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Abstract: This article introduces an efficient and high-precision estimation framework for four-wheel
independently actuated (FWIA) autonomous vehicles based on a novel tire model and adaptive
square-root cubature Kalman filter (SCKF) estimation strategy. Firstly, a reliable and concise tire
model that considers the tire’s nonlinear mechanics characteristics under combined conditions
through the piecewise affine (PWA) identification method is established to improve the accuracy of
the lateral dynamics model of FWIA autonomous vehicles. On this basis, the longitudinal relaxation
length of each tire is integrated into the lateral dynamics modeling of FWIA autonomous vehicle.
A novel nonlinear state function, including the PWA tire model, is proposed in this paper. To
reduce the impact of the uncertainty of noise statistics on the estimation accuracy, an adaptive
SCKF estimation algorithm based on the maximum a posteriori (MAP) criterion is proposed in the
estimation framework. Finally, the estimation accuracy and stability of the adaptive SCKF algorithm
are verified by the co-simulation of CarSim and Simulink. The simulation results show that when
the statistical characteristics of noise are unknown and the target state changes suddenly under
critical maneuvers, the estimation framework proposed in this paper still maintains high accuracy
and stability.

Keywords: autonomous vehicles; four-wheel independently actuated (FWIA); square-root cubature
kalman filter (SCKF); vehicle lateral dynamics; piecewise affine (PWA) identification

1. Introduction

With the sharp increase in vehicle ownership, the impact of pollution on the human
environment is becoming more and more serious [1,2]. Electric vehicles (EVs) have signifi-
cant advantages in energy-saving and environmental protection, which has been a wide
concern of society [3]. In particular, the four-wheel independent actuated (FWIA) electric
vehicle has been said to be an effective scheme, having no complex transmission structure
and four-wheel motors that can be controlled independently. It can not only actively adjust
the torque of each wheel but also has high torque flexibility and high control precision.
As an excellent platform for autonomous technology, FWIA autonomous vehicles have
aroused widespread interest in researchers [4,5].

In recent years, with the application of advanced control systems such as adaptive
cruise control (ACC) [6], direct yaw moment control (DYC) [7], lane-keeping assistance
(LKS) [8], and lane departure warning (LDW) [9] to autonomous vehicles, dynamic control
performance and driving safety has been greatly improved. In the closed-loop control archi-
tecture, the reliable estimation inputs of autonomous vehicle motion states have become the
crucial premise of high-precision dynamic control of FWIA autonomous vehicles [10,11].
These parameters for the control system, i.e., yaw rate, sideslip angle, and longitudinal
force, are the basis for path tracking and the lateral stability of autonomous vehicles. How-
ever, some state parameters are difficult to measure by vehicle-mounted sensors and must
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be measured by expensive sensors. In this condition, model-based vehicle state observers
have attracted widespread attention and become the first choice for researchers [12]. High-
precision vehicle models and advanced algorithms are essential for vehicle state estimation
in practice.

As the only component of a vehicle that contacts the road and the vehicle, tires are a
significant element in vehicle dynamics control [13]. The estimation of longitudinal force
and lateral force plays a crucial role in the design of trajectory tracking and the lateral
stability control system of autonomous vehicles. Under extreme conditions, the mechanical
characteristics of tires show high nonlinearity. At this time, the accuracy of the tire model
will have a great impact on the accuracy of parameter estimation [14,15]. However, complex
expressions will bring great challenges to the computational efficiency of ECU [16]. In
practical application, the expression of a tire model should be concise enough to ensure
strong real-time performance. Based on the above analysis, it is important to build a
high-precision and concise tire model. The relationship between tire longitudinal force
and lateral force under combined conditions are highly coupled. It is difficult to achieve
accurate results using the mechanism modeling method [17]. With the rapid development
of computer technology, data-driven multi-model identification methods can be used as
an effective way to break through the research bottleneck [18,19]. In this paper, a data-
driven multi-input and multi-output piecewise affine identification method is used to
approximate the nonlinear system through multiple affine sub-models, and the expression
of the piecewise affine identification model is concise enough.

In recent years, more and more advanced theories have been applied in vehicle
engineering. Many achievements have been reached in the estimation of vehicle yaw
rate, sideslip angle, and four-wheel longitudinal force. A novel observer considering
the uncertainty of the tire model under combined conditions is proposed in [20]. On
this basis, the accuracy and robustness of the estimation algorithm were verified using
a simulation of a 14-DoF Simulink vehicle model. In [21], a novel model of an electric
wheel is proposed. Furthermore, the state function of longitudinal force is established
by using the sliding mode observer, and an adaptive square-root cubature Kalman filter
(SCKF) was designed to estimate the noise to improve the stability of the vehicle. Finally,
the effectiveness of the proposed estimation algorithm was verified by CarSim-Simulink
co-simulation. The advanced estimation strategies utilized for observer design in prior
works include the extended Kalman filter (EKF) [22], unscented Kalman filter (UKF) [23],
cubature Kalman filter (CKF) [24,25], and information fusion estimation method [26].
In [27], an uncertain singular vehicle model was established, which considers the time-
varying characteristics of tire cornering stiffness and includes the singular vehicle dynamics
model and the uncertainty of the model. On this basis, a robust sideslip angle observer has
been established. In [28], Wang et al. proposed a robust unscented Kalman filter estimation
algorithm to improve the robustness of outliers measured by sensors. The influence of noise
was handled by a moving polynomial Kalman smoother. In [29], an integral correction
fusion estimator based on the adaptive square-root CKF was proposed. The zero-point-
reset method was used to correct the colored noise of sensors. The error caused by vehicle
nonlinear dynamics can be compensated by the novel estimation strategy. In [30], a random
walk square-root CKF estimation strategy considering vehicle parameter uncertainty was
proposed. The effectiveness of the estimation of longitudinal tire force and lateral force
was verified by CarSim-Simulink co-simulation. When the sudden change of target motion
state leads to a mismatch between the vehicle model and the real-world or statistical
characteristics of noise are unknown, the accuracy and stability of the traditional square-
root cubature Kalman filter will be reduced [31,32]. Thus, an adaptive SCKF algorithm is
proposed, which estimates the parameters using the maximum a posterior (MAP) criterion
to improve the estimation stability of the SCKF algorithm.

