic conditions, increased 
flux of glucose through the polyol pathway is thought 
to increase oxidative stress in susceptible tissues, in 
part via elevating tissue NADH/NAD+ levels.4,5

Selective inhibitors of AR and SDH have been 
shown to be of potential therapeutic utility in treating 
diabetic complications in pre-clinical animal models, 
with beneficial effects on motor nerve conduction 
velocities, proteinuria, and reduce markers of oxida-
tive stress.6–9 AR inhibitors have also demonstrated 
therapeutic potential in clinical studies, improving 
markers for both neuropathy and nephropathy.10–13 
Some reports have suggested that diabetics have 
elevated blood fructose or erythrocyte sorbitol levels 
relative to healthy volunteers, presumably a conse-
quence of elevated flux of glucose through the polyol 
pathway under hyperglycemic conditions. In fact, AR 
inhibitors have been demonstrated clinically to reduce 
erythrocyte sorbitol14–17 and blood fructose levels.18,19 
However technical and biological variables result in 
relatively high variability with these biomarkers.

The aim of this study was to investigate the 
absolute and relative differences in serum fructose 
and sorbitol measured across three days in healthy 
volunteers (HV) and patients with type 2 diabetes 
mellitus (T2DM), looking at sequential samples on 
each day from both fasting and fed states in subjects 
under well controlled conditions. A highly accurate 
and specific gas chromatography-mass spectrometry 
(GCMS) assay was validated to support this work, 
and the details of this assay are reported.

Patients and Methods
The study protocol was reviewed by ethical com-
mittees and informed consent was obtained from all 
subjects. Study subjects were confined to a clinical 
research unit for medical supervision and dietary con-
trol for the duration of the study (starting on day −1). 
HV subjects (n = 13) were free of any dietary supple-
ments or medications for at least 7 days prior to the 
start of the study. T2DM patients (n = 14; screening 
HbA1c of 7.5%–10%) treated with 1–2 oral anti-dia-
betic agents were washed out of these medications for 
7 days prior to the start of the study. Serum was col-
lected on three sequential days at −30, −15, and 0 min 
before breakfast (fasting; after at least a 12 hour fast), 
and 60 and 120  min after a standardized breakfast 
(Boost High Protein® at 7 kcal/kg; 55% carbohydrate, 
21% fat, 24% protein).

Sample preparation and GCMS analysis were 
based on the method of Küry and Keller.20 To 200 µL 
aliquots of standards (0.025–25 mg/L), QC samples 
(in human serum), and clinical study samples, 500 ng 
of fructose and sorbitol internal standards (D-[U13C6] 
fructose and D-[U13C6] sorbitol) were added. Samples 
were then deproteinized by ZnSO4—Ba(OH)2 extrac-
tion, dried under nitrogen, oximized (500  µL 1% 
o-methylhydroxylamine hydrochloride in pyridine; 
2  hr at 70 °C), dried, derivatized (500  µL BSTFA 
[N,O-bis[Trimethylsilyl]trifluoroacetamide]; 20  min 
at 70 °C), and passed through 0.22 µm PVDF filters 
into autosampler vials. These samples were analyzed 
on an Agilent 5973 N Mass Specific Detector (MSD) 
interfaced with an Agilent 6890 A gas chromatograph 
equipped with a LEAP Technology GC PAL autosam-
pler with a peltier-cooled sample rack (10 °C). Injec-
tion ports and GCMS interface were kept at 250° 
and 280 °C. Separations were performed on a Varian 
VF-5 ms fused silica column (30 M × 250 µm × 1 µm 
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film thickness). Using helium as the carrier gas 
(0.8  ml/min), derivatized samples (5  µL) were 
injected at a 50:1  split ratio. The column temp was 
held at 220 °C for the duration of the 15-minute run. 
The MSD was run on EI-mode at 70  eV with SIM 
detection (m/z 307 for fructose, m/z 310 for fructose 
IS, m/z 319 for sorbitol and m/z 323 for sorbitol IS) 
for quantification. The MSD was turned off during 
the elution of glucose peaks.

Results
To accurately quantify sorbitol and fructose in 
biological samples, a highly sensitive GCMS 
assay was developed and validated. This assay 
had excellent intra (0.1%–1.3% CV) and inter-
assay (2.9%–14.9%) precision (evaluated with 
neat, diluted, and spike serum samples) within 
the range of the standard curve (0.025–25  mg/L) 
in serum samples. A typical gas chromatography 

chromatogram for a human serum sample is shown 
in Figure  1. A peak of varying abundance eluting 
after the fructose peak was observed, but the identity 
of this peak was not determined. Based on spiking 
studies in human serum, we are sure this did not rep-
resent myo-inositol, glucose, fructose, or sorbitol. 
Finally, there was excellent agreement in pilot study 
samples between serum sorbitol levels and values 
measured in erythrocytes using this assay, however 
higher intra-assay variability was seen with analysis 
of erythrocyte samples.