This article introduces a novel estimation architecture for longitudinal force, yaw
rate, and the sideslip angle of autonomous vehicles via an adaptive SCKF algorithm.
Firstly, a novel tire model under combined conditions is obtained using the piecewise
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affine identification method, which has the advantages of high precision and conciseness.
Secondly, a novel nonlinear state function, which considers the tire dynamics characteristics
and the PWA tire model, is derived. Finally, an ASCKF algorithm is proposed to improve
the dynamic adjustment and self-adaptation performance when dealing with uncertainty
interference. Its effectiveness has been verified by co-simulation.

The rest of this paper is organized as follows. In Section 2, a 3-DoF vehicle model is
introduced. Section 3 discusses how the novel PWA tire model was obtained based on
piecewise affine identification is introduced. In Section 4, a novel nonlinear state-space
function and an adaptive SCKF algorithm are proposed to estimate four-wheel longitudinal
force, yaw rate, sideslip angle, longitudinal velocity, and lateral velocity. In Section 5,
the effectiveness and practicability of the estimation architecture are verified by CarSim-
Simulink co-simulation.

2. Vehicle Dynamics Modeling

To reduce the complexity of the vehicle dynamics model as much as possible, a 3-DoF
vehicle model, which considers the longitudinal motion, lateral motion, and yaw motion,
is established in Figure 1. The dynamics model can be expressed as follow [33]:

.
vx = ax + vyr

.
vy = ay − vxr

Iz ·
.
r =

[(
Fx f l + Fx f r

)
sin δ +

(
Fy f l + Fy f r

)
cos δ

]
l f −

(
Fyrl + Fyrr

)
lr

+
[(

Fx f r − Fx f l

)
cos δ +

(
Fy f l − Fy f r

)
sin δ

]
B
2 + (Fxrr − Fxrl)

B
2

(1)

where δ is the front wheel angle. B is the vehicle track width. Iz is yaw inertia of the vehicle.
lf and lr are the distances from the vehicle center to the front and rear axle. vx, vy and r are
the longitudinal velocity, lateral, and yaw rate. Fxij and Fyij (i = f or r, j = r or l) represent
the longitudinal forces and lateral forces of each tire. ax and ay denote the longitudinal
acceleration and the lateral acceleration, which can be expressed as:

ax = 1
m

[(
Fx f l + Fx f r

)
cos δ−

(
Fy f l + Fy f r

)
sin δ + Fxrl + Fxrr

]
ay = 1

m

[(
Fx f l + Fx f r

)
sin δ +

(
Fy f l + Fy f r

)
cos δ + Fyrl + Fyrr

] (2)

where m is the vehicle mass. In this work, the vehicle sideslip angle β and longitudinal slip
λ of each tire can be given as follows [34]:

β = arctan(
vy

vx
) ≈

vy

vx
(3)


λ f l =

ω f l R−v f l
v f l

, λ f r =
ω f r R−v f r

v f r

λrl =
ωrl R−vrl

vrl
, λrr =

ωrr R−vrr
vrr

(4)

where wij, λij, and vij (where “fl”, “fr”, “rl”, “rr” stand for the left front wheel, the right
front wheel, the left rear wheel, and the right rear wheel) are the angular velocity of each
wheel, the tire longitudinal slip, and four wheels center velocity. R is the wheel radius.
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Figure 1. The vehicle model: top view.

Based on wheel dynamics analysis, the velocity of each wheel center and tire sideslip
angles can be expressed as follows [35]:

v f l =
(

vx − B
2 r
)

cos δ +
(

vy + l f r
)

sin δ

v f r =
(

vx +
B
2 r
)

cos δ +
(

vy + l f r
)

sin δ

vrl = vx − B
2 r; vrr = vx +

B
2 r

(5)


α f l = δ− arctan

( vy+l f r
vx−Br/2

)
; α f r = δ− arctan

( vy+l f r
vx+Br/2

)
αrl = −arctan

(
vy−lrr

vx−Br/2

)
; αrr = −arctan

(
vy−lrr

vx+Br/2

) (6)

where αfl, αfr, αrl, and αrr are the tire sideslip angles.
Unlike the traditional linear tire model, the nonlinear relationship between tire force

and their influencing factors, i.e., the tire sideslip, angle α, and the tire longitudinal slip λ,
is fully considered in this work. A novel longitudinal and lateral tire forces model which
obtained by piecewise affine identification can be expressed as follows:

Fx f l = fPWA(α f l , λ f l , µ), Fx f r = fPWA(α f r, λrl , µ)

Fxrl = fPWA(αrl , λrl , µ), Fxrr = fPWA(αrr, λrr, µ)

Fy f l = gPWA(α f l , λ f l , µ), Fy f r = gPWA(α f r, λrl , µ)

Fyrl = gPWA(αrl , λrl , µ), Fyrr = gPWA(αrr, λrr, µ)

(7)

where µ is road adhesion coefficient.

3. PWA Modeling of Tire Mechanical Properties under Combined Conditions

The longitudinal and lateral forces of the tire have a complex coupling relationship
under extreme conditions, which brings a big challenge for estimating the tire force of
the FWIA autonomous vehicle. The estimation of tire force in high precision a crucial to
improving the control performance of path tracking and lateral stability. Thus, this work
has great significance.

In this section, the experimental data of tire force under combined conditions can
be obtained through the bench tests in Figure 2. During the test procedure, the rolling
plate with material properties similar to a road surface was selected for a bench test and
the tire was driven at a constant speed on the rolling plate. The Kong Hui automobile
technology (KHAT) low-speed flat tire mechanical characteristic bench test was adopted in
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this experiment. The adopted tire was the DOUBLECOIN RT500 215/75 R17.5 127/124M.
The specific parameter settings of the tire bench tests are shown in Table 1.

Figure 2. Bench test scenario of the tire mechanical properties.

Table 1. Bench test scenario of the tire mechanical properties.

Parameter Setting

Tire pressure (kPa) 880
Tire vertical load (N) 8060
Tire sideslip angle (◦) −10~10
Tire longitudinal slip −1~0.5

Road adhesion coefficient 0.34
Tire camber angle (◦) 0

Velocity of rolling plate (mm/s) 200

The test results of the tire’s nonlinear mechanical properties under combined condi-
tions are shown in Figure 3. As can be seen from these two figures, the highly nonlinear
relationships between the tire forces and their influence factors (tire sideslip angle α, longi-
tudinal slip λ) are manifested in the irregular surfaces’ form. This illustrates the complex
coupling relationship between longitudinal force and the lateral force of the tire under
combined conditions. In this work, the PWA identification is regarded as an effective
way to achieve the modeling of the tire’s nonlinear mechanical properties. The irregular
surfaces are approximated by several affine submodels, which are manifested in the form
of flat surfaces. Based on the obtained experimental data, which reflects the tire’s nonlinear
mechanical properties accurately, the several affine models and their switching rules can be
constructed by PWA identification.
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Figure 3. (a) Nonlinear relationship between the tire longitudinal force and its influence factors;
(b) Nonlinear relationship between the tire lateral force and its influence factors.

This work, which is regarded as an identification problem of the three-dimensional
PWA system, can be divided into three steps: (1) the data clustering; (2) the parameter
estimation of the affine submodels; (3) the calculation of the hyperplane coefficient matrices.

The model of a nonlinear dynamical system in the PWA form can be expressed
as [36,37]:

yj =



θ1
T

[
xj

1

]
, if xj ∈ χ1

...
...

θs
T

[
xj

1

]
, if xj ∈ χs

(8)

where yj ∈ Rp denotes the PWA system output, θi (i = 1, . . . , s) are the parameters of each
affine submodel, and xj ∈ Rn represents the system regression vector. It consists of the
system past inputs and outputs:

xj = [yj−1, yj−2, · · · , yj−ny
, uj−1, uj−2, · · · , uj−nu

]T (9)

where ny and nu are the orders of PWA model, uj ∈ Rm denotes the system inputs, and
n = pny + mnu. χi (i = 1, . . . , s) represent the complete partitions of the regressor set χ, and
each region χi is a convex polyhedral subset represented in the following form:

χi =
{

Fixj + gi ≤ 0
}

(10)

where Fi and gi are the hyperplane coefficient matrices.

3.1. Data Clustering

The original data is divided into s disjoint clusters through data clustering. The Gaus-
sian mixture model has excellent mathematical properties and computational performance.
It is adopted in this paper [38]. The N data samples can be assumed as:

zj =

[
xj
yj

]
∈ Rn+p, j = 1, 2, · · · , N (11)

The probability density of data sample zj can be given by:

p(z; Φ) =
s

∑
i=1

αi pi(z; µi, Σi)
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

Φ := (α, µ, Σ)

α := (α1, α2, · · · , αs), ∑s
i=1 αi = 1

µ := (µ1, µ2, · · · , µs)

Σ := (Σ1, Σ2, · · · , Σs)

(12)

where µ represents n + p-dimensional mean vector. Σ is (n + p) × (n + p)-dimensional
covariance matrices. Multivariate gaussian density pi is defined as:

pi(z; µi, Σi) =
1

(2π)(n+p)/2[det(Σi)]
1/2
× exp

{
−1

2
(z− µi)

TΣ−1
i (z− µi)

}
, i = 1, 2, · · · , s (13)

where the optimal parameter Φ can be obtained as follows

P(j ∈ Γi) =
αi pi(zj; µi, Σi)

p(zj; Φ)
(14)

The maximum-likelihood (ML) estimation is adopted in this work to find the optimal
Φ. It can be expressed as follows:

L(Φ) =
N

∑
j=1

ln p(zj; Φ) =
N

∑
j=1

ln

(
s

∑
i=1

αi pi(zj; µi, Σi)

)
(15)

Furthermore, the execution process of the EM algorithm which contains the expectation
step (E-step) and the maximization step (M-step) is shown in Algorithm 1.

Algorithm 1. The Execution Process of the EM Algorithm

Step 1: Initialize Φ(0) = (α(0), µ(0), Σ(0)) and set the iteration counter l = 0 and set ε > 0.
Step 2: For Φ(l) = (α(l), µ(l), Σ(l)), execute the following procedures:
(E-step): Calculate

ψl
ij =

α
(l)
i pi(zj ;µ

(l)
i ,Σ(l)

i )

p(zj ;Φ(l))
, j = 1, 2, · · · , N, i = 1, 2, · · · , s

Ψ
(l)
i =

N
∑

j=1
ψ
(l)
ij , i = 1, 2, · · · , s

(M-step): Update Φ(l) =
(

α(l), µ(l), Σ(l)
)

by computing

α
(l+1)
i =

Ψ
(l)
i
N , i = 1, 2, · · · , s

µ
(l+1)
i = 1

Ψ
(l)
i

N
∑

j=1
ψ
(l)
ij zj, i = 1, 2, · · · , s

∑
(l+1)
i = 1

Ψ
(l)
i

N
∑

j=1
ψ
(l)
ij (zj − µ

(l+1)
i )(zj − µ

(l+1)
i )

T

, i = 1, 2, · · · , s

Step 3: If the prescribed convergence condition

max

{ ∥∥∥α
(l+1)
i −α

(l)
i

∥∥∥∥∥∥α
(l)
i

∥∥∥ ,

∥∥∥µ
(l+1)
i −µ

(l)
i

∥∥∥∥∥∥µ
(l)
i

∥∥∥ ,

∥∥∥Σ(l+1)
i −Σ(l)

i

∥∥∥∥∥∥Σ(l)
i

∥∥∥ ;

}
≤ ε, ε� 1

is satisfied, then set l∗ = l + 1 and exit. The optimal ML estimate of Φ is obtained by
Φ∗ = Φ(l∗). Else set l = l + 1 and go back to Step 2.

The above process is based on the premise of known submodels number. However,
the submodels number s is unknown in advance. Thus, the estimation of s based on the
information criteria related to the ML estimation can be further expressed as [39,40].