Using this assay, serum samples from T2DM and 
HV subjects were analyzed. The two subject popula-
tions were well matched for most demographic vari-
ables with no significant differences in gender, age, 
or BMI (Table 1). There were small but statistically 
significant differences in heart rate and blood pres-
sure, and as expected highly significant differences in 
fasting blood glucose.

Figure 1. Human serum gas chromatography chromatogram for quantification of fructose and sorbitol.
Typical ion chromatogram of a human serum sample, with the locations of the 2 fructose (at 11.86 and 11.98 min) and 1 sorbitol (at 14.48 min) peaks 
indicated. The MSD is turned off during elution of the glucose peaks (12.5 to 14.0 min). The identity of the peak following the two fructose peaks was not 
determined (labeled unknown in the figure), but was unaffected by spiking into samples glucose, sorbitol, fructose, or myo-inositol.
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Table 1. Patient characteristics at baseline.a

Variableb Healthy  
volunteers  
(HV) 

Diabetic  
subjects  
(T2DM)

P value

Age 40.3 (10.1) 46.4 (6.9) 0.086
Gender (M/F) 8/5 7/7
Ethnicity 6/6/1 2/10/2
BMI 29.8 (3.5) 32.4 (3.7) 0.066
Heart rate 67.6 (10.2) 75.1 (8.0) 0.044
Systolic BP 116 (7.6) 131 (13) 0.001
Diastolic BP 72.9 (5.2) 78.6 (2.3) 0.047
Fasting  
glucose

92.5 (6.6) 217 (49) ,0.0001

HbA1c NA 8.41 (0.80)

Notes: aReported are the mean (± standard deviation) and P-values for 
all but gender and ethnicity. The data were analyzed using a 2-sample 
t-test for independent samples. A Levene’s test was first conducted to 
determine if the t-test should be run using equal or unequal variance. 
HbA1c levels were not measured (NA) in the healthy volunteers. bVariable 
units: age (years); ethnicity (number of white, hispanic, black); BMI 
((weight in kilograms)/(height in meters)2); heart rate (beats per minute); 
systolic and diastolic blood pressure (mmHg); fasting glucose (mg/dL); 
HbA1c (%).

Table 2. Serum fructose and sorbitol concentrations under 
fasting and postprandial conditions.a

Healthy  
volunteers  
(HV) 

Diabetic  
subjects  
(T2DM)

P value

Serum fructose
Fasting 1.39 (0.38) 1.48 (0.49) 0.61
Fed 7.98 (2.55)d 9.13 (2.29)d 0.23
Serum sorbitol
Fasting 0.164 (0.044) 0.280 (0.163) 0.02b,c

Fed 0.181 (0.040)d 0.294 (0.064)d ,0.0001b

Notes: aAverage fasting and fed serum fructose and sorbitol levels 
(in mg/L) from 13 HV and 14 T2DM subjects were calculated from 
measurements of blood samples collected on three sequential days. 
Reported above are the inter-subject averages (± standard deviation). 
The data were analyzed using a 2-sample t-test for independent samples, 
adjusted for equal variance. bBased on the observed differences for 
fructose and sorbitol, and the samples sizes, we have greater than 80% 
power to detect a 0.1  mg/L difference in sorbitol. cIncludes data from 
all subjects. One T2DM patient had considerably elevated fasting serum 
sorbitol (0.822 ± 0.452  mg/L) in all samples measured, greater than 
2.5 fold higher than all other subjects. Fasting and fed fructose levels in 
this patient were similar to the other subjects in this study; fed sorbitol 
levels were also higher than for all other individuals, but lower than fasting 
levels. Deleting the value from this subject resulted in a T2DM fasting 
sorbitol group mean of 0.238 mg/L (± 0.048), which was also significant 
greater than the HV fasting sorbitol levels (P = 0.0004). dP , 0.002  in 
both paired t-test and Wilcoxon signed rank test, comparing fed serum 
fructose or sorbitol levels to fasting levels (with deletion of data from the 
T2DM subject with high fasting serum sorbitol noted above).