Firstly, two positive integers, smin and smax, are given to make the number of submodels
in the interval [smin, smax].
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Secondly, for all s = smin, . . . , smax, the parameter estimate Φs, which denotes the
estimate of Φ for a fixed s, is computed. Furthermore, the estimate of s can be expressed as
follows

ŝ = argmin
s=smin,··· ,smax

J(Φs, s) (16)

where J(Φs, s) denotes the criterion specified below. Based on the existed information
criteria for model selection, the consistent Akaike’s information criterion (CAIC) [41] and
the MDL criterion [42] are adopted in this work. The aforementioned criterion has the
following form:

J(Φs, s) = −2L(Φs) + A(N)D(s) (17)

D(s) = (s− 1) + s(n + p) +
1
2

s(n + p)(n + p + 1) (18)

A(N) =


ln N + 1 (CAIC)

ln N (MDL)
(19)

A(N)D(s) denotes the penalization function of the data numbers and cluster numbers. A(N)
denotes a function of the numbers of the data samples N. D(s) denotes the number of
independent parameters in Φs.

3.2. Affine Submodel Parameters Estimation

The parameters of each affine submodel need to be calculated in each cluster. The
least squares method is adopted in this work as an accurate algorithm. N data samples are
divided into s disjoint clusters. The number of data in the ith cluster is Ni. For the sample
of jiNi, the first subscript is the serial number of clusters, and the second subscript is the
serial number of Ni samples in the ith cluster. Based on the descriptions, the equations and
variables can be defined as follows [43,44]:

s

∑
i=1

Ni = N (20)

Xi = [xji1 xji2 · · · xjiNi
]T (21)

xjil =

[
xjil
1

]
, l = 1, 2, · · · , Ni (22)

Yi = [yji1 yji2 · · · yjiNi
]T (23)

Γi =
{

ji1, ji2, · · · jiNi

}
(24)

On this basis, the parameters of each affine submodel can be estimated by the least
square method:

θ̂i = (XT
i Xi)

−1
XT

i Yi (25)

3.3. Calculation of Hyperplane Coefficient Matrices

The hyperplane coefficient matrices need to be calculated to classify two adjacent
clusters, Γi and Γj. The crucial step is to solve s(s − 1)/2 pattern recognition problems [45].
Thus, the improved proximal support vector machine (PSVM) method is adopted in this
work [46].

Firstly, two adjacent clusters, Γi and Γj, can be obtained through the following equations:

{
Γi, Γj

}
= min

2≤i,j≤smax,i 6=j

{∥∥∥µhi − µhj

∥∥∥2
}

(26)
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Secondly, the parameters of the hyperplane surface are calculated by minimizing the
objective function:

min
(F,g,ξ)∈Rn+1+p

1
2 ξT

i Viξi +
1

1+ai
(FT

i Fi + g2
i )

s.t. Wi(Fixi − egi) = λi − ξi

(27)

where Vi and Wi are diagonal matrices, ξi is an error vector, and e is a unit vector. When
Wi = 1, Vi = v (v is a penalty factor) and λi = 1, while Wi = −1, Vi = v(n+/n−) and λi = ai (ai
is a positive number). n+ denotes the number of positive samples, n− denotes the number
of negative samples.

To solve the problem in Equation (27), the following Lagrange equation can be con-
structed based on the KKT (Karush-Kuhn-Tucker) condition [47]:

L(F, g, ξ, η) =
1
2

ξT
i Vξi +

1
1 + ai

(FT
i Fi + g2

i )− ηi
T(Wi(Fixi − egi)− λi + ξi) (28)

where ηi is the Lagrange coefficient. The Lagrange’s conditional extremum is adopted in
this work. Thus, the following equations can be further obtained:

∂L(F,g,ξ,η)
∂F = 0; ∂L(F,g,ξ,η)

∂g = 0

∂L(F,g,ξ,η)
∂ξ = 0; ∂L(F,g,ξ,η)

∂η = 0

(29)

Then, it can be expressed as:

Fi =
ai+1

2 xT
i Wiηi

gi = − 1+ai
2 ei

TWiηi

ξi = Vi
−1ηi

(30)

We can further get:

Wi(Fixi − giei) =
ai + 1

2
Wi(xT

i xi + ei
Tei)Wiηi (31)

Combining Equations (28) and (30), we can get:

ai + 1
2

Wi(xT
i xi + ei

Tei)Wiηi = λi −Vi
−1ηi (32)

Thus, we can get:

ηi =

(
Vi
−1 +

1 + ai
2

(
Wi

(
xixT

i + eieT
i

)
Wi

))−1
λi (33)

Based on Equation (33), the Lagrange coefficients can be obtained, and thus the hyper-
plane coefficient matrices, i.e., Fi and gj, can then be calculated according to Equation (30).

Finally, the parameters of each sub-model are shown in Table 2 and based on this, the
specific expression of the tire PWA model can be obtained as Equations (34) and (35). We
can analyze that the tire longitudinal force is identified into 14 affine submodels, and the
tire lateral force is identified into 10 affine submodels under combined conditions. Based
on the different affine submodels in Table 2, the corresponding numbers are shown in the
Figure 4.
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Table 2. Parameters of each affine submodel.

PWA Model Affine Submodel Parameters

Tire
longitudinal force

−177.8 14,936 −1713
112.2 −163 −3266
−82.1 −804 3283
175.1 13,775 1784
−0.58 −2513 3614
30.3 −1533 −3332
−12.2 37,666 46.5
120.8 170 3292
−191 9411 2267
−34 −986 −3088
−11.9 −536 −2686
−119.1 −111 −3346
−193.7 16,750 −1590

11.7 −607 −2746

Tire lateral force

−70.97 −4239 1820
−87.82 154.6 124
−14.83 −3887 −2338
−66.3 −630 −773
−86.8 −2316 −1285
−340 −141.4 8.5
−56 586 476
−165.3 2686 981
−48.9 4741 2012
−81.9 3309 −1680

Figure 4. (a) Simulation result of the identified PWA model for approximating the nonlinear rela-
tionship between the tire longitudinal force and its influence factors; (b) Simulation result of the
identified PWA model for approximating the nonlinear relationship between the tire lateral force and
its influence factors.

Firstly, the simulation results are shown in Figure 4. Second, the fitting errors between
the PWA model and the experimental data are shown in Figure 5. The distributions of
fitting error are both concentrated near zero and the amplitudes of the fitting errors of the
PWA model are relatively small compared with the experimental data. This illustrates that
the identified PWA model can effectively reflect the nonlinear relationship. These results
help to further verify the accuracy of the tire model in the PWA form.
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Figure 5. (a) Tire longitudinal force error between the PWA model and the experimental data; (b) Tire
lateral force error between the PWA model and the experimental data.



yj = θT
1

[
xj

1

]
= −177.8u1

k−1 + 14936u2
k−1 − 1713 i f


0.084 −1 −0.04
−0.176 −1 −0.112
0.0046 −1 −0.139
−0.0087 1 0.0046
−1 0 −12


[
xj 1
]T ≤ 0

...
...

yj = θT
14

[
xj

1

]
= 11.7u1

k−1 − 607u2
k−1 − 2746 i f


−25.5 −1 19.63
0.061 1 0.626

0.0083 1 −0.525
0 −1 −1
1 0 −12


[
xj 1
]T ≤ 0

(34)



yj = θT
1

[
xj

1

]
= −70.97u2

k−1 − 4239u1
k−1 + 1820 i f


0.249 −1 1.06
−0.027 −1 0.00055
−1 0 −12
0 1 −0.5

[xj 1
]T ≤ 0

...
...

yj = θT
10

[
xj

1

]
= −81.9u2

k−1 + 3309u1
k−1 − 1680 i f


−0.135 −1 0.658
0.0124 −1 −0.0433

1 0 −12
0 1 −0.5

[xj 1
]T ≤ 0

(35)

4. Vehicle State Estimation Based on Adaptive SCKF

Despite being an excellent estimation strategy, the Kalman filter algorithm also has
some limitations. EKF linearizes the state function by calculating a Jacobian matrix. How-
ever, the truncation error is large when calculating a strong nonlinear system. The unscented
transformation in the UKF is applied to approximate the probability density function more
accurately than EKF. However, the accuracy and stability of UKF are reduced in the face of
high-dimensional nonlinear systems. As a high-performance nonlinear filtering method,
CKF has been widely studied in recent years [48]. A square-root cubature Kalman filter
(SCKF) is proposed to ensure symmetry, positive (semi) qualitative analysis, and improve
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the estimation accuracy. When the measurement noise is unknown, the filtering accuracy
and stability will be reduced [49,50]. For this reason, the MAP criterion is used to calculate
the statistical values of process noise covariance and measurement noise covariance to
improve the accuracy of state estimation. The overall framework for the estimation strategy
is shown in Figure 6.

Figure 6. The overall framework for the estimation strategy.

4.1. Nonlinear State Space Equation of Vehicle Model

In the existing studies, the longitudinal relaxation length is inevitably considered as a
crucial factor in the estimation of longitudinal forces. The longitudinal relaxation length of
the tire has a significant effect on the longitudinal dynamics modeling [51]. The dynamic
equation of the tire’s longitudinal force can be written as follows:

.
Fxij =

vx

εxij
(Fxij_M − Fxij) (36)

where εxij is the longitudinal slack length of each tire, Fxij_M is the longitudinal force
calculated by the PWA tire model, and εxij represents the effect of the tire’s elastic hysteresis
on the longitudinal force in the process of the tire–road interaction. In this work, the
longitudinal relaxation length of the tire is constant and can be expressed as: εx = Cfx/Cx
where Cfx is the longitudinal stiffness at the zero-point of the longitudinal force and Cx is
the longitudinal slip stiffness of the tire.

The PWA tire model established in this work can accurately reflect the tire’s nonlinear
mechanical characteristics. The affine submodel switches between different sub-models
according to different values of [sideslip angle α, longitudinal slip λ]. The expression of
tire force is further simplified as follows:

Fx f l = Mx1
i α1 + Nx1

i λ1 + bx1
i , Fx f r = Mx2

i α1 + Nx2
i λ2 + bx2

i

Fxrl = Mx3
i α3 + Nx3

i λ3 + bx3
i , Fxrr = Mx4

i α3 + Nx4
i λ4 + bx4

i

Fy f l = My1
j α1 + Ny1

j λ1 + by1
j , Fy f r = My2

j α1 + Ny2
j λ2 + by2

j

Fyrl = My3
j α3 + Ny3

j λ3 + by3
j , Fyrr = My4

j α3 + Ny4
j λ4 + by4

j

(37)

where the longitudinal force expression of each wheel is one of the longitudinal force affine
submodel expressions, i = 1~14, and the lateral force expression of four wheels is one of
the lateral force affine submodel expressions, j = 1~10. The sideslip angles of the two front
wheels are considered approximately equal, defined as α1. Similarly, the sideslip angle
of the rear wheels is defined as α3. λ1, λ2, λ3, and λ4 are the longitudinal slip on each
tire respectively.
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Through the analysis of vehicle dynamics, the sideslip angle of vehicle can be obtained
as follows:

.
β =

1
mvx

(
Fy f l + Fy f r + Fyrl + Fyrr

)
− r (38)

The vehicle nonlinear state-space representation can be expressed as:
.
x(t) = f (x(t), u(t)) + w(t)

z(t) = h(x(t), u(t)) + v(t)
(39)

The state vector is defined as:

x = [r, β, vx, vy, Fx f l , Fx f r, Fxrl , Fxrr]
T (40)

The inputs vector is defined as:

u = [δ, ω1, ω2, ω3, ω4, ax, ay]
T (41)

The measurement vector is shown as follows:

z = [r, ax, ay]
T (42)

The equation of state and measurement equation can be expressed in the following form:

f (·) = [ f1, f2, f3, f4, f5, f6, f7, f8] (43)

h(·) = [h1, h2, h3] (44)

Therefore, the specific nonlinear function f (·) and h(·) can be derived as follows in
Equations (45) and (46):

f1 = L1x(2) + L2
x(1)
x(3) + L3u(1) + L4

u(2)
x(3) + L5

u(3)
x(3) + L6

u(4)
x(3) + L7

u(4)
x(3) + L8

f2 = L9
x(2)
x(3) + L10

x(1)
x2(3) − x(1) + L11

u(1)
x(3) + L12

u(2)
x2(3) + L13

u(3)
x2(3) + L14

u(4)
x2(3) + L15

u(5)
x2(3) + L16

1
x(3)

f3 = u(6) + x(1)x(4);

f4 = u(7)− x(1)x(3);

f5 = L17x(2)x(3) + L18x(1)− L17x(3)u(1) + L19u(2) + L20x(3)− L21x(3)x(5)

f6 = L22x(2)x(3) + L23x(1)− L22x(3)u(1) + L24u(2) + L25x(3)− L26x(3)x(5)

f7 = L27x(2)x(3)− L28x(1) + L29u(4) + L30x(3)− L31x(3)x(7)

f8 = L32x(2)x(3)− L33x(1) + L34u(4) + L35x(3)− L36x(3)x(7)