Serum fructose and sorbitol levels (in mg/L) 
from 13 HV and 14 T2DM subjects were measured 
in blood samples collected on three sequential days 
from fasting (−30, −15, and 0  min before break-
fast) and fed (60 and 120 min after breakfast) blood 
samples. Fasting and fed intra-subject variability 
was low (average 21% CV, range 5%–55%, high-
est for fed samples) so each subjects average lev-
els were calculated. Fasting serum sorbitol levels 
were significantly higher in T2DM patients than HV 
subjects, but there was no significant difference in 
fasting fructose levels (Table 2). Feeding resulted in 
significant increases in serum fructose and sorbitol, 
but the magnitude of this increase was much greater 
for fructose (5.7–6.1 fold increases) than sorbitol 
(5%–10% increases; potentially as high as a 20% 
increase with elimination of all data from one T2DM 
patient that had considerably elevated sorbitol in 
fasting samples). Postprandial levels of sorbitol but 
not fructose remained significantly higher in T2DM 
patients compared to HV subjects. Finally, there was 
not a significant correlation between serum fructose 
or sorbitol levels and either heart rate or systolic 
blood pressure (data not shown). In addition, there 
did not appear to be a strong correlation between 
baseline glycemic control marker levels (HbA1c, 
C-peptide, or fasting glucose) and either sorbitol or 
fructose in the T2DM patients, however this should 

not be viewed as definitive due to the limited size of 
this study.

Discussion
This study shows that serum sorbitol levels, and not 
fructose, are elevated in fasting serum of T2DM 
patients with moderately controlled disease (HbA1c 
8.41  ±  0.80%, mean  ±  standard deviation), and 
that serum sorbitol levels remain significantly ele-
vated with feeding. This is in agreement with stud-
ies showing high erythrocyte sorbitol in diabetic 
patients,14,17,21,22 and animal models of diabetes.10,23 In 
fact, we saw similar magnitude of elevations in serum 
sorbitol in our T2DM patients (70% higher in fasting 
samples) as reported with erythrocyte sorbitol content 
by Asano et al (80% higher).15 Our data are in contrast 
to the work of Kawasaki et al18 who showed fasting 
serum fructose was increased in diabetic patients. 
However their study included diabetic patients with 
poorly controlled disease (HbA1c 10.7  ±  2.4%), for 
which 2 weeks hospitalization resulted in a reduction 
in fasting serum fructose to near normal levels, and 
reductions in other glycemic indicators. Therefore, 
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the differences in glucose control may at least par-
tially account for the differences in observed fasting 
serum fructose.

Several AR inhibitors have demonstrated their abil-
ity to reduce polyol pathway flux at the target tissue by 
decreasing sorbitol and/or fructose levels in sensory 
nerves of diabetic animal models or patients with dia-
betic neuropathy.9,12 The potent AR inhibitor fidarestat 
has also been shown to normalize erythrocyte sorbi-
tol in diabetics.15 In our study, we observed elevations 
in serum sorbitol in subjects with T2DM compared 
to healthy volunteers, and using a mixed-meal toler-
ance test demonstrated that this elevation is relatively 
stable in the fed versus fasted state, as compared to 
the marked changes observed in serum fructose in the 
post-prandial state. This is consistent with similarly 
reported relative stability of erythrocyte sorbitol in the 
fed vs. fasted state.15 This suggests that sorbitol (serum 
or erythrocyte) is a more robust marker of polyol path-
way flux than fructose, less likely to be influenced by 
acute changes in metabolic status.

The analytical method for measuring serum fruc-
tose and sorbitol levels described in detail in this report 
was used in a phase 1, multiple dose, clinical study to 
assess the pharmacodynamic effects of CP-642,931, a 
potent and selective inhibitor of SDH.24 In that study, 
inhibition of SDH in healthy subjects was associated 
with highly significant dose-dependent increase in 
serum sorbitol levels, reaching a maximum of a 152-
fold increase at 7 days of dosing at 35 mg, the highest 
dose tested. However no significant changes in fast-
ing serum fructose levels were observed.

The analytical method employed in these studies 
enables direct and accurate quantification of serum 
sorbitol and fructose. We have also validated this 
method for analyses of erythrocyte and urine sam-
ples. Furthermore, the method can be easily modified 
to enable quantification from tissue samples. This 
will enable further assessment of the relationships 
between tissue, serum and erythrocyte sorbitol and 
fructose, and importantly how these markers correlate 
with glycemic control and efficacy for potent polyol 
inhibitors developed to reduce or halt the progression 
of diabetic complications.
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