(45)



h1 = x(1)

h2 = 1
m

[
(x(5) + x(6)) cos u(1)−

(
Fy f l + Fy f r

)
sin u(1) + x(7) + x(8)

]
h3 = 1

m

[
(x(5) + x(6)) sin u(1) +

(
Fy f l + Fy f r

)
cos u(1) + Fyrl + Fyrr

] (46)

where L1–L36 are the parameters derived from the dynamic analysis of the vehicle through
the PWA tire model. The specific expressions are shown in Appendix A. According to
the calculations for the sideslip angle and longitudinal slip of each wheel in preliminary
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processing, the affine submodels of longitudinal force and lateral force can be judged in
real time.

4.2. The Standard SCKF Algorithm

To explain the proposed algorithm clearly, the standard SCKF algorithm is presented
as a prerequisite. The discrete-time nonlinear system can be obtained as follow:

xk = f (xk−1, uk−1) + wk−1

zk = h(xk, uk) + vk

(47)

where xk is the state vector of system and zk is the measurement vector of system. f (·) and h(·)
are the nonlinear functions, which represent the state transition function and measurement
function respectively. wk−1 and vk represent the system noise and measurement noise. The
specific steps of standard SCKF algorithm can be summarized as follow [52]:

4.2.1. Initialization

The state initial value x̂0|0 and the square-root factor S0|0 of the corresponding error
covariance matrix can be set as follows:

S0|0 = [Chol(P0|0)]
T (48)

where P0|0 is the error covariance matrix and Chol(·) is the Cholesky decomposition.

4.2.2. Time Update

• The cubature points are calculated and transferred based on the state transition function:
xi

k−1|k−1 = x̂k−1|k−1 + Sk−1|k−1ξi, i = 1, 2, · · · , 2n

xi∗
k|k−1 = f

(
xi

k−1|k−1

) (49)

where Sk−1|k−1 is the square-root coefficient of Pk−1|k−1 obtained by Cholesky decomposi-
tion, Sk−1|k−1 = [Chol(Pk−1|k−1)]T. ξi is the column i of the cubature point weight matrix
[
√

nIn,−
√

nIn], and In is the unit matrix of n × n. n is the dimension of the state variable.

• Calculate the predicted value of the state and the square-root factor of its error covari-
ance matrix: 

x̂k|k−1 = 1
2n

2n
∑

i=1
xi∗

k|k−1

Sk|k−1 = Tria
([

X∗k|k−1, Chol(Qk−1)
]) (50)

Tria(·) stands for orthogonal triangular matrix factorization. The weighted central
matrix X∗k|k−1 is defined as:

X∗k|k−1 =
1√
2n

[
x1∗

k|k−1 − x̂k|k−1, x2∗
k|k−1 − x̂k|k−1, · · · , x2n∗

k|k−1 − x̂k|k−1

]
(51)

4.2.3. Measurement Update

• The cubature points are updated using the state prediction value x̂k|k−1 and the square-
root Sk|k−1 of the prediction error covariance at k time. After that, it is transferred
based on the measurement function as follow:
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
xi

k|k−1 = x̂k|k−1 + Sk|k−1ξi

zi
k|k−1 = h

(
xi

k|k−1

) (52)

• The square-root factor of the measured predicted value and its innovation covariance
matrix can be calculated as:

ẑk|k−1 = 1
2n

2n
∑

i=1
zi

k|k−1

Szz
k|k−1 = Tria

([
Zk|k−1, Chol(Rk)

]) (53)

The weighted central matrix Zk|k−1 is defined as:

Zk|k−1 =
1√
2n

[
z1

k|k−1 − ẑk|k−1, z2
k|k−1 − ẑk|k−1, · · · , z2n

k|k−1 − ẑk|k−1

]
(54)

• The measurement covariance matrix and cross covariance matrix are calculated
as follow: 

Pzz
k|k−1 = Szz

k|k−1

(
Szz

k|k−1

)T

Pxz
k|k−1 = Xk|k−1ZT

k|k−1

(55)

The weighted central matrix Xk|k−1 is defined as:

Xk|k−1 =
1√
2n

[
x1

k|k−1 − x̂k|k−1, x2
k|k−1 − x̂k|k−1, · · · , x2n

k|k−1 − x̂k|k−1

]
(56)

• Kalman gain matrix can be expressed as:

Kk = Pxz
k|k−1

(
Pzz

k|k−1

)−1
(57)

• Update the square-root factor of the state variable and error covariance matrix at
k time: 

x̂k|k = x̂k|k−1 + Kk

(
zk − ẑk|k−1

)
Sk|k = Tria

([
xk|k−1 − Kkzk|k−1, KkChol(Rk)

]) (58)

4.3. Adaptive Square Cubature Kalman Filter (ASCKF)

It is assumed that process noise covariance Q, measurement noise covariance R, and
system state xk are all unknown variables. Their MAP estimations can be obtained by
maximizing the conditional density function:

J∗ = p[Xk, Q, R|Zk] (59)

where Xk = {x1, x2, . . . , xk}, Zk = {z1, z2, . . . , zk}.
Based on the properties of conditional probability:

p[Xk, Q, R|Zk] =
p[Xk, Q, R|Zk]

p[Zk]

then

J∗ =
p[Xk, Q, R|Zk]

p[Zk]
(60)
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since p[Zk] is independent of the maximization of J*. Therefore, the problem of finding
the extremum of the above equation can be transformed into finding the extremum of its
molecule. The MAP estimates of Q, R, and xk can be obtained equivalently by the following
maximization density functions:

J = p[Xk, Q, R, Zk]

= p[Zk|Xk, Q, R]p[Xk|Q, R]p[Q, R]
(61)

where p[Q,R] is obtained from prior information and can be regarded as a known constant.
According to the probability multiplication rule:

p[Xk|Q, R] = p[x0]
k

∏
j=1

p
[
xj|xj−1, Q

]
=

exp

{
− 1

2 ||x0−x̂0||2
P−1

0

}
(2π)

n
2 |P0|

n
2

×
k

∏
j=1

exp
{
− 1

2 ||xj− f (xj−1)||2Q−1

}
(2π)

n
2 |Q|

n
2

= C1|P0|−
1
2 |Q|−

k
2 exp

{
− 1

2

[
||x0 − x̂0||2P−1

0
+

k
∑

j=1
||xj − f

(
xj−1

)
||2Q−1

]} (62)

where, n is the dimension of the state variable, and C1 = 1/(2π)n(k+1/2) is a constant.
Assume that the measurements are known and independent of each other. Similarly,

we can get:

p[Zk|Xk, Q, R]=
k

∏
j=1

p
[
zj
∣∣xj, R

]
=

k

∏
j=1

1

(2π)
m
2 |R| 12

exp
{
−1

2
||zj − h

(
xj
)
||2R−1

}
= C2|R|−

k
2 exp

{
−1

2
||zj − h

(
xj
)
||2R−1

} (63)

where m is the dimension of the measured variable and C2 = 1/(2π)mk/2 is a constant.
Substituting Equations (62) and (63) into Equation (61) this result is as follows:

J= C1C2|P0|−
1
2 |Q|−

k
2 |R|−

k
2 p[Q, R] exp

{
−1

2

[
||x0 − x̂0||2P−1

0
+

k

∑
j=1
||xj − f

(
xj−1

)
||2Q−1+

k

∑
j=1
||zj − h

(
xj
)
||2R−1

]}

= C|Q|−
k
2 |R|−

k
2 exp

{
−1

2

[
k

∑
j=1
||xj − f

(
xj−1

)
||2Q−1 +

k

∑
j=1
||zj − h

(
xj
)
||2R−1

]} (64)

where

C = C1C2|P0|−
1
2 p[Q, R]× exp

{
−1

2
||x0 − x̂0||2P−1

0

}
(65)

The logarithm operation doesn’t change the extremum of the function, thus J and lnJ
have the same maximum value. Taking the logarithm of both sides of Equation (64), we
can get

ln J = − k
2

ln|Q| − k
2

ln|R| − 1
2

k

∑
j=1
||xj − f

(
xj−1

)
||2Q−1 −

1
2

k

∑
j=1
||zj − h

(
xj
)
||2R−1 + ln C (66)

where x̂j−1|k and x̂j|k are assumed as known. The partial derivatives of the natural log of J
with respect to Q and R is taken as follow:

∂ ln J
∂Q

∣∣∣∣xj−1=x̂j−1|k ,xj=x̂j|k

Q=Q̂k−1

= 0;
∂ ln J
∂R

∣∣∣∣xj=x̂j|k

R=R̂k

= 0 (67)
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It is difficult to achieve the estimation of x̂j−1|k and x̂j|k. Thus, state estimation x̂j−1|j−1
and x̂j|j or state prediction x̂j|j−1 can be used to replace them [53]. Furthermore, the
suboptimal estimation of noise covariance Qk−1 and Rk can be expressed as:

Q̂k−1 =
1
k

k

∑
j=1

{[
x̂j|j − f

(
x̂j|j−1

)]
×
[

x̂j|j − f
(

x̂j|j−1

)]T
}

(68)

R̂k =
1
k

k

∑
j=1

{[
zj − h

(
x̂j|j−1

)][
zj − h

(
x̂j|j−1

)]T
}

(69)

The measurement innovation can be defined as:

µk = zk − ẑk|k−1 (70)

The equations can be obtained as follows:
E[µk] = E

[
zk − ẑk|k−1

]
= 0

E
[
µkµT

k
]
= E

[(
zk − ẑk|k−1

)(
zk − ẑk|k−1

)T
]
= Pzz

k|k−1

(71)

Combining Equations (58) and (70):

x̂j|j − x̂j|j−1 = Kj

(
zj − ẑj|j−1

)
= Kjµj (72)

Pj|j = Sj|jST
j|j as a known condition. Compared the standard CKF algorithm with

Equations (68) and (69), the mathematical expectation of noise covariance Qk−1 and Rk is:

E
[
Q̂k−1

]
=

1
k

k

∑
j=1

E
{[

x̂j|j − f
(

x̂j|j−1

)]
×
[

x̂j|j − f
(

x̂j|j−1

)]T
}

=
1
k

k

∑
j=1

E
[
Kjµjµ

T
j KT

j

]
=

1
k

k

∑
j=1

[
Pj|j−1 − Pj|j

]
=

1
k

k

∑
j=1

[
Pxx∗

j|j−1 − Pj|j + Qj−1

]
6= Qk−1

(73)

E
[
R̂k
]
=

1
k

k

∑
j=1

E
{[

zj − h
(

x̂j|j−1

)][
zj − h

(
x̂j|j−1

)]T
}

=
1
k

k

∑
j=1

Pzz∗
j|j−1 + Rj 6= Rk (74)

Pxx∗
j|j−1 =

1
2n

2n

∑
i=1

[
xi

j|j−1 − x̂j|j−1

][
xi

j|j−1 − x̂j|j−1

]T
(75)

Pzz∗
j|j−1 =

1
2n

2n

∑
i=1

[
zi

j|j−1 − ẑj|j−1

][
zi

j|j−1 − ẑj|j−1

]T
(76)

when the noise statistics change is small [54], the following equation can be considered
valid: Qk−1 = Qj−1 and Rk = Rj. Rewrite Equations (73) and (74), we can get:

E
[
Q̂k−1

]
=

1
k

k

∑
j=1

E
[
Kjµjµ

T
j KT

j

]
=

1
k

k

∑
j=1

[
Pxx∗

j|j−1 − Pj|j + Qk−1

]
(77)

E
[
R̂k
]
=

1
k

k

∑
j=1

E
[
µjµ

T
j

]
=

1
k

k

∑
j=1

Pzz∗
j|j−1 + Rk (78)
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Therefore, the statistical estimation of noise covariance Qk−1 and Rk can be
obtained as:

Q̂k−1 =
1
k

k

∑
j=1

[Kjµjµ
T
j KT

j − Pxx∗
j|j−1 + Pj|j] (79)

R̂k =
1
k

k

∑
j=1

[µjµ
T
j − Pzz∗

j|j−1] (80)

5. The Simulation Analysis

In this section, the precision and effectiveness of the proposed estimation strategy
under critical maneuvers were verified using a co-simulation platform based on high-
fidelity software CarSim and Simulink. Two different simulation conditions, Case 1 and
Case 2, were designed. The sine steering angle input of the autonomous vehicles was
employed in Case 1. The vehicle speed and road adhesion coefficient were 120 km/h
and 0.8. In Case 2, the combined condition was set at a medium speed and large steering
angle. In addition, another estimation strategy designed based on the SCKF algorithm was
selected for comparison. The vehicle parameters adopted in the simulation are given in
Table 3.

Table 3. Simulation parameters.

Parameter Setting

m (kg) 2350
R (m) 0.25
lf (m) 1.337
lr (m) 1.587
B (m) 1.53

Iz (kg·m2) 4386
hg (m) 0.652

Case 1: Simulation Results of Sine Steering Angle Input

The sine steering angle input is shown in Figure 7. Figure 8 shows the estimation
results of the autonomous vehicle under different estimation strategies compared with the
CarSim simulation results. Figure 8a,b show that the proposed estimation algorithm has
better accuracy than the SCKF algorithm. The simulation results in CarSim are considered
the real motion state of the autonomous vehicle. The general trend of the SCKF algorithm
is like the CarSim simulation results, but its accuracy is lower than the ASCKF algorithm.
Figure 8c shows the longitudinal vehicle velocity of the two estimation algorithms. It
is obvious that the proposed strategy has better stability in the co-simulation. The peak
error of the adaptive SCKF algorithm is relatively smaller and tends to stabilize quickly.
This indicates that the adaptive SCKF has the ability to self-adapt when dealing with
uncertainty interference.

Figure 7. The Steering angle.
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Figure 8. Estimation results of Case1. (a)Yaw rate; (b) Sideslip angle; (c) Longitudinal vehicle speed;
(d) Lateral vehicle speed; (e) Longitudinal force Ffl; (f) Longitudinal force Ffr; (g) Longitudinal force
Frl; (h) Longitudinal force Frr.
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Figure 8e–h show the simulation results of four-wheel longitudinal force. The tire
model in this work is established by experimental data and has the advantage of concise
form. Combined with the adaptive algorithm proposed in this paper, the simulation
result has better precision and better immunity to unknown noise. In this case, the tire’s
mechanical characteristics are easy to reach in the nonlinear region, and the vehicle system
is highly nonlinear. It is significant to estimate the four-wheel longitudinal force stably and
accurately for vehicle trajectory tracking and lateral stability control.

Case 2: Simulation Results of J turn Input

In Case 2, the J turn maneuver is set as the varying vehicle velocity and the given
steering angle shown in Figure 9. In the typical scenario, the speed of the autonomous
vehicle is increased from 30 km/h to 60 km/h and the road adhesion coefficient is set to
µ = 0.6.

Figure 9. Simulation results of Case 2. (a) Steering wheel angle; (b) Longitudinal vehicle speed.

Figure 10 shows the simulation comparison results of Case 2. As can be seen from
Figure 10a,b, the yaw rate and sideslip angle estimation results of the ASCKF estimation
strategy proposed in this work has higher precision and anti-interference ability than the
SCKF strategy. In the whole simulation, the proposed SCKF algorithm can adaptively adjust
the measurement noise covariance to ensure the tracking accuracy of state estimation. In the
estimation results of longitudinal velocity and lateral velocity in Figure 10c,d, the simulation
results of the ASCKF algorithm converges faster to the CarSim simulation results.

Figure 10. Cont.
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Figure 10. Simulation results of Case 2. (a) Yaw rate; (b) Sideslip angle; (c) Longitudinal vehicle
speed; (d) Lateral vehicle speed; (e) Longitudinal force Ffl; (f) Longitudinal force Ffr; (g) Longitudinal
force Frl; (h) Longitudinal force Frr.

According to Figure 10e–h, the error of the longitudinal force estimation is larger
without the adaptive SCKF algorithm when the vehicle accelerates. When the estimation of
the statistical characteristics of noise is not accurate enough, it will lead to the mutation
of error. The adaptive algorithm based on MAP estimation can effectively improve this
condition and converges to be stable quickly. It indicates that the adaptive SCKF algorithm
has a better performance of dynamic adjustment when dealing with uncertainty interfer-
ence. The high-precision and stable estimation of the four-wheel longitudinal force is the
premise of autonomous vehicle dynamics control. It proves the anti-interference ability
and effectiveness of the ASCKF algorithm in this work.
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6. Conclusions

This paper proposes an adaptive estimation strategy based on a novel tire model in
the PWA form that considers tire nonlinear mechanical characteristics for the autonomous
vehicle to improve estimation accuracy and stability under critical maneuvers. Firstly,
the PWA identification method, which mainly involves the data clustering, the parame-
ter estimation of the affine submodels, and the calculation of the hyperplane coefficient
matrices, is used to realize the modeling of the tire nonlinear mechanical characteristics
under combined conditions. Secondly, a novel nonlinear state function that considers the
tire longitudinal relaxation length and includes the PWA tire model is proposed. Finally,
an adaptive square-root cubature Kalman filter estimation strategy based on the MAP
criterion is applied in this work to estimate yaw rate, sideslip angle, longitudinal vehicle
speed, lateral vehicle speed, and four-wheel longitudinal force. The CarSim-Simulink
co-simulation results show that the ASCKF algorithm proposed in this work still maintains
higher accuracy and stability against the other estimate strategy when the state changes
suddenly or the statistical characteristics of noise are unknown. It shows the effective-
ness and practicability of the novel estimation architecture proposed in this work. Future
works will focus on the experimental assessment of the proposed estimation strategy on a
real-world FWIA vehicle.
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Appendix A

The specific expression of L1–L36 are shown as follow:
